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Abstract: A topological index is a numeric quantity obtained from a graph struc-
ture that is invariant under graph isomorphism. Generally, vertex degree-based
topological indices take into account the contributions of pairs of adjacent vertices.
But, in Banhatti indices are contributions of pairs of incident elements. Particu-
larly, the concept of Zagreb and Banhatti indices was established in chemical graph
theory based on vertex degrees. Analogously, we initiate the study of multiplica-
tive versions of the Banhatti indices of a graph. The main goal of this paper is
to shed light on the relationship between the multiplicative Banhatti indices and
other degree-based topological indices by using certain classical inequalities.
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1. Introduction
Throughout this paper, graph is simple, connected, undirected, and without

loop. Let G = (V,E) be graph with |V (G)| = n vertices and |E(G)| = m edges.
The maximum and minimum degrees of the graphs represented by ∆ = ∆(G) and
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δ = δ(G) respectively. For a vertex v ∈ V (G) and dG(v) denotes the degree of
v and for an edge e = uv ∈ E(G) and dG(e) denotes the degree of an edge e,
which is defined as dG(e) = dG(u) + dG(v)− 2. For graph theoretic notations and
terminologies, we follow to [9].

A graph can be identified by a numeric number, a polynomial, or a matrix that
represents the entire graph, and these representations are intended to be unique
to the graph. The whole structure of the graph is characterised by a numeric
quantity called the topological index. Numerous such indices have been considered
in theoretical chemistry and have found some applications, especially in QSPR /
QSAR / QSTR research, see [6, 16].

The first and second multiplicative versions of the Zagreb indices were defined
in [3, 17, 18] and these indices are defined as,

Π1(G) =
∏

uv∈E(G)

[dG(u) + dG(v)] and Π2(G) =
∏

uv∈E(G)

[dG(u)dG(v)].

In [10], the first and second multiplicative hyper Zagreb indices are

HΠ1(G) =
∏

uv∈E(G)

[dG(u) + dG(v)]2 and HΠ2(G) =
∏

uv∈E(G)

[dG(u)dG(v)]2.

Followed by the first and second forgotten indices [4], Bhanumathi [1] and Ghobadi
[5] defined the multiplicative Forgotten index and is defined as

FΠ1(G) =
∏

uv∈E(G)

[dG(u)2 + dG(v)2] and FΠ2(G) =
∏

uv∈E(G)

[dG(u)2dG(v)2].

In 2004, Milicevic et al., [14] defined reformulated Zagreb indices in terms of edge-
degree defined as follows,

EM1(G) =
∑

e∈E(G)

dG(e)2 and EM2(G) =
∑
e∼f

dG(e)dG(f).

Bearing in mind, additive version of the reformulated Zagreb indices, the multi-
plicative reformulated Zagreb indices are defined as follows,

EΠ1(G) =
∏

e∈E(G)

dG(e)2 and EΠ2(G) =
∏
e∼f

dG(e)dG(f).

The multiplicative Banhatti indices and multiplicative hyper Banhatti indices were
defined in [11, 12, 13] and these indices are defined as follows,

BΠ1(G) =
∏
ue

[dG(u) + dG(e)] and BΠ2(G) =
∏
ue

[dG(u).dG(e)].
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HBΠ1(G) =
∏
ue

[dG(u) + dG(e)]2 and HBΠ2(G) =
∏
ue

[dG(u)dG(e)]2.

In 1972, the first Zagreb index was introduced by Gutman and Trinajstic [7]. It
is an important molecular descriptor and has been closely correlated with many
chemical properties. The first Zagreb index of G is defined as

M1(G) =
∑

u∈V (G)

dG(u)2 =
∑

uv∈E(G)

[
dG(u) + dG(v)

]
.

Bearing in mind the alternative form of above index can be consider a multiplicative
version of the first Zagreb index Π1(G). But, Π1(G) =

∏
uv∈E(G)[dG(u) + dG(v)] 6=∏

u∈V (G) dG(u)2. For example, the Path P3, their values are 4 and 9, respectively.

Similarly, the multiplicative first Banhatti index BΠ1(G) =
∏

ue[dG(u) + dG(e)] 6=∏
u∈V (G) dG(u)2. In view of the above facts, the Zagreb and Banhatti indices are

closely related but not in general. The main goal of this paper is to shed light on
the relationship between multiplicative Banhatti indices and other degree based
topological indices. For more details, we refer to [2, 8].

2. Comparison of multiplicative Banhatti and Zagreb type indices

Theorem 2.1. For any graph G, the first multiplicative Banhatti index is related
to multiplicative Zagreb type indices as

(i) BΠ1(G) = 2HΠ1(G) + Π2(G)− 6Π1(G) + 4m

(ii) BΠ1(G) = EΠ1(G) +HΠ1(G)− 2Π1(G) + Π2(G)

(iii) BΠ1(G) = 2FΠ(G) + 5Π2(G)− 6Π1(G) + 4m

(iv) BΠ1(G) = EΠ1(G) + FΠ1(G)− 2Π1(G) + 3Π2(G).

Proof. Let G be a (n,m)- graph with n ≥ 3 and an edge degree dG(e) = dG(uv) =
dG(u) + dG(v)− 2 for every e = uv ∈ E(G).

(i) We have,

BΠ1(G) =
∏
ue

[dG(u) + dG(e)]

=
∏

uv∈E(G)

[dG(u) + dG(uv)]×
∏

uv∈E(G)

[dG(v) + dG(uv)]

=
∏

uv∈E(G)

{2[dG(u) + dG(v)]2 + dG(u)dG(v)− 6[dG(u) + dG(v)] + 4}

BΠ1(G) = 2HΠ1(G) + Π2(G)− 6Π1(G) + 4m.
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(ii) First, we consider the first multiplicative reformulated Zagreb index

EΠ1(G) =
∏

e∈E(G)

dG(e)2 =
∏

uv∈E(G)

[dG(u) + dG(v)− 2]2

=
∏

uv∈E(G)

[(dG(u) + dG(v))2 − 4(dG(u) + dG(v)) + 4]

EΠ1(G) = HΠ1(G)− 4Π1(G) + 4m. (2.1)

On simplification of the result (i) and an equation (2.1), we have

BΠ1(G) = EΠ1(G) +HΠ1(G)− 2Π1(G) + Π2(G).

(iii) We have

BΠ1(G) =
∏
ue

[dG(u) + dG(e)]

=
∏

uv∈E(G)

[dG(u) + dG(uv)]×
∏

uv∈E(G)

[dG(v) + dG(uv)]

=
∏

uv∈E(G)

{2[dG(u)2 + dG(v)2] + 5dG(u)dG(v)

− 6[dG(u) + dG(v)] + 4m}
BΠ1(G) = 2FΠ(G) + 5Π2(G)− 6Π1(G) + 4m.

(iv) First, we consider the first multiplicative reformulated Zagreb index

EΠ1(G) =
∏

e∈E(G)

dG(e)2 =
∏

uv∈E(G)

[dG(u) + dG(v)− 2]2

=
∏

uv∈E(G)

[dG(u)2 + dG(v)2 + 2dG(u)dG(v)

− 4(dG(u) + dG(v)) + 4]

EΠ1(G) = FΠ(G) + 2Π2 − 4Π1(G) + 4m. (2.2)

On simplification of the result (iii) and an equation (2.2), we have

BΠ1(G) = EΠ1(G) + FΠ1(G)− 2Π1(G) + 3Π2(G).

Thus the result follows.

Theorem 2.2. For any connected graph G, the multiplicative second Banhatti
index is related to the multiplicative Zagreb type indices as



Multiplicative Versions of Banhatti Indices 313

(i) BΠ2(G) = Π2(G)[HΠ1(G)− 4Π1(G) + 4m]

(ii) BΠ2(G) = Π2(G)[FΠ(G) + 2Π2(G)− 4Π1(G) + 4m]

(iii) BΠ2(G) = Π2(G).EΠ1(G).

Proof. Let G be a (n,m)- graph with n ≥ 3 and an edge degree dG(e) = dG(uv) =
dG(u) + dG(v)− 2.

(i) Consider

BΠ2(G) =
∏
ue

[dG(u)dG(e)]

=
∏

uv∈E(G)

[dG(u)dG(uv)]×
∏

uv∈E(G)

[dG(v)dG(uv)]

=
∏

uv∈E(G)

dG(u)dG(v)[dG(u) + dG(v)− 2]2

=
∏

uv∈E(G)

dG(u)dG(v)[(dG(u) + dG(v))2

− 4(dG(u) + dG(v)) + 4]

BΠ2(G) = Π2(G)[HΠ1(G)− 4Π1(G) + 4m].

(ii) Consider

BΠ2(G) =
∏
ue

[dG(u)dG(e)] =
∏

uv∈E(G)

dG(u)dG(v)[dG(u) + dG(v)− 2]2

=
∏

uv∈E(G)

dG(u)dG(v)[(dG(u)2 + dG(v)2 + 2dG(u)dG(v)− 4(dG(u)

+ dG(v)) + 4]

BΠ2(G) = Π2(G)[FΠ(G) + 2Π2(G)− 4Π1(G) + 4m].

(iii) On simplification of the result (i) and an equation (2.1). Also, the result (iii)
and an equation (2.2), we have

BΠ2(G) = Π2(G).EΠ1(G).

Thus the result follows.
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Theorem 2.3. For any connected graph G, the multiplicative hyper Banhatti index
is related to the multiplicative Zagreb type indices as

(i) HBΠ1(G) = (HΠ1(G))2 − 6Π1(G)HΠ1(G) + 13HΠ1(G)− 12Π1(G)

+ Π2(G)HΠ1(G) +
HΠ2(G)

4
+ 2Π2(G) + 4m

(ii) HBΠ1(G) = [FΠ(G)]2 +
25

4
HΠ2(G) + 5Π2(G)FΠ(G)− 6[Π1(G)]3

− 3Π2(G)Π2(G) + 13HΠ1(G) + 2Π2(G)− 12Π1(G) + 4m

Proof. Let G be a (n,m)- graph with n ≥ 3.

(i) Consider

HBΠ1(G) =
∏
ue

[dG(u) + dG(e)]2

=
∏

uv∈E(G)

[dG(u) + dG(e)]2 ×
∏

uv∈E(G)

[dG(v) + dG(e)]2

=
∏

uv∈E(G)

[2dG(u) + dG(v)− 2]2 ×
∏

uv∈E(G)

[2dG(v) + dG(u)− 2]2

HBΠ1(G) = (HΠ1(G))2 − 6Π1(G)HΠ1(G) + 13HΠ1(G)− 12Π1(G)

+ Π2(G)HΠ1(G) +
HΠ2(G)

4
+ 2Π2(G) + 4m

(ii) Consider

HBΠ1(G) =
∏
ue

[dG(u) + dG(e)]2

=
∏

uv∈E(G)

[dG(u) + dG(e)]2 ×
∏

uv∈E(G)

[dG(v) + dG(e)]2

=
∏

uv∈E(G)

[2dG(u) + dG(v)− 2]2 ×
∏

uv∈E(G)

[2dG(v) + dG(u)− 2]2

=
∏

uv∈E(G)

{4
[
dG(u)2 + dG(v)2

]2
+ 20dG(u)dG(v)

×
[
dG(u)2 + dG(v)2

]
+ 25dG(u)2dG(v)2

− 24 [dG(u) + dG(v)]3 − 12dG(u)dG(v)

× [dG(u) + dG(v)] + 52 [dG(u) + dG(v)]2

− 48 [dG(u) + dG(v)] + 8dG(u)dG(v) + 16}



Multiplicative Versions of Banhatti Indices 315

HBΠ1(G) = [FΠ(G)]2 +
25

4
HΠ2(G) + 5Π2(G)FΠ(G)

− 6[Π1(G)]3 − 3Π2(G)Π2(G)

+ 13HΠ1(G) + 2Π2(G)− 12Π1(G) + 4m.

Thus the result follows.

3. Bounds in terms of other multiplicative versions of degree-based
indices

To prove the lower bound of BΠ1(G) and BΠ2(G) in terms of order and size,
we make use of the following result.

Theorem 3.1. [15] For any (n,m) - graph G with n ≥ 3,

Π1(G) ≤
(

2m

n

)2n

and Π2(G) ≥
(

2m

n

)2m

.

Theorem 3.2. For any (n,m) - graph G with n ≥ 3,

(i) BΠ1(G) ≥ 5

(
2m

n

)2m

− 6

(
2m

n

)2n

+ 4m.

(ii) BΠ2(G) ≥ 4

(
2m

n

)2m
[(

2m

n

)2m

−
(

2m

n

)2n

+ 1

]
.

Proof. Let G be a (n,m) - graph with n ≥ 3. Then the first multiplicative
Banhatti index

BΠ1(G) =
∏
ue

[dG(u) + dG(e)]

=
∏

uv∈E(G)

[dG(u) + dG(uv)]×
∏

uv∈E(G)

[dG(v) + dG(uv)]

BΠ1(G) =
∏

uv∈E(G)

{2[dG(u) + dG(v)]2 + dG(u)dG(v)

− 6[dG(u) + dG(v)] + 4}.

Since, (dG(u) + dG(v))2 ≥ dG(u)2 + dG(v)2 ≥ 2dG(u)dG(v). Hence

BΠ1(G) ≥ 5Π2(G)− 6Π1(G) + 4m. (3.1)
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Now, the second multiplicative Banhatti index

BΠ2(G) =
∏
ue

[dG(u)dG(e)]

=
∏

uv∈E(G)

[dG(u)dG(uv)]×
∏

uv∈E(G)

[dG(v)dG(uv)

=
∏

uv∈E(G)

dG(u)dG(v)[dG(u) + dG(v)− 2]2

=
∏

uv∈E(G)

dG(u)dG(v)[dG(u)2 + dG(v)2

+ 2dG(u)dG(v)− 4(dG(u) + dG(v)) + 4]

Since dG(u)2 + dG(v)2 ≥ 2dG(u)dG(v). Hence

BΠ2(G) ≥
∏

uv∈E(G)

dG(u)dG(v)[2dG(u)dG(v) + 2(dG(u)dG(v)

− 4(dG(u) + dG(v) + 4]

BΠ2(G) ≥ 4Π2(G)[Π2(G)− Π1(G) + 1]. (3.2)

Substitute Theorem 3.1 in equations 3.1 and 3.2, we have the desired results of (i)
and (ii).

Theorem 3.3. For any graph connected G,

(i) (3δ − 2)2m ≤ BΠ1(G) ≤ (3∆− 2)2m.

(ii) [2δ(δ − 1)]2m ≤ BΠ2(G) ≤ [2∆(∆− 1)]2m.

Further, equalities of (i) and (ii) in both lower and upper bounds hold if and only
if G is regular.
Proof. Let G be any connected graph.

(i) Consider

BΠ1(G) =
∏
ue

[dG(u) + dG(e)]

=
∏

uv∈E(G)

[dG(u) + dG(uv)]×
∏

uv∈E(G)

[dG(v) + dG(uv)]

=
∏

uv∈E(G)

[2dG(u) + dG(v)− 2]× [dG(u) + 2dG(v)− 2].
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We know that 2δ ≤ dG(u) + dG(v) ≤ 2∆. This implies that

(3δ − 2) ≤ (2dG(u) + dG(v)− 2) ≤ (3∆− 2) (3.3)

(3δ − 2) ≤ (dG(u) + 2dG(v)− 2) ≤ (3∆− 2) (3.4)

Multiplying an equations (3.3) and (3.4), we have,
(3δ − 2)2 ≤ (2dG(u) + dG(v)− 2)(dG(u) + 2dG(v)− 2) ≤ (3∆− 2)2

(3δ − 2)2m ≤ BΠ1(G) ≤ (3∆− 2)2m.

(ii) Consider

BΠ2(G) =
∏
ue

[dG(u)dG(e)]

=
∏

uv∈E(G)

[dG(u)dG(uv)]×
∏

uv∈E(G)

[dG(v)dG(uv)]

=
∏

uv∈E(G)

dG(u)dG(v)[dG(u) + dG(v)− 2]2.

We know that 2δ ≤ dG(u) + dG(v) ≤ 2∆. This implies that

4(δ − 1)2 ≤ (dG(u) + dG(v)− 2)2 ≤ 4(∆− 1)2 (3.5)

δ2 ≤ dG(u)dG(v) ≤ ∆2 (3.6)

Multiplying equations (3.5) and (3.6), we have

4δ2(δ − 1)2 ≤ dG(u)dG(v)(dG(u) + dG(v)− 2)2 ≤ 4∆2(∆− 1)2

[4δ2(δ − 1)2]m ≤ BΠ2(G) ≤ [4∆2(∆− 1)2]m

[2δ(δ − 1)]2m ≤ BΠ2(G) ≤ [2∆(∆− 1)]2m.

Further, equalities of (i) and (ii) will hold if and only if dG(u) + dG(v) = 2δ(G) =
2∆(G) and dG(u) × dG(v) = δ(G)2 = ∆(G)2 respectively for each uv ∈ E(G),
which implies that G is a regular graph.

Theorem 3.4. For any connected graph G,
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(i) 1 ≤ BΠ1(G) ≤ (3n− 5)2m.

(ii) 1 ≤ BΠ2(G) ≤ 4m(n− 1)4m.

Proof. Let G be any connected graph.

(i) Consider

BΠ1(G) =
∏
ue

[dG(u) + dG(e)]

=
∏

uv∈E(G)

[dG(u) + dG(uv)]×
∏

uv∈E(G)

[dG(v) + dG(uv)]

=
∏

uv∈E(G)

[2dG(u) + dG(v)− 2]× [dG(u) + 2dG(v)− 2].

We know that 2 ≤ dG(u) + dG(v) ≤ 2(n− 1). This implies that

1 ≤ (2dG(u) + dG(v)− 2) ≤ (3n− 5) (3.7)

1 ≤ (dG(u) + 2dG(v)− 2) ≤ (3n− 5) (3.8)

Multiplying an equations (3.7) and (3.8), we have,

1 ≤ (2dG(u) + dG(v)− 2)(dG(u) + 2dG(v)− 2) ≤ (3n− 5)2

1 ≤ BΠ1(G) ≤ (3n− 5)2m.

(ii) Consider

BΠ2(G) =
∏
ue

[dG(u)dG(e)]

=
∏

uv∈E(G)

[dG(u)dG(uv)]×
∏

uv∈E(G)

[dG(v)dG(uv)]

=
∏

uv∈E(G)

dG(u)dG(v)[dG(u) + dG(v)− 2]2.

We know that 2 ≤ dG(u) + dG(v) ≤ 2(n− 1). This implies that

1 ≤ (dG(u) + dG(v)− 2)2 ≤ 4(n− 2)2 (3.9)

1 ≤ dG(u)dG(v) ≤ (n− 1)2 (3.10)



Multiplicative Versions of Banhatti Indices 319

Multiplying equations (3.9) and (3.10), we have

1 ≤ dG(u)dG(v)(dG(u) + dG(v)− 2)2 ≤ 4(n− 1)4

1 ≤ BΠ2(G) ≤ 4m(n− 1)4m.

Theorem 3.5. For any connected graph G,

(i) (3δ − 2)4m ≤ HBΠ1(G) ≤ (3∆− 2)4m.

(ii) [16δ4(δ − 1)4]m ≤ HBΠ2(G) ≤ [16∆4(∆− 1)4]m.

Further, equalities of (i) and (ii) in both lower and upper bounds are attained if
and only if G is regular.
Proof. Let G be any connected graph.

(i) Consider

HBΠ1(G) =
∏
ue

[dG(u) + dG(e)]2

=
∏

uv∈E(G)

[dG(u) + dG(e)]2 ×
∏

uv∈E(G)

[dG(v) + dG(e)]2

=
∏

uv∈E(G)

[2dG(u) + dG(v)− 2]2 ×
∏

uv∈E(G)

[2dG(v) + dG(u)− 2]2.

We know that 3δ ≤ 2dG(u) + dG(v) ≤ 3∆ and 3δ ≤ dG(u) + 2dG(v) ≤ 3∆.
This implies that

(3δ − 2)2 ≤ (2dG(u) + dG(v)− 2)2 ≤ (3∆− 2)2 (3.11)

(3δ − 2)2 ≤ (dG(u) + 2dG(v)− 2)2 ≤ (3∆− 2)2 (3.12)

Multiplying equations (3.11) and (3.12), we have

(3δ − 2)4 ≤ (2dG(u) + dG(v)− 2)2(dG(u) + 2dG(v)− 2)2 ≤ (3∆− 2)4

(3δ − 2)4m ≤ HBΠ1(G) ≤ (3∆− 2)4m.

(ii) Consider

HBΠ2(G) =
∏
ue

[dG(u)dG(e)]2

=
∏

uv∈E(G)

[dG(u)dG(e)]2 ×
∏

uv∈E(G)

[dG(v)dG(e)]2

=
∏

uv∈E(G)

dG(u)2dG(v)2[dG(u) + dG(v)− 2]4.



320 South East Asian J. of Mathematics and Mathematical Sciences

We know that 2δ ≤ dG(u) + dG(v) ≤ 2∆. This implies that (2δ − 2)4 ≤ (dG(u) +
dG(v)− 2)4 ≤ (2∆− 2)4, we have

16(δ − 1)4 ≤ (dG(u) + dG(v)− 2)4 ≤ 16(∆− 1)4 (3.13)

δ4 ≤ (dG(u)dG(v))2 ≤ ∆4 (3.14)

Multiplying equations (3.13) and (3.14), we have

16δ4(δ − 1)4 ≤ (dG(u)dG(v))2(dG(u) + dG(v)− 2)4 ≤ 16∆4(∆− 1)4

[16δ4(δ − 1)4]m ≤ HBΠ2(G) ≤ [16∆4(∆− 1)4]m.

Since dG(u) = dG(v). Hence the equalities of (i) and (ii) in both lower and upper
bounds are attained if and only if G is regular.

Theorem 3.6. For any connected graph G,

(i) 1 ≤ HBΠ1(G) ≤ (3n− 5)4m.

(ii) 0 ≤ HBΠ2(G) ≤ 16(n− 1)4m.

Proof. Let G be any connected graph.

(i) Consider

HBΠ1(G) =
∏
ue

[dG(u) + dG(e)]2

=
∏

uv∈E(G)

[dG(u) + dG(e)]2 ×
∏

uv∈E(G)

[dG(v) + dG(e)]2

=
∏

uv∈E(G)

[2dG(u) + dG(v)− 2]2 ×
∏

uv∈E(G)

[2dG(v) + dG(u)− 2]2.

We know that 3 ≤ 2dG(u) + dG(v) ≤ 3(n − 1) and 3 ≤ dG(u) + 2dG(v) ≤
3(n− 1). This implies that

1 ≤ (2dG(u) + dG(v)− 2)2 ≤ (3n− 5)2 (3.15)

1 ≤ (dG(u) + 2dG(v)− 2)2 ≤ (3n− 5)2 (3.16)

Multiplying equations (3.15) and (3.16), we have

1 ≤ (2dG(u) + dG(v)− 2)2(dG(u) + 2dG(v)− 2)2 ≤ (3n− 5)4

1 ≤ HBΠ1(G) ≤ (3n− 5)4m.
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(ii) Consider

HBΠ2(G) =
∏
ue

[dG(u)dG(e)]2

=
∏

uv∈E(G)

[dG(u)dG(e)]2 ×
∏

uv∈E(G)

[dG(v)dG(e)]2

=
∏

uv∈E(G)

dG(u)2dG(v)2[dG(u) + dG(v)− 2]4.

We know that 2 ≤ dG(u) + dG(v) ≤ 2(n − 1). This implies that 0 ≤ (dG(u) +
dG(v)− 2)4 ≤ (2(n− 1))4, we have

0 ≤ (dG(u) + dG(v)− 2)4 ≤ 16(n− 1)4 (3.17)

1 ≤ (dG(u)dG(v))2 ≤ (n− 1)2 (3.18)

Multiplying equations (3.17) and (3.18), we have

0 ≤ (dG(u)dG(v))2(dG(u) + dG(v)− 2)4 ≤ 16(n− 1)4

0 ≤ HBΠ2(G) ≤ 16(n− 1)4m.

Theorem 3.7. For any connected graph G with η pendent vertices and minimal
non- pendent vertices degree δ1(G) = δ1,

(i) (3δ1 − 2)2(m−η)[δ1(2δ1 − 1)]η ≤ BΠ1(G) ≤ (3∆− 2)2(m−η)[∆(2∆− 1)]η

(ii) [4δ21(δ1− 1)2](m−η)[δ1(δ1− 1)2]η ≤ BΠ2(G) ≤ [4∆2(∆− 1)2](m−η)[∆(∆− 1)2]η

Proof.

(i) Let G be a graph with η pendent vertices and minimal non- pendent vertices
degree δ1(G) = δ1.

BΠ1(G) =
∏
ue

dG(u) + dG(e)

=
∏

uv∈E(G)

[dG(u) + dG(uv)]×
∏

uv∈E(G)

[dG(v) + dG(uv)]

=
∏

uv∈E(G)

[2dG(u) + dG(v)− 2][dG(u) + 2dG(v)− 2]

=
∏

uv∈E(G);dG(u),dG(v)6=1

[2dG(u) + dG(v)− 2][dG(u) + 2dG(v)− 2]
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×
∏

uv∈E(G);dG(u)=1

[2dG(u) + dG(v)− 2][dG(u) + 2dG(v)− 2]

BΠ1(G) ≤ (3∆− 2)2(m−η)[∆(2∆− 1)]η

Thus the upper bound follows.
Similarly,

BΠ1(G) ≥ (3δ1 − 2)2(m−η)[δ1(2δ1 − 1)]η

Hence the lower bound follows.

(ii) For any (n,m) graph with η pendent vertices and minimal non- pendent
vertices degree δ1(G), then

BΠ2(G) =
∏
ue

dG(u)dG(e)

=
∏

uv∈E(G)

[dG(u)dG(uv)]×
∏

uv∈E(G)

[dG(v)dG(uv)]

=
∏

uv∈E(G);dG(u),dG(v)6=1

dG(u)dG(v)[dG(u) + dG(v)− 2]2

×
∏

uv∈E(G);dG(u)=1

dG(u)dG(v)[dG(u) + dG(v)− 2]2

BΠ2(G) ≤ [4∆2(∆− 1)2](m−η)[∆(∆− 1)2]η

Thus the upper bound follows.
Similarly,

BΠ2(G) ≥
∏

uv∈E(G);dG(u),dG(v)6=1

dG(u)dG(v)[dG(u) + dG(v)− 2]2

+
∏

uv∈E(G);dG(u)=1

dG(u)dG(v)[dG(u) + dG(v)− 2]2

BΠ2(G) ≥ [4δ21(δ1 − 1)2](m−η)[δ1(δ1 − 1)2]η

Hence the lower bound follows.

4. Conclusion
Being new multiplicative versions of topological index of a graph G in terms

of incident vertex-edge degrees, the multiplicative Banhatti index is an invariant,
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whose properties are relatively unknown. For the comparative advantages, ap-
plications and mathematical point of view, many questions are suggested by this
research, among them are the following.

1. Find the extremal values and extremal graphs of the multiplicative Banhatti
indices.

2. Find some bounds (in terms of other degree based topological indices) and
characterizations of multiplicative Banhatti indices.

3. Find the values of the multiplicative Banhatti indices of all classes of chem-
ical graphs and compare with other degree based topological indices, when
∆(G) ≤ 4. Also, explore some results towards QSPR / QSAR / QSTR
Model.
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