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Abstract: To provide the extensive mathematical analysis, we have considered
the ideal Magnetohydrodynamics (MHD) equations, which represent the flow of
fluid in the atmosphere or ocean in the presence of a magnetic field. Alternatively,
we can say that it represents the flow of electromagnetic fluids. We followed the
procedure of Majda [4] that was implemented to find special solutions of the rotat-
ing stratified Boussinesq equations and found the exact solutions of an initial value
problem as well as we provided a local analysis of incompressible electromagnetic
fluids in the neighborhood of the origin. Further, we reduce these ideal MHD equa-
tions into a system of six-coupled ordinary differential equations, and we conclude
that it is a completely integrable system. Hence, through the quadrature, we find
its solutions. Thereby, we determine the critical point of a reduced system and
which is a degenerate critical point. Finally, we obtained special solutions to the
initial value problem. While providing examples of special solutions to ideal MHD
equations, we come across the fact that, Mathematically, it is possible to find a flow
of an ideal fluid in the presence of a magnetic field such that there is no pressure
at every point of the fluid. But practically it is impossible because of zero pressure
at a point, implying that there is no movement of fluid molecules. Whereas in the
second example the pressure varies with space variable x.

Keywords and Phrases: Ideal MHD equations, Special Solutions, Incompress-
ible inviscid fluids, Stratified Boussinesq equations, Completely Integrable Systems.



296 South East Asian J. of Mathematics and Mathematical Sciences

2020 Mathematics Subject Classification: 76W05, 76B07, 76B70.

1. Introduction
The flow of fluid in the atmosphere and ocean is generally governed by the

stratified Boussinesq equations. In his monograph, Andrew Majda [4] has pro-
vided the rigorous mathematical analysis of these stratified Boussinesq equations.
In the literature survey, we saw that the Boussinesq approximation is referred to
as the Oberbeck-Boussinesq approximation and for more details about these ap-
proximations, readers may see the article [5]. Furthermore, if we consider the flow
of fluid in the atmosphere and the ocean in the presence of the magnetic field, it
may be referred to as magnetohydrodynamics (MHD) equations. In concern with
the MHD equations, we came across the research article published by Jiahong Wu
[6]. In his paper, he has considered the following generalized MHD equations.

∂tu + u · ∇u = −∇P + b · ∇b− ν(−∆)αu,
∂tb + u · ∇b = b · ∇u− η(−∆)βb,

(1)

where ν ≥ 0, η ≥ 0, α > 0 and β > 0 are real numbers. In above equations (1), we
have

x = (x1, x2, x3) : space variable,
u = (u1, u2, u3) : fluid velocity,
b = (b1, b2, b3) : magnetic field,

P = P (x1, x2, x3) : pressure.

In fact, Jiahong Wu [6] has provided the rigorous mathematical analysis and reg-
ularity of solutions of equations (1) by varying the parameters ν, η, α, and β. He
has used singular operator method with kernel K. The convolution of kernel K
with vorticity is the deformation tensor of the velocity vector and convolution of
K with current density is deformation tensor of the magnetic field. On the other
hand, we followed the procedure of Majda [4] to obtain the special solutions of the
ideal MHD equations. That is, we provide a local analysis of MHD flows of fluid
in the neighborhood of the origin. Furthermore, if we consider α = β = 1 then (1)
reduces to the usual MHD equations. In a literature survey, we found that there
have been extensive studies of equations (1). Also, we saw that Duvaut and Lions
[1] have obtained global weak solutions. Further, we observe that these global weak
solutions are similar to those were obtained by Leray-Hopf [2, 3] for the following
stratified Boussinesq equations.

∂tu + u · ∇u = −∇P,
∇ · u = 0.

(2)
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For more details the readers are advised to refer the articles [2, 3]. In his paper
Zujin Zhang [7] has discussed the generalised MHD equations (1) for ν = η = 1,
α = β = 1, and has proved that if one of the directional derivative of fluid velocity

is exists in Lp(0, T, Lq(R3)), where
2

p
+

3

q
= 1, 3 < q ≤ ∞, then the solution of

MHD equations exists and is smooth.
In this paper, we have obtained the special solutions of (1) with particular

values ν = η = 0. That is, for our investigation, we have considered the flow of
incompressible fluid coupled with a magnetic field. Now, we can mathematically
represent this flow of fluids by the following partial differential equations (PDEs):

∂tu + u · ∇u = −∇P + b · ∇b,
∂tb + u · ∇b = b · ∇u,

∇ · u = 0,
∇ · b = 0,

(3)

with following initial conditions that are compatible with (3):

u(x, 0) = u0(x), b(x, 0) = b0(x). (4)

In fact, in the following section, we develop the solution to the initial value problem
(3) together with initial conditions (4) in the neighbourhood of origin.

2. Special Solutions of MHD Equations
In this section, we investigate special solutions to (3) in a large scale of motion.

We are looking for the local behaviour of an incompressible electromagnetic fluid.
Thus, we expand the smooth velocity and magnetic field in Taylor’s series about
some point x0:

u(x, t) = u(x0, t) +∇u|(x0,t)(x− x0) +O(|x− x0|2),

b(x, t) = b(x0, t) +∇b|(x0,t)(x− x0) +O(|x− x0|2),
(5)

where ∇u is a 3 × 3 matrix whose (i, j)th entry is ∂ui

∂xj
, i = 1, 2, 3, j = 1, 2, 3. We

can have a unique decomposition of ∇u and ∇b as the sum of symmetric and
skew-symmetric matrices as follows:

∇u =

(
∇u + (∇u)t

2

)
+

(
∇u− (∇u)t

2

)
= D(x0, t) + Ω(x0, t),

∇b =

(
∇b + (∇b)t

2

)
+

(
∇b− (∇b)t

2

)
= K(x0, t) + L(x0, t)

(6)
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where D and K are the symmetric parts of ∇u and ∇b respectively, and we call
them as deformation matrices. The deformation matrix D has the property that
its trace is equal to the divergence of the vector field u. Similarly, the trace of
matrix K is equal to the divergence of the magnetic field b. On the other hand, Ω
and L are the skew-symmetric parts of ∇u and ∇b, respectively. Further, these
matrices satisfy the following equation (7) for any arbitrary h = (h1, h2, h3)

t ∈ R3

Ωh =
1

2
ω × h, Lh =

1

2
j × h, (7)

where the current density vector j = ∇× b = (j1, j2, j3)
t and the vorticity vector

ω = ∇× u = (w1, w2, w3)
t.

Now, we can use vorticity vector ω and current density vector j in (5) we get

∇u|(x0,t)h = D(x0, t)h + 1
2
ω(x0, t)× h,

∇b|(x0,t)h = K(x0, t)h + 1
2
j(x0, t)× h.

(8)

We assume that u(x0, t) = 0 and b(x0, t) = 0. We take advantage of the local
representation to determine certain special solutions to the ideal magnetohydrody-
namics equations (3). Now taking the gradient of the equation of motion of fluid
and magnetic field, we get

(uixk)t +
∑
j

uj(uixk)xj +
∑
j

∂uj

∂xk

∂ui

∂xj
= −(pxi)xk +

∑
j

bj(bixk)xj

+
∑
j

∂bj

∂xk

∂bi

∂xj
,

(bixk)t +
∑
j

uj(bixk)xj +
∑
j

∂uj

∂xk

∂bi

∂xj
=

∑
j

bj(uixk)xj +
∑
j

∂bj

∂xk

∂ui

∂xj
.

(9)

We introduce the notations U = (uixk), B = (bixk) and P̂ = (pxi)xk for the Hessian
matrix of the gradient pressure ∇P . With the introduction of these notations (9)
can be rewritten as follows:

∂U

∂t
+ (u · ∇)U + U2 = −P̂ + (b · ∇)B +B2

∂B

∂t
+ (u · ∇)B +BU = (b · ∇)U + UB.

(10)

Here, we notice that:
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(a) The symmetric part of U2 = (D + Ω)2 is D2 + Ω2 and skew-symmetric part is
DΩ + ΩD.

(b) Similarly, the symmetric part of B2 = (K+L)2 is K2 +L2 and skew symmetric
part is KL+ LK.

(c) As we have (u ·∇)U = (u ·∇)(D+ Ω), so that (u ·∇)D is a symmetric matrix
and (u · ∇)Ω is skew symmetric.

(d) With similar calculations, we see that the symmetric and skew-symmetric parts
of (b·∇)B are (b·∇)K and (b·∇)L respectively. Whereas, (b·∇)D and (b·∇)Ω
are respectively the symmetric and skew symmetric parts of (b · ∇)U

(e) In a similar fashion, we notice that the symmetric and skew symmetric parts of
UB−BU are (DL−LD+ΩK−KΩ) and (DK−KD+ΩL−LΩ) respectively.

Let us assume that the matrix

D =

d11 d12 d13
d12 d22 d23
d13 d23 d33

 , K =

k11 k12 k13
k12 k22 k23
k13 k23 k33

 . (11)

Since ∇ · u = 0 and ∇ · b = 0 so that

d11 + d22 + d33 = 0 = k11 + k22 + k33. (12)

The matrices Ω and L can be expressed in terms of the components of ω and j as
follows.

Ω =
1

2


0 −w3 w2

w3 0 −w1

−w2 w1 0

 , L =
1

2


0 −j3 j2

j3 0 −j1

−j2 j1 0

 . (13)

We proceed towards expressing the evolution of vorticity ω and current density j,
so we need to present the following lemmas.

Lemma 2.1. A vorticity vector ω satisfy the relation.

ω · ∇u = ω · (∇u)t (14)

Proof. For any h ∈ R3, we have an identification by (7) that

0 =
1

2
ω · (ω × h) =

1

2
ω · ((∇u− (∇u)t)h) =

1

2
ω · (∇u− (∇u)t)h
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since h is arbitrary, the result follows.

Lemma 2.2. A current density vector satisfy

j · ∇b = j · (∇b)t. (15)

The proof of this lemma is just follows by (7).

Proposition 2.1. The evolution of vorticity ω and current density j are governed
by the following system of equations:

Dω

Dt
− ω · ∇u = (b · ∇)j − j · ∇b,

Dj

Dt
= (b · ∇)ω + 2T +

1

2
ω × j,

(16)

where the vector T = (T23, T13, T12)
t has the property that; for any h ∈ R3

T × h = (DK −KD)h. (17)

Proof. Let us proceed with equating the skew-symmetric parts of equations (10),
we get

DΩ

Dt
+ DΩ + ΩD = (b · ∇)L+KL+ LK,

DL
Dt

= (b · ∇)Ω + (DK −KD) + (ΩL − LΩ).

(18)

Hence the action of any h ∈ R3 by post multiplication to (18), we have

1

2

Dω

Dt
× h + (DΩ + ΩD)h =

1

2
(b · ∇)j × h + (KL+ LK)h,

1

2

Dj

Dt
× h =

1

2
(b · ∇)ω × h + (DK −KD)h + (ΩL − LΩ)h.

(19)

We use (12) to compute the matrix DΩ + ΩD as follows:

(DΩ + ΩD) =

1

2

 0 d13w1 + d23w2 + d33w3 −d12w1 − d22w2 − d23w3

−d13w1 − d23w2 − d33w3 0 d11w1 + d12w2 + d13w3

d12w1 + d22w2 + d23w3 −d11w1 − d12w2 − d13w3 0

.
(20)

Let us define a vector c as

c =

c23c13
c12

 =

−d11w1 − d12w2 − d13w3

−d12w1 − d22w2 − d23w3

−d13w1 − d23w2 − d33w3

 . (21)
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With this definition of vector c, we can rewrite the matrix (DΩ + ΩD) as follows.

(DΩ + ΩD) =
1

2

 0 −c12 c13
c12 0 −c23
−c13 c23 0

 . (22)

Hence for any h ∈ R3, we have

(DΩ + ΩD)h =
1

2
c× h. (23)

Further, we notice that

c =

−d11w1 − d12w2 − d13w3

−d12w1 − d22w2 − d23w3

−d13w1 − d23w2 − d33w3

 = −

d11 d12 d13
d12 d22 d23
d13 d23 d33

w1

w2

w3


= −Dω = −ω · ∇u.

(24)

Thus, we have

(DΩ + ΩD)h = −1

2
(ω · ∇u)× h. (25)

With the same line of above arguments, we can compute the matrices (KL+LK),
(ΩL− LΩ) and action of any h ∈ R3 by post multiplication on these matrices are
as follows.

(KL+ LK)h = −1

2
(j · ∇b)× h

(ΩL − LΩ)h =
1

4
(ω × j)× h.

(26)

Furthermore, we compute that

(DK −KD) =

 0 −T12 T13
T12 0 −T23
−T13 T23 0

 . (27)

Hence for h ∈ R3, the matrix (DK −KD) satisfies the equation (17).
Now, we use (17), (25) and (26) to (19), we get

1

2

Dω

Dt
× h − 1

2
(ω · ∇u)× h =

1

2
(b · ∇)j × h− 1

2
(j · ∇b)× h,

1

2

Dj

Dt
× h =

1

2
(b · ∇)ω × h + T × h +

1

4
(ω × j)× h.

(28)
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Since h is arbitrary, we have the result that the evolution of vorticity ω and current
density j are governed by the equations (16). Thus, we complete the proof.

Theorem 2.1. If the gradients of velocity and magnetic field are commutes, then
the ideal MHD equations (3) admits the special solution of the form

u(x, t) = D(t)x + 1
2
ω(t)× x,

b(x, t) = K(t)x + 1
2
j(t)× x,

P =
1

2
P̂ (t)x · x,

(29)

where D(t) and K(t) are symmetric matrices with zero trace and are defined by (6);
furthermore, the vorticity vector ω(t) and the current density vector j(t) satisfies
the system of ODEs;

dω(t)

dt
= D(t)ω(t)−K(t)j(t),

dj(t)

dt
= 0

(30)

and the matrix P̂ (t) is given by

−P̂ (t) =
dD
dt

+D2 + Ω2 −K2 − L2, (31)

where the matrices Ω and L are defined in (6) through the linear maps given by
(7).
Proof. We proceed to show that the velocity, magnetic field and pressure functions
defined by equations (29) satisfies the equations (3) provided that these functions
satisfies the equations (30). Indeed, (29) is the solution of (3) such that ∇u and ∇b
are commutes; provided that ω, j satisfies (30) and scalar function P̂ (t) determined
by the equation (31).

The conditions divu = 0 and divb = 0 follows from the fact that the matrices
D and K have zero trace. To verify the momentum equations of fluid velocity and
magnetic field, note that u and b are linear in x say u = Ux and b = Bx, where
U = ∇u = D + Ω and B = ∇b = K + L are functions of time alone. Therefore,
the advection terms become

(u · ∇)u = (Ux · ∇)Ux = U2x,
(u · ∇)b = (Ux · ∇)Bx = UBx.

(32)
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Hence, we have the convective terms

Du

Dt
=

∂u

∂t
+ (u · ∇)u =

dD
dt

x +
dΩ

dt
x + U2x,

Db

Dt
=

∂b

∂t
+ (u · ∇)b =

dK
dt

x +
dL
dt

x + UBx.

(33)

The symmetric parts of (10) can be recast as follows

DD
Dt

+ D2 + Ω2 = −P̂ + (b · ∇)K +K2 + L2,

DK
Dt

= (b · ∇)D +DL− LD + ΩK −KΩ.

(34)

As the gradient of velocity and magnetic field commutes, so that UB − BU = 0
and hence we get DL−LD + ΩK −KΩ = 0. Because of this, we can rewrite (34)
as follows:

DD
Dt

+ D2 + Ω2 = −P̂ + (b · ∇)K +K2 + L2,

DK
Dt

= (b · ∇)D.
(35)

Also, we conclude that the term 2T+
1

2
ω×j in the second equation of (16) vanishes.

Therefore (16) can be written as

Dω

Dt
− ω · ∇u = (b · ∇)j − j · ∇b,

Dj

Dt
= (b · ∇)ω

(36)

Since D, Ω, K and L are functions of time alone, so that all the terms (u · ∇)Ω,
(u · ∇)D, (u · ∇)K, (u · ∇)L, (b · ∇)Ω, (b · ∇)D, (b · ∇)K, and (b · ∇)L vanishes.
Thus we have

dω

dt
= ω · ∇u− j · ∇b,

dj

dt
= 0.

(37)

Using simple calculations, we see that ω ·∇u = D(t)ω and j ·∇b = K(t)j. Hence,
the vectors ω and j satisfies the equations (30). Also, if we look at the skew-
symmetric part of (18), then we see that it is equivalent to the following equations.

dΩ

dt
+ DΩ + ΩD = KL+ LK,

dL
dt

= 0.

(38)
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Furthermore, we see that (35) are results into the following.

dD
dt

+ D2 + Ω2 = −P̂ +K2 + L2,

dK
dt

= 0.

(39)

Using (38) and (39) to (33), we get

Du

Dt
= −D2x− Ω2x− P̂x +K2x + L2x

− DΩx− ΩDx +KLx + LKx + U2x.
(40)

By simple calculations, we have U2x = (D2 + Ω2 + DΩ + ΩD)x and B2x =
(K2 +L2 +KL+LK)x and substituting these terms in (40), it will get result into
following equation.

Du

Dt
= −P̂x +B2x. (41)

Now, we calculate the terms (b·∇)b and gradient of pressure function P . By simple

calculations, we see that (b · ∇)b = B2x and ∇P = ∇
(

1

2
P̂ (t)x · x

)
= P̂ (t)x.

Thus, by substituting the B2x and P̂ (t)x into (41) that gives us the momentum
equation of fluid velocity in (3). To verify the momentum equation of magnetic
field, we substitute (38) and (39) into the second equation of (33), we get

Db

Dt
=
dK
dt

x +
dL
dt

x + UBx = UBx = BUx = (b · ∇)u. (42)

Thus, we see that fluid velocity, magnetic field, and pressure are given by (29)
satisfy the equations (3). Therefore u, b and P given by (29) is the special solution
of (3). Hence, it completes the proof.

In the following section 3, we focus on the qualitative nature of system (3)
through the ODE reductions (30) come across in Theorem 2.1.

3. Qualitative Analysis
We established in Section 2 that if we look at the solutions of (3) in the form of

(29) and the gradient of fluid velocity commutes with the gradient of the magnetic
field, then the vorticity ω and current density j must satisfy (30). So in this view,
we present here the qualitative nature of the solutions of (3) which are in the form
of (29).
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Now we suppose that the gradients of velocity and magnetic field commutes
and solutions of (3) exists in the form of (29). In fact, if the deformation matrices
D and K are continuous functions of time t then the existence of such solutions are
guaranteed.

3.1. Integrability of an Ideal MHD Equations
Let us consider ideal MHD equations (3) in which the gradients of fluid velocity

and magnetic field are commutes. Furthermore, the deformation matrices D and
K are continuous functions of time-variable t ∈ R. Now we are looking at the
following initial value problem.

dω(t)

dt
= D(t)ω(t)−K(t)j(t), ω(0) = ω0,

dj(t)

dt
= 0, j(0) = j0.

(43)

It is very clear from the second equation of (43) that j(t) = j0 is a constant vector.
Thereby substituting in the first equation of (43) it results in the non homogeneous
linear equation. Furthermore, D(t), K(t) are matrices with all entries are real
valued continuous functions. So that there exists a unique solution to the system
(43) and through the quadrature, we can solve the system proving the complete
integrability of the system (43).

Suppose that the pressure P is given by P =
1

2
P̂ (t)x · x, where P̂ (t) is

determined by the equation (31). Let us consider R = {(x, t) ∈ R3 × R :
∇u(x, t)∇b(x, t) = ∇b(x, t)∇u(x, t)} be the domain in (x, t)-space of the sys-
tem (43). Whereas, D and K are matrices and all elements of these matrices are
real valued continuous functions of variable t ∈ R. Now we are looking at the exis-
tence of solution of initial value problem (43) in the domain R. The system (43) is
a linear system and all elements of coefficient matrices are continuous real valued
functions. Hence, the initial value problem (43) determine the curl of fluid velocity
and magnetic field uniquely. Consequently, we determine velocity and magnetic
field uniquely. Furthermore, pressure function is determined through (31). From
second equation of (43), we determine that j(t) = j0. Consequently, we can solve
the linear system (43) and following is the solution:

ω(t) = −e
∫ t
0 D(s)ds

[∫ t

0

{
e−

∫ s
0 D(a)daK(s)j0

}
ds

]
+ e

∫ t
0 D(s)dsω0,

j(t) = j0

(44)

This implying that the system (43) is completely integrable.
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3.2. Critical point Analysis

In this section, first we find the critical points of the system (30) and we will
investigate their nature. It is clear that (ω, j) = (0,0) is the critical point.

Now at the critical point (ω, j) = (0,0) the system (30) can be written in
matrix form as follows:

dω

dt
dj

dt

 =

[
D(t) −K(t)
O O

] [
ω
j

]
= A(t)

[
ω
j

]
(say), (45)

where O’s are 3×3 null matrices. In the above equation, we have a matrix A = A(t)
is an upper triangular block matrix and its diagonal blocks are D, a deformation
matrix and O, a null matrix. Since the eigenvalues of matrix A are the sum of
eigenvalues of matrices D and O. Furthermore, D is a real symmetric matrix and
its entries are continuous real valued functions so that all the eigenvalues of matrix
A are real numbers for every t. Since the matrix A has a diagonal block matrix O
of order three, therefore we have λ = 0 is at least threefold eigenvalue of a matrix
A. This shows that the critical point (0,0) is degenerate. Thus, it is non-trivial
to determine the nature of critical point (0,0). Before concluding the nature of
critical point we need to investigate some important concept of linear algebra of
the matrix system in which entries of matrices are continuous functions of time
variable t. But we intuitively come to know that the solutions provided by (44)
are asymptotically unstable and it will be proved in our next article.

In the following section, we describe the examples of two and three dimensional
flow of fluid in the presence of a magnetic field for which we can determine the
solutions of (3) in the form (29).

4. Examples

First, we consider the two dimensional flow of a fluid in the presence of a
magnetic field, then after that we provide example of three dimensional flow.

Example 4.1. Consider a two dimensional time independent flow for which the
constant vorticity and current density vectors are unit vectors in vertical direction.
That is, ω = ê3 = (0, 0, 1) and j = ê3 = (0, 0, 1) respectively. Let us assume that
the deformation matrices D and K be given by;

D =

λ 0 0
0 −λ 0
0 0 0

 , K =

λ 0 0
0 −λ 0
0 0 0

 .
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Hence, we obtained the special solutions of two dimensional ideal MHD fluid as
follows:

u(x, t) = D(t)x + 1
2
ω(t)× x =

(
λx1 −

1

2
x2, −λx2 +

1

2
x1, 0

)
,

b(x, t) = K(t)x + 1
2
j(t)× x =

(
λx1 −

1

2
x2,−λx2 +

1

2
x1, 0

)
,

P (x, t) =
1

2
P̂ (t)x · x = 0.

(46)

Mathematically, it is possible to find a flow of an ideal fluid in the presence of
magnetic field such that there is no pressure at every point of the fluid. But
practically, it is impossible, because zero pressure at a point, implying that the
temperature of molecule at that point is zero. Consequently, there is no molecular
movement possible.

The following example is an example of three dimensional flow with realistic
deformation of fluid particles.

Example 4.2. Consider a three dimensional flow of fluid in the presence of a
magnetic field in which deformation matrices of fluid velocity and magnetic field
are respectively as follows:

D =

λ 0 0
0 −1 0
0 0 −λ+ 1

 , K =

1
4
(−3− 5λ) 0 0

0 1
4
(5 + 3λ) 0

0 0 1
2
(−1 + λ)

 .
The vorticity and current density vectors are respectively ω = (0, 0,−2) and j =
(0, 0, 4). Now by using Theorem-2.1 we obtained a special solution of an ideal MHD
equations (3) as follows.

u(x, t) = (λx1 + x2,−x1 − x2,−(−1 + λ)x3) ,
b(x, t) =

(
−1

4
(3 + 5λ)x1 − 2x2, 2x1 + 1

4
(5 + 3λ)x2,

1
2
(−1 + λ)x3

)
,

P (x, t) = 3
32

(−1 + λ) [(13 + 3λ)x21 + (13 + 3λ)x22 − 4(−1 + λ)x23] .

5. Conclusion
We have considered an ideal MHD equations (3) for which we obtained its

special solutions in the form of (5). Through the Proposition 2.1 we have shown
that the vorticity ω and current density j satisfies the PDEs (16). Furthermore,
if gradients of fluid velocity and magnetic field commutes then the system (30)
is the ODE reduction. Further, we proved that the system (30) is completely
integrable. Also, we conclude that the system (30) has a degenerate critical point
(ω, j) = (0,0). Finally, we have provided the examples of special solutions in the
section of the examples.
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