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Abstract: In this paper, we produced two efficient iterative methods improvising
two earlier methods for solving non-linear equations using a quadrature of higher
precision. The convergence analysis of the methods are studied. Using these new
methods, some non-linear equations have been solved numerically. The results
are found to be more encouraging as compared to those by using some earlier
established methods.
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1. Introduction
Detecting zeros of a single variable non-linear equation f(z) = 0 is always
fascinating problem in numerical analysis. It has massive implementations in ap-
plied sciences. Researchers use iterative methods in solving non-linear equations.
Taylor’s rule, quadrature rules act as foundations in forming iterative methods.
In this paper, our intension is to design an efficient method of solution for a
simple root of a non-linear equation f(z) =0, where f : I C R — R defined on an
open interval I.
We introduce Boole’s quadrature rule [4].

/ f(x (7f0+32f1+12f2+32f3+7f4) (1.1)
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where a =z < 11 <23 < ... <xp=0b, g1 —x; =h, fi = f(z;), E = —%f”(f),
a<&<b.

This is one of the basic quadrature rule having degree of precision 5. We have used
Newton-Raphson method [3].

il = Tp — : 1.2
Tn41 X f’(xn) ( )
This method converges quadratically.
On the other hand, we implement modified super Halley [6].
1 1 Kg(x,)? n
Tnp1 = T — |1+ =K (2n) + r@n)” | S () (1.3)

2 21— aK(z,)] f'(xn)
Where « is a parameter

Pl — ) /B @) ()
Kilan) = (')

a=1

This method has fourth order of convergence.
We improved the above two methods and designed two algorithms using Boole’s
quadrature. We did convergence analysis of the improved methods. Then we
computed the solutions of a bunch of test non-linear equations using the new algo-
rithms. Our result is found to be more encouraging than the earlier papers.
The content of this paper is summarized as follows: Section-1 is introductory one,
Sction-2 deals with newly developed iterative methods using Boole’s rule, Section-3
deals with convergence analysis, Section-4 deals with numerical verification of some
test non-linear equations and conclusion have been given in the last section.
Several researchers [1, 2, 5, 7, 9, 8] performs an outstanding work in this field
of research.

2. Iterative Method
Consider nonlinear equation

fa) =0 2.1)
Now from (1.1) we have

/abf(x)da: - (b&)@ [7f(a) +32f <3“4+b> +12f (“;b> +32f <“Z3b> +7f(b)]
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Let a be a simple zero of sufficiently differentiable function f : (a,b) C R — R for
an open interval (a,b) and z; is sufficiently close to a. We have

o) = fan) + [ £ (bt (2.3)

/ 7ty

_(—a) [7f’(wn) +32f' <3x”4+x> +12f' <x” “”) +32f' <x" i 3:”) + 7f’(a:)}

Now using (1.2), we obtain

90 2 4
(2.4)
From (1.3) and (1.4), we obtain
90 f (xy,
L= 2Tn — 3zntz f(f -&>—m Tn+3z <25)
[7f/ () + 327 (Bnt2) 4 12 f7 (Zuk) 4 32 f7 (Ind32) 4 7f7(z)]
Using fixed point iteration method we conclude as
. . 90f (zp)
n+l — 4n—
) + 32 (B2 4 127 (t222) 1 a2 (55300 £ 77/ )]
(2.6)

which is in implicit form.

Algorithm 2.1.
Replacing ¥, in place of x, 1 on the right hand side of (2.6). For the given z,
compute the approximate solution x,.1 by the following iterative scheme

90 f (zn)

T () + 327 (B ) 127 (25) 4327 (2t ) 4 7p1(y,)|
(2.7)

Tp41 = Tn — [ )

where vy, = x, o) n=20,1,2,...

Algorithm 2.2.
Replacing v in place of x,; in right hand side of (2.6). For a given xy, we can
compute the approximate solution of z,,; of the equation by

90 f(xn)
) + 320 (B ) 2p (528) s (B) 4 74 (0)|
(2.8)

Tp+l = Tn —
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21—aK (zn) | F(zn)’

K (i) = PleetGeelien g =1,n1=0,1,2, ...

3. Convergence Analysis

where y! =z, = 2, — [1 + %Kf(fl?n) 1_Ky(zn)? ] f(zn)

Theorem 3.1. Let « € (a,b) be a simple zero of sufficiently differentiable func-
tion f : (a,b) — R for an open interval (a,b). If an initial approximation x
is adequately close to «, then the iterative method defined in (2.7) has order of
convergence 3 and satisfies the error equation

13
Cnil = 1—50362 + O(ei)

where ¢, = %%, k=1,2,3,..., e, =x, —«a and a,b € R.
Proof. Suppose a be simple zero of f(z). Since f(z) is sufficiently differentiable,
using Taylor’s expansion of f(z,), f'(x,) and f”’(zx,) about z,, = a;, we obtain

f(z,) = f'() [en + o€ + caed 4 cuet + csed + O(eg)} (3.1.1)
f(@n) = f/(@) [1 + 2ce, + 3csel + desel + Sesen + Ofe))] (3.1.2)
f(@) = f'() [2¢, + 6cse, + 12¢ael + 20c5€) + Oep )] (3.1.3)

From algorithm-2.1

Yn = Tn — ]{/izn)) = a+ ey +2(es — 3)ep + O(ey,)
3Ty, n 3 —c2
k, = ﬁTﬂ :oz—irzen—l—%ei—%weinLO(ei)
9 3
(kn = a)? = Soe2 + =26 + O(c))
27
(ky — ) = S16d +O(cl)
Using Taylor series, we get
3 2 27
f(kn) = f'() [1 + %en + (% + 1—?) s+ O(ei)] (3.1.4)

n n 1
_ —2|-y :a+§en+%ei+0(efl)
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Applying Taylor series expansion of f(l,) about [, = «

() = f(a) {1 + o€y + <c§ + %) er + O(ei)] (3.1.5)
qn:%?)yn:oﬁ—i n—l—iﬂ 24+0()
(40 — @) = 162 + O(c)
f(qn) = f'(a) [1 + %en - (3;2 + 316> €2 + O(ei)} (3.1.6)
Again,
Yn — Q= 0262 + (ei)
'(yn) = F(@)[1+ 2c5e; + O(ep)] (3.1.7)
X =Tf(z,) +32f"(kn) + 12" (1) + 32f (qn) + Tf (yn)
= f'(a)[90 + 90cse, + (78¢5 + 90c3)e? + O(el)]
Now,
90 f(z,) [en + coe? + czed + O(el)] B 13
Mn = X [L+ce,+ (c3+BB)e2+0(ed)] e 1562 ntOlen)

Hence, from (2.7)

13 5
Tpi1 = Tp — M, = (e, —a) — |e, — 15026 +0(e})
13
—a+1—562e +0(e})
13 5 3
Ent1 = 15 6 +O( )

Which implies that (2.7) converges cubically.

Theorem 3.2. Let « € (a,b) be a simple zero of sufficiently differentiable function
f:(a,b) C R — R for an open interval (a,b). If xoy adequately close to o, then the

iterative method defined in (2.8) has order of convergence 5 and satisfies the error
equation

463 77
Entl = ( 3 cy+ 36204 —270c5¢3 — 05) e 4+ O(e})
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where ¢, = %j;((s)), k=1,2,3,..., e, =x, —a and a,b € R.
Proof.

f(@n) 2 Co 2(cs — ¢3) 4
Zn = Ty — 3 () =+ 36n + gei + Tei + O(e,)

Applying Taylor series expansion, we have
f"(zn) = f/(Q)[2c0 + dezen + pre2 + paed + O(e})] (3.2.1)

16 16 160cs
where p; = 2cy¢3 + 152, py = 4eg(cg — ¢3) + 084 4 9=

F" ) f(n) = [f' (@) [2c2en + (45 + 2¢3)el + (86203 + %) e +O(en)]
(3.2.2)
/()] = [f(@)]P[L + dezen + qreg, + goep, + gsey, + O(ep)] (3.2.3)

where ¢ = 4c§ + 6¢3, g2 = 12¢9c3 + 8¢y, q3 = 9c§ + 16coc4

1 1

= [1 — dege, + (1265 — 6c3)e2 + (36cac; — 32¢5 — 8cq)el + Ofel)]

f'(@)]? ()] ! ! "

[ () f () 2 2 3 4 5
K¢(x,) = R = wye; + wee;, + wse, + wqe, + O(e;) (3.2.4)
Here wy = 2¢, wy = 403—603, w3 = 160%—200203+ 1%04, Wy = 760%03—4063—1—?0204.
1 16

T]c(l‘) =1+ 202€n + (403 - 203)6% + (% - 40203> ei + O(ei) (325)
[K(z0)]* = 2162 + 2063 + z3€t + O(€?) (3.2.6)

Where z; = 403, 29 = 16c9cy3 — 240%, 23 = 1006% + 160% — 1280303 + 63—46204.

[ ()2
20 —fo(iUn)) = 2c5e2 + (8cacz — 8ch)ed
32
+ (—40c5¢c3 + 22¢5 + 8c3 + 30204)ei +0(e?) (3.2.7)
[Ks ()

1
Yo = 1 5B @) + 502K, )

8
=1+ Colp + (203 - C%)@?L + <% - 26263) 6,‘2

+ (2¢5 + 8¢5 — 2c5c3 — 8cacy)er + O(e)
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Now
f(xn> Cy
Y f/(xn> =ént (30203 - 203 - 3) e;lz + 0(62)
L =x,—-Y, f(zn) =+ (203 + o 30203) et 4+ 0(e)
n+1 f,(xn) 2 3 n n
Assuming
Yn =Tp g =a+ <20§ + % - 30203> er +0(ed)
Using Taylor series, we get
£ = £1(@) |1+ 26, (265 + 5 = 3caes) ef + O(cd)] (3.2.8)
3, + y; 3 2c3 + %
P A MG % e

Applying Taylor series, we have

3¢y 27 27 caCy  3Cics
/ / et = 2 3 4 e 2 4 5
f(a,) = f(«) {1 + 5 Cn + 16 36n + TR + <02 + 5 — ) ¢tn +O(e;)
(3.2.9)
n+ Yn 1 3
by = = -2|—y =a+gent <c§’+%—%) ep +0(e)
Similarly,
3
£'(ba) f@ﬂrﬂwm~%é+%ﬁ+@é+%§—&&ﬁé+0@ﬂ
(3.2.10)
n+ 3Yn 1 6c3 -9
gn:HTy:a—'—Zen_’_(CQ—{_cz 0263)€i+0(62)
/ o C2 3C3 5 | Ca 3 (63 + caca — 9c3es) 4 5
Flgn) = @) |1+ Sen + 3068 4 St 1296 k4 o(el)
(3.2.11)

My = Tf(xn) + 32f(an) + 12f'(bn) + 32 (9n) + 71 (y5)
= 90f(a)[1 + coe, + c3e2 + cued +viet + O(ed)].
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Where vy = 480¢5 — 270c3¢3 + Feacq.

3

Hence, from (2.8) we have

90f(zn)

M,

Tpy1 = Tn

—4
= (en + ) — {en—i—( 363 4

(463 LT
€n+1 = | —5Co + —Cocy —

3 3

7
3

Hence, algorithm-2 has order of convergence 5.

4.

Numerical Verification
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Cy — —cacy + 270c5c3 + 05) ed + O(eg)]

270c5¢3 — 05) el + 0(ef)

Comparative study of algorithms 2.1 and 2.2 is given in the following table-4.1.
All computations are carried out with the help of Python 3.8. The tolerance during
computation is taken as €= 10716, We take |z,41 — z,| <€ and |f(z,)| <€ .

Table 4.1
Equations Root (a*) obtained by Initial No. of iterations
both Alg-1 and alg-2. Value required to get
root{a™)
()
By By
Alg21 | Alg-22

filx)=x*—5x+2=0 4.561552812808831 Xo =40 Z] 2
f(x)=e* 4+cosx=10 1.7461395304080125 | x,=2.0 3 2
) =e*+x*—x— 4=0 1.2886779668238684 x5 =1.0 Z] 2
filx) =sin®x —x*4+1=0 1.4044916482153411 | x,=1.6 3 2
felx)=Inx —cosx =10 1.3029640012160126 | x,=1.3 3 2
fx)=x*+4x*—15=0 1.6319808055660636 | x,=2.0 4 3
e 0.5177573636824583 | x, = 1.0 3 3
fo(x) = xe* — sin’x + 3cosx+5=0 |-12076478271309188 | x, = —1.0 3 ]
flx)=e*—4x?=0 0.7148059123627778 Xo=2.0 4 3
froX) =€ *+cosx =0 17461395304080125 | x, = 15 3 )
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Figure 1. Graphical comparison of Alg-1 and Alg-2

6. Conclusion

We observed from table-4.1 that the algorithm-2.2 yields more accurate result in
comparison to algorithm-2.1. This shows that the second method is more efficient
than the first one. However, we like to mention that the newly developed two
iterative methods in this paper, is much more competent and yielding encouraging
results than those in case of other earlier established iterative methods.
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