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Abstract:In this paper we study different concepts like vertex squared double di-
vide interval-valued fuzzy graph, vertex squared double divide cardinality, vertex
squared double divide independent set, n- dominating set, n- domination num-
ber. We likewise, investigate a relationship between n - dominating set and vertex
squared double divide independent set for vertex squared double divide interval-
valued fuzzy graphs. The vertex squared double divide interval-valued fuzzy graphs
are more adaptable and viable than fuzzy graphs because of the way that they have
numerous applications in networks. This work will be useful to concentrate enor-
mous vertex squared double divide interval-valued fuzzy graphs as a mix of little
vertex squared interval-valued fuzzy graphs. Vertex squared double divide interval-
valued fuzzy graph hypothesis is presently developing and growing its applications.
The theoretical improvement in this space is talked about here.
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1. Introduction
Fuzzy graphs differ from the classical ones in several ways, among them the

most prominent one is connectivity. Distance and central concepts additionally
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assume important parts in applications related to fuzzy graphs. In 1965 Lotfi. A.
Zadeh initiated fuzzy sets and later in 1983 Krassimir T. Bhattacharya [9] has
discussed fuzzy graphs. M. Akram gave the idea that interval-valued Pythagorean
fuzzy graphs and interval-valued neutrosophic graph structures and interval-valued
fuzzy hyper graphs [2], [3], [4]. Kalaiarasi and Mahalakshmi have also expressed
fuzzy strong graphs [16]. M. Akram and A. Dudek have also expressed self cen-
tered interval-valued fuzzy graphs and interval-valued fuzzy line graphs [5], [7]. M.
Akram and N. O. Alshehri gave the notion of certain types of interval-valued fuzzy
graphs [6].

Generalized theory and fuzzy logic have been concentrated by Zadeh [27, 28,
29]. Hongmei and Lianhun have also expressed interval-valued sub semigroups and
subgroups [13]. Akram et al [1] gave the idea that fuzzy graphs. The concept
of fuzzy sets has been concentrated by Turksen [25]. Pradip Debnath gave the
characterization for a minimal dominating set [21]. Manjusha and Sunitha gave
the notion of strong arcs [19].

In this paper, we build up the idea of n-domination in VSDDIVFG and many
fascinating outcomes including these ideas are researched. Additionally, we talk
about n- domination number and explored their many intriguing outcomes.

2. Vertex Squared Double Divide Interval-Valued Fuzzy Graph

Definition 2.1. An vertex squared double divide interval-valued fuzzy set (VSD-
DIVFS) XIV on a set VIV is denoted by

XIV =

{(
i11,

[(
σ−
XIV

(i11)
)2

2
,

(
σ+
XIV

(i11)
)2

2

])
, i11 ∈ VIV

}
, where
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)2

2
and

(σ+
XIV

)2

2

are fuzzy subsets of VIV such that
(σ−

XIV
(i11))2

2
≤

(σ+
XIV

(i11))2

2
for all i11 ∈ VIV .

If G∗IV = (VIV , EIV ) is a crisp graph, then by an vertex squared double divide
interval-valued fuzzy relation YIV on VIV we mean an VSDDIVFS on EIV such

that σ−YIV (i11i22) ≤ min

{
(σ−

XIV
(i11))2

2
,
(σ−

XIV
(i22))2

2

}
and
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YIV

(i11i22) ≤ max
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2
,
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}
for all i11i22 ∈ EIV and we write

YIV = {(i11i22, [σ−YIV (i11i22), σ
+
YIV

(i11i22)]), i11i22 ∈ EIV }.
Definition 2.2. An VSDDIVFG of a graph G∗IV = (VIV , EIV ) is a pair GIV =

(XIV , YIV ), where XIV =

[
(σ−

XIV
)2

2
,
(σ+

XIV
)2

2

]
is an VSDDIVFS on VIV and YIV =

[σ−YIV , σ
+
YIV

] is an vertex squared double divide interval-valued fuzzy relation on VIV .
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Figure 1: V SDDIV FG(GIV )

Example 2.3. In the above figure,
VIV = {i11, i22, i33, i44}
EIV = {i11i22, i22i33, i33i44, i44i11}
Here we take XIV be an VSDDIVFS on VIV and YIV be an VSDDIVFS on

EIV ⊆ VIV × VIV defined by

XIV =

〈(
i11

(0.2)2/2
,

i22
(0.1)2/2

,
i33

(0.3)2/2
,

i44
(0.4)2/2

)〉〈(
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,
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,
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(0.6)2/2
,

i44
(0.5)2/2

)〉
YIV =

〈(
i11i22
0.005

,
i22i33
0.005

,
i33i44
0.045

,
i44i11
0.02

)〉〈(
i11i22
0.06

,
i22i33
0.18

,
i33i44
0.18

,
i44i11
0.125

)〉
Then GIV = (XIV , YIV ) is an VSDDIVFG.

Definition 2.4. The order pIV and size qIV of an VSDDIVFG GIV = (XIV , YIV )
of a graph G∗IV = (VIV , EIV ) are denoted by

pIV =
∑
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Definition 2.5. Let GIV = (XIV , YIV ) be an VSDDIVFG on G∗IV = (VIV , EIV )
and SIV ⊆ VIV . Then the vertex squared double divide cardinality of SIV is defined
to be ∑

i11∈VIV

1 +
(σ+

XIV
(i11))2

2
−

(σ−
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(i11))2

2

2

Definition 2.6. An arc eIV = i11i22 of the VSDDIVFG is called a vertex squared
double divide effective edge if
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.

Definition 2.7. A set SIV of vertices of the VSDDIVFG is called the vertex
squared double divide independent set (VSDDIS) if

σ−YIV (i11i22) < min
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2
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for all i11, i22 ∈ SIV .

3. n-Domination in Vertex Squared Double Divide Interval-Valued Fuzzy
Graph

Definition 3.1. Let GIV = (XIV , YIV ) be an VSDDIVFG on VIV and i11, i22 ∈
VIV . We say ’i11’ n-dominates ’i22’ if
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Example 3.2. GIV :
In the above figure,

VIV = {i11, i22, i33}
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Figure 2: VSDDIVFG(GIV ) with 2-Dominates

EIV = {i11i22, i22i33, i33i11}

Here we take XIV be an VSDDIVFS on VIV and YIV be an VSDDIVFS on
EIV ⊆ VIV × VIV denoted by

XIV =

〈(
i11

(0.4)2/2
,

i22
(0.2)2/2

,
i33

(0.1)2/2

)〉〈(
i11

(0.5)2/2
,

i22
(0.3)2/2

,
i33

(0.2)2/2

)〉
YIV =

〈(
i11i22
0.01

,
i22i33

0.0025
,
i33i11

0.0025

)〉〈(
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,
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0.0225
,
i33i11

0.0625

)〉

Then GIV = (XIV , YIV ) is an VSDDIVFG.
In figure 2, n = 2,

σ−YIV (i11i22) = min
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σ+
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(i11i22) = max
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,
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}
= 0.0625

Similarly,
σ−YIV (i22i33) = 0.0025 and σ+

YIV
(i22i33) = 0.0225,

σ−YIV (i11i33) = 0.0025 and σ+
YIV

(i11i33) = 0.0625.
Therefore all edges are 2-dominate edges.

Definition 3.3. A subset SIV of VIV is called a n-dominating set (n-DS) in
VSDDIVFG if for every i22 6∈ SIV , there exist i11 ∈ SIV such that i11 n- dominates
i22. A n-DS RIV of a VSDDIVFG is called the minimal n-dominating set if no
proper subset of RIV is a n-DS of VSDDIVFG.

Definition 3.4. The minimal vertex squared double divide cardinality of a n-DS
in VSDDIVFG is said to be n-domination number of VSDDIVFG and is denoted
by γnD(GIV ).

Example 3.5. In Figure 3,

VIV = {i11, i22, i33}

EIV = {i11i22, i22i33, i33i11}

Here we take XIV be an VSDDIVFS on VIV and YIV be an VSDDIVFS on
EIV ⊆ VIV × VIV denoted by

XIV =

〈(
i11

(0.4)2/2
,
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,
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(0.2)2/2
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Then GIV = (XIV , YIV ) is an VSIVFG
GIV :
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Figure 3: VSDDIVFG(GIV ) with 2-Domination Number

For n=2, the 2-dominating sets (2-DSs) are

D1 = {i11} =
1+(0.5)2

2
− (0.4)2

2

2
= 0.5225

D2 = {i=22} =
1+(0.4)2

2
− (0.3)2

2

2
= 0.5175

D3 = {i33} =
1+(0.4)2

2
− (0.2)2

2

2
= 0.53

D4 = {i11, i22} =
1+(0.5)2

2
− (0.4)2

2

2
+

1+(0.4)2

2
− (0.3)2

2

2
= 1.04

D5 = {i22, i33} =
1+(0.4)2

2
− (0.3)2

2

2
+

1+(0.4)2

2
− (0.2)2

2

2
= 1.0475

D6 = {i11, i33} =
1+(0.5)2

2
− (0.4)2

2

2
+

1+(0.4)2

2
− (0.2)2

2

2
= 1.0525

Then the minimal vertex squared double divide cardinality of a 2-dominating set
is {i22} and γ2D(GIV ) = 0.5175.

Theorem 3.6. A vertex squared double divide independent set is a maximal vertex
squared double divide independent set of a VSDDIVFG iff it is a vertex squared
double divide independent set and n-DS.
Proof. Let SIV is a maximal vertex squared double divide independent set of a
VSDDIVFG. Thus for each x ∈ VIV −SIV , the set SIV ∪ {x} is not vertex squared
double divide independent set. In this way, for each vertex x ∈ VIV − SIV , there is
a vertex y ∈ SIV to such an extent that y is n-dominated by x. Consequently SIV
is a n-DS. Hence SIV is an vertex squared double divide independent and n-DS.
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Conversely, let SIV be vertex squared double divide independent set and n-DS. If
conceivable, assume SIV is not a maximal vertex squared double divide independent
set. Then there exists x ∈ VIV − SIV to such an extent that the set SIV ∪ {x}
is vertex squared double divide independent set. Then no vertex in SIV is n-
dominated by x. Hence SIV cannot be a n-DS, which is a contradiction. Hence
SIV should be a maximal vertex squared double divide independent set.

Example 3.7. GIV :

Figure 4: VSDDIVFG(GIV ) with 2-Dominating Set

In the above figure the maximal vertex squared double divide independent sets
are S1 = {i11, i22, i33}, S2 = {i22, i33, i44}. This S1 and S2 is also a vertex squared
double divide independent set and 2-DS.

Theorem 3.8. In a VSDDIVFG, every maximal vertex squared double divide
independent set is a minimal n-dominating set.
Proof. Let SIV be a maximal vertex squared double divide independent set in
VSDDIVFG. By the theorem 3.6, SIV is a n-DS. Assume SIV be not a minimal
n-dominating set. Then there exists somewhere around one vertex x ∈ SIV for
which SIV − {x} is a n-DS. Yet, if SIV − {x} n-dominates VIV − (SIV − {x}) then
at least one vertex in SIV −{x} must n- dominate x. This contradicts the way that
SIV is a VSDDIS of VSDDIVFG. Hence SIV should be a minimal n- dominating
set.
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Example 3.9. GIV :

Figure 5: VSDDIVFG(GIV ) with 2-Dominating Set

In the above figure the maximal vertex squared double divide independent sets are
S1 = {i11, i22}, S2 = {i33, i44}, and 2-DSs are

D1 = {i11, i22} =
1+(0.4)2

2
− (0.2)2

2

2
+

1+(0.5)2

2
− (0.3)2

2

2
= 1.07

D2 = {i33, i44} =
1+(0.4)2

2
− (0.2)2

2

2
+

1+(0.5)2

2
− (0.3)2

2

2
= 1.07

This shows that every maximal vertex squared double divide independent set is a
minimal 2-DS.

Theorem 3.10. Let GIV be a VSDDIVFG with n-dominate edges. If SIV is a
minimal n- dominating set, then VIV − SIV is a n-DS.
Proof. Let SIV be a minimal n-dominating set of VSDDIVFG. Assume VIV −SIV
is not n-DS. Then there exist a vertex to x ∈ SIV such an extent that x is not
n-dominated by anyone vertex in VIV − SIV . Since GIV has n- dominate edges, x
is a n-dominate of somewhere around one vertex in SIV − {x}. Then SIV − {x}
is a n-DS, which contradicts the minimality of SIV . Subsequently, every vertex in
SIV is a n-dominate of no less than one vertex in VIV − SIV . Hence VIV − SIV is a
n-DS.

Example 3.11. GIV :
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Figure 6: VSDDIVFG(GIV ) with 2-Dominating Set

For n=2, the 2-DSs are

D1 = {i11, i22} =
1+(0.5)2

2
− (0.3)2

2

2
+

1+(0.4)2

2
− (0.2)2

2

2
= 1.07

D2 = {i11, i33} =
1+(0.5)2

2
− (0.3)2

2

2
+

1+(0.3)2

2
− (0.2)2

2

2
= 1.0525

D3 = {i11, i44} =
1+(0.5)2

2
− (0.3)2

2

2
+

1+(0.5)2

2
− (0.5)2

2

2
= 1.04

D4 = {i22, i33} =
1+(0.4)2

2
− (0.2)2

2

2
+

1+(0.3)2

2
− (0.2)2

2

2
= 1.0425

D5 = {i22, i44} =
1+(0.4)2

2
− (0.2)2

2

2
+

1+(0.5)2

2
− (0.5)2

2

2
= 1.03

D6 = {i33, i44} =
1+(0.2)2

2
− (0.3)2

2

2
+

1+(0.5)2

2
− (0.5)2

2

2
= 1.0125

Then the minimal vertex squared double divide cardinality of a 2-DS is {i33, i44}
and γ2D(GIV ) = 1.0125. Here VIV = {i11, i22, i33, i44}, then VIV −D6 = {i11, i22} is
also a 2-DS.
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4. Conclusion

The dominance theory survey is intriguing because of the wide range of ap-
plications and dominant features that can be established. The new thought has
been explained in this paper for vertex squared double divide cardinality, vertex
squared double divide effective edge, n- dominating set, and n- domination num-
ber. Theorems identified with this concept are inferred and the relation between
n- domination set and vertex squared double divide independent set are set up.
Vertex squared double divide interval-valued fuzzy graphs are more adaptable and
practical than fuzzy graphs because of their many applications in networks. The
fuzzy graph hypothesis with vertex squared double divide interval-valued is ac-
tively being explored and modified. We trust our investigation will empower us to
expand fuzzy graph classes, for example, interval-valued double divide fuzzy inci-
dence graphs and intuitionistic fuzzy incidence graphs.
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