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1. Introduction
The notion of complex valued metric spaces was introduced by Azam [3]. Latter,

the generalization of complex valued metric spaces namely complex valued b-metric
spaces, complex valued rectangular metric spaces, extended complex valued metric
spaces considered by several authors, for example we refer [1, 2, 5, 8, 14, 16, 17,
19, 20]. Recently, the generalized version of complex valued metric spaces namely
bicomplex valued metric spaces were introduced by Cho et. al., [6].
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In the present paper, we denote R+, set of positive real numbers and C1 set of
complex numbers.

The set of bicomplex numbers introduced in [15, 20] in the following way.

Bicomplex Numbers
The set of bicomplex numbers denoted by C2 is the first setting in an infi-

nite sequence of multicomplex sets which are generalizations of the set of complex
numbers C1.

C2 = {w = c0 + i1c1 + i2c2 + i1i2c3 : cp ∈ R, (p = 0, 1, 2, 3)}.

We can also express C2 as

C2 = {z1 + i2z2 : z1, z2 ∈ C1},

where z1 = c0 + i1c1, z2 = c2 + i1c3, i1 and i2 are imaginary independent units
such that i21 = −1 = i22. The product of i1i2 = j such that j2 = 1. The product of
units is commutative and is defined as i1j = −i2, i2j = −i1, with the addition and
multiplication of two bicomplex numbers defined in the obvious way.

For a bicomplex number w = z1 + i2z2, the norm is denoted by ‖ w ‖ and is
defined

‖ w ‖=‖ z1 + i2z2 ‖= (|z1|2 + |z2|2)
1
2 .

By choosing, w = c0 + i1c1 + i2c2 + i1i2c3, cp ∈ R, (p = 0, 1, 2, 3) then

‖ w ‖= (c20 + c21 + c22 + c23)
1
2 .

A bicomplex number w = c0 + i1c1 + i2c2 + i1i2c3 is degenerated [20] if the

matrix

(
c0 c1
c2 c3

)
is degenerated.

Further, for any two bicomplex numbers δ, θ ∈ C2, we can show that
(i) 0 ≺i2 δ ≺i2 θ implies ‖ δ ‖≤‖ θ ‖
(ii) ‖ δ + θ ‖≤‖ δ ‖ + ‖ θ ‖
(iii) ‖ αδ ‖≤ |α| ‖ δ ‖
Also, for any two complex numbers δ, θ ∈ C2, we have
(i) ‖ δθ ‖≤‖ δ ‖‖ θ ‖.
(ii) ‖ δθ ‖=‖ δ ‖‖ θ ‖ whenever at least one of δ and θ is degenerated [20].
(iii) The partial order relation on �i2 defined in [6] as follows:
Let δ = δ1 + i2δ2 ∈ C2 and ‖ δ−1 ‖=‖ δ ‖−1 holds for any degenerated bicomplex
number.
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θ = θ1 + i2θ2 ∈ C2, we define a partial order relation on C2 as δ �i2 θ if and
only if δ1 �i1 θ1 and δ2 �i1 θ2, where �i1 is a partial order relation in C1. Then
(1) <e(δ1) = <e(θ1) and =m(δ1) = =m(θ1)

<e(δ2) = <e(θ2) and =m(δ2) = =m(θ2)
(2) <e(δ1) < <e(θ1) and =m(δ1) < =m(θ1)

<e(δ2) = <e(θ2) and =m(δ2) = =m(θ2)
(3) <e(δ1) = <e(θ1) and =m(δ1) = =m(θ1)

<e(δ2) < <e(θ2) and =m(δ2) < =m(θ2)
(4) <e(δ1) < <e(θ1) and =m(δ1) < =m(θ1)

<e(δ2) < <e(θ2) and =m(δ2) < =m(θ2).

We write δ �i2 θ if δ �i2 θ and δ 6= θ if any one of (1), (2) and (3) is satisfied
and δ ≺i2 θ if condition (4) is satisfied.
The definition of the bicomplex valued metric space is introduced in [6] as follows.

Definition 1.1. Let X be a nonempty set. A function Ξ : X ×X → C2 is called
a bicomplex valued metric on X if for all x, y, z ∈ X, the following conditions are
satisfied:
(1) 0 �i2 Ξ(x, y)
(2) Ξ(x, y) = 0 iff x = y;
(3) Ξ(x, y) = Ξ(y, x);
(4) Ξ(x, y) �i2 Ξ(x, z) + Ξ(y, z)
The pair (X,Ξ) is called a bicomplex valued metric space.
In this connection many researchers obtained fixed point results in bi complex
valued metric spaces, we refer [5, 6, 12, 15, 20].

The notion of bicomplex valued b-metric spaces defined by S. K. Datta et. al.,
[13, 9-11] as:

Definition 1.2. Let X be a nonempty set and s ≥ 1. A function Ξ : X ×X → C2

is called a bicomplex valued b-metric on X if for all x, y, z ∈ X, the following
conditions are satisfied:
(i) 0 �i2 ΞBC(x, y)
(ii) Ξ(x, y) = 0 iff x = y;
(iii) Ξ(x, y) = Ξ(y, x);
(iv) Ξ(x, y) �i2 s[Ξ(x, z) + Ξ(y, z)]
The pair (X,Ξ) is called a bicomplex valued b- metric space.
Here we give the examples of bicomplex valued b-metric spaces.

Example 1.3. Let X = [0,+∞). We define Ξ : X × X → C2 by Ξ(x, y) =
(1 + i1)(1 + i2)|x − y|2, for all x, y ∈ X. Then (X,Ξ) is a bi-complex valued b-
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metric space with s = 2, for x, y ∈ X,
Ξ(x, y) = (1 + i1)(1 + i2)|x− y|2
�i2 (1 + i1)(1 + i2)|x− z + z − y|2
�i2 (1 + i1)(1 + i2)[|x− z|2 + |z − y|2 + 2|x− z||z − y|]
�i2 (1 + i1)(1 + i2)[2|x− z|2 + 2|z − y|2]
�i2 2[(1 + i1)(1 + i2)|x− z|2 + (1 + i1)(1 + i2)|z − y|2]
= 2[Ξ(x, z) + Ξ(z, y)].

Example 1.4. Let X = [0,+∞). We define Ξ : X ×X → C2 by

Ξ(x, y) =


0 ifx = y

(1 + i1 + i2 + i1i2)(x+ y)2 if x 6= y.
Then (X,Ξ) is a bi-complex valued b-metric space with s = 2.

Definition 1.5. [11] Let (X,Ξ) be a bicomplex valued b-metric space and {xn} be
a sequence in X. We say that:
(i) The sequence {xn} converges to x ∈ X if for each c ∈ C2 with 0 ≺i2 c there is a
n0 ∈ N such that for all n > n0, Ξ(xn, x) ≺i2 c. We denote this by limn→+∞xn = x.
(ii) The sequence {xn} is a Cauchy sequence if for each c ∈ C2 with 0 ≺i2 c there
is n0 ∈ N such that for all n > n0, Ξ(xn, xn+m) ≺i2 c, where m ∈ N .
(iii) (X,Ξ) is said to be complete bicomplex valued b-metric space if every Cauchy
sequence in X is convergent to a point in X.

Lemma 1.6. [11] Let (X,Ξ) be a bicomplex valued b-metric space and let {xn}
be a sequence in X. Then {xn} converges to x if and only if ‖ Ξ(xn, x) ‖→ 0 as
n→ +∞.

Lemma 1.7. [11] Let (X,Ξ) be a generalized bicomplex valued b-metric space and
{xn} be a sequence in X. If limn→+∞ ‖ Ξ(xn, xn+m) ‖→ 0 then {xn} is a Cauchy
sequence.

Lemma 1.8. [11] Let (X,Ξ) be a generalized bicomplex valued b-metric space and
let {xn} be a sequence in X. If {xn} converges to x then for any a ∈ X,
limn→+∞ ‖ Ξ(xn, a) ‖→ ‖ Ξ(x, a) ‖.
Definition 1.9. [21] Let P be a self map on a nonempty space X and α : X×X →
[0,+∞). We say that P is α admissible if, for all x, y ∈ X, we have

α(x, y) ≥ 1 implies α(Px, Py) ≥ 1.

Definition 1.10. [4] Let P, g be self maps on a nonempty space X and α : X×X →
[0,+∞). We say that P is g − α admissible if, for all x, y ∈ X , we have

α(gx, gy) ≥ 1 implies α(Px, Py) ≥ 1.
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If g = I, then P is called g − α admissible.
We denote C(P, g), the set of fixed points of P and g i.e.,

C(P, g) = {z ∈ X : Pz = gz = z}.

We study common fixed point theorems of Suzuki type contractions employing al-
pha admissible function for two maps in bicomplex valued metric b-space rendered
by rational expressions. These results are enhanced through examples. As a con-
sequence, we obtain common fixed point theorems for bi complex valued b-metric
spaces endowed with a partial order.

2. Main Results
In this section, first we prove the existence common fixed points for almost

Suzuki type contractions in bi complex valued b-metric spaces.

Theorem 2.1. Let (X,Ξ) be a complete bicomplex valued b-metric space with
s ≥ 1 and 1 + Ξ(x, y) + Ξ(u, v) degenerated for all x, y, u, v ∈ X. Assume that
α : X × X → R+ is a mapping and P and g are selfmaps on X satisfying the
following conditions:
(i) PX ⊆ gX.
(ii)

1

2s
min{‖ Ξ(Px, gx) ‖, ‖ Ξ(Py, gy) ‖} ≤ max{‖ Ξ(gx, gy) ‖, ‖ Ξ(Px, Py) ‖}

implies

α(gx, gy)Ξ(Px, Py) �i2 aΞ(gx, gy) + bΞ(gy, Py) + c
Ξ(gx, Py) + Ξ(gy, Px)

s

+ d
Ξ(Px, gx)Ξ(gy, Py)

1 + Ξ(gx, gy) + Ξ(Px, Py)
+ e

Ξ(gx, Py)Ξ(gy, Px)

1 + Ξ(gx, gy) + Ξ(Px, Py)
(2.1.1)

for all x, y ∈ X, where a, b, c, d, e ≥ 0 and a+ sb+ 2c+ d+ e < 1
(iii) P is α- admissible with respect to g
(iv) there exists x0 ∈ X such that α(gx0, Px0) ≥ 1
(v) if {gxn} is a sequence in X such that α(gxn, gxn+1) ≥ 1 for all n and gxn →
gz ∈ gX as n → +∞ then there exists a subsequence {gxn(k)} of {gxn} such that
α(gxn(k), gz) ≥ 1 for all k
(vi) gX is closed.
Then P and g have a unique coincidence point in X.
Proof. In view of condition (iv), let x0 ∈ X be such that α(gx0, Px0) ≥ 1. Since
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PX ⊆ gX, we can choose a point x1 ∈ X such that Px0 = gx1, on continuing this
process, we can choose sequence {xn} in X such that

Pxn = gxn+1 for n = 0, 1, 2, 3, ... (2.1.2)

Further, P is α-admissible with respect to g, we have
α(gx0, Px0) = α(gx0, gx1) ≥ 1 implies α(Px0, Px1) = α(gx1, gx2) ≥ 1.
Using mathematical induction, we get

α(gxn, gxn+1) ≥ 1 (2.1.3)

for all n = 0, 1, 2, 3, ...
If gxn+1 = gxn+2 for some n ∈ N, for some n, then by (2.1.2), we have gxn+1 =
Pxn+1, so that xn+1 is a coincidence point of P and g and the proof is completed.
Thus, with out loss of generality, suppose that Ξ(Pxn, Pxn+1) > 0, for all n. Since,

1

2s
min{‖ Ξ(gxn, Pxn) ‖, ‖ Ξ(Pxn+1, gxn+1) ‖}

≤ max{‖ Ξ(gxn, gxn+1) ‖, ‖ Ξ(Pxn, Pxn+1) ‖}
implies from (2.1.1), we have

Ξ(Pxn, Pxn+1) �i2 α(gxn, gxn+1)Ξ(Pxn, Pxn+1)

�i2 aΞ(gxn, gxn+1) + bΞ(gxn+1, Pxn+1) + c
Ξ(gxn, Pxn+1) + Ξ(gxn+1, Pxn)

s

+ d
Ξ(gxn, Pxn)Ξ(gxn+1, Pxn+1)

1 + Ξ(gxn, gxn+1) + Ξ(Pxn, Pxn+1)
+ e

Ξ(gxn, Pxn+1)Ξ(gxn+1, Pxn)

1 + Ξ(gxn, gxn+1) + Ξ(Pxn, Pxn+1)

�i2 aΞ(Pxn−1, Pxn) + bΞ(Pxn, Pxn+1) + c[Ξ(Pxn−1, Pxn) + Ξ(Pxn, Pxn+1)]

+ d
Ξ(Pxn−1, Pxn)Ξ(Pxn, Pxn+1)

1 + Ξ(Pxn−1, Pxn) + Ξ(Pxn, Pxn+1)
.

Therefore,

‖ Ξ(Pxn, Pxn+1) ‖≤ a ‖ Ξ(Pxn−1, Pxn) ‖ +b ‖ Ξ(Pxn, Pxn+1) ‖
+ c ‖ Ξ(Pxn−1, Pxn) ‖ +c ‖ Ξ(Pxn+1, Pxn) ‖

+ d
‖ Ξ(Pxn+1, Pxn) ‖

‖ 1 + Ξ(Pxn, Pxn+1) + Ξ(Pxn−1, Pxn) ‖
‖ Ξ(Pxn, Pxn−1) ‖, (2.1.4)

since ‖ Ξ(Pxn+1, Pxn) ‖≤‖ 1+Ξ(Pxn, Pxn+1)+Ξ(Pxn−1, Pxn) ‖, from (2.1.4), we
have

(1− c− b) ‖ Ξ(Pxn+1, Pxn) ‖≤ (a+ c+ d) ‖ Ξ(Pxn+1, Pxn) ‖,
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therefore

‖ Ξ(Pxn+1, Pxn) ‖≤ a+ c+ d

1− b− c
‖ Ξ(Pxn, Pxn−1) ‖ . (2.1.5)

Similarly, we can show that

‖ Ξ(Pxn, Pxn−1) ‖≤
a+ b+ c+ d

1− c
‖ Ξ(Pxn−1, Pxn−2) ‖ . (2.1.6)

Let β = max{a+c+d
1−b−c ,

a+b+c+d
1−c }.

Combining (2.1.5) and (2.1.6), we get

‖ Ξ(Pxn, Pxn+1) ‖≤ β ‖ Ξ(Pxn, Pxn−1) ‖ (2.1.7)

for all n = 1, 2, 3, .....
Therefore, from (2.1.7), we have

‖ Ξ(Pxn, Pxn+1) ‖≤ β ‖ Ξ(Pxn, Pxn−1) ‖≤ .. ≤ βn ‖ Ξ(Px1, Px0) ‖ . (2.1.8)

We now show that {Pxn} = {gxn+1} is a Cauchy sequence in X.
In view of triangle inequality, we have

Ξ(Pxn, Pxm) � s[Ξ(Pxn, Pxn+1) + Ξ(Pxn+1, Pxm)],

which implies

‖ Ξ(Pxn, Pxm) ‖≤ s ‖ Ξ(Pxn, Pxn+1) ‖ +s ‖ Ξ(Pxn+1, Pxm) ‖
≤ s ‖ Ξ(Pxn, Pxn+1) ‖ +s2 ‖ Ξ(Pxn+1, Pxn+2) ‖
+ s3 ‖ Ξ(Pxn+2, Pxn+3) ‖ +....+ sm−n−1 ‖ Ξ(Pxm+1, Pxm) ‖
≤ s ‖ Ξ(Pxn, Pxn+1) ‖ +s2 ‖ Ξ(Pxn+1, Pxn+2) ‖
+ s3 ‖ Ξ(Pxn+2, Pxn+3) ‖ +....+ sm−n ‖ Ξ(Pxm+1, Pxm) ‖
(since s ≥ 1)

≤ sβn ‖ Ξ(Px0, Px1) ‖ +s2βn+1 ‖ Ξ(Px0, Px1) ‖ +........

+ sm−nβm−1 ‖ Ξ(Px0, Px1) ‖
≤ Σm−n

i=1 s
iβi+n−1 ‖ Ξ(Px0, Px1) ‖

≤ sβnΣm−n
i=1 s

i−1βi−1 ‖ Ξ(Px0, Px1) ‖
‖ Ξ(Pxn, Pxm) ‖≤ sβnΣm−n

i=1 s
i−1βi−1 ‖ Ξ(Px0, Px1) ‖

≤ sβnΣ∞i=1s
i−1βi−1 ‖ Ξ(Px0, Px1) ‖

≤ s(β)n

1− sβ
‖ Ξ(Px0, Px1) ‖→ 0 as n→ +∞.
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Therefore {Pxn} = {gxn+1} is a Cauchy sequence in X.
Since gX is closed there exists z ∈ X such that

limn→+∞gxn = limn→+∞Pxn+1 = gz (2.1.9)

We now show that z is a coincidence point of P and g. If not there exists 0 ≺i2

θ ∈ C2 such that Ξ(Pz, gz) = θ.
Again by condition (v) of our assumptions, we have α(gxn(k), gz) ≥ 1 and α(gz,
gxn(k)) ≥ 1.
Suppose that

1

2s
min{‖ Ξ(Pxn(k), gxn(k)) ‖, ‖ Ξ(Pz, gz) ‖}

> max{‖ Ξ(gxn(k), gz) ‖, ‖ Ξ(Pxn(k), P z) ‖}.

Letting n→ +∞, using (2.1.9), we get 0 ≥‖ Ξ(Pz, gz) ‖, which is a contradiction
to our assumption. Therefore

1

2s
min{‖ Ξ(Pxn(k), gxn(k)) ‖, ‖ Ξ(Pz, gz) ‖}

≤ max{‖ Ξ(gxn(k), gz) ‖, ‖ Ξ(Pxn(k), P z) ‖}

which implies from (2.1.1), we have

θ = Ξ(Pz, gz) �i2 sΞ(gz, Pxn(k)) + sΞ(Pxn(k), P z)

�i2 sΞ(gz, Pxn(k)) + sα(gxn(k), gz)Ξ(Pxn(k), P z)

�i2 sΞ(gz, Pxn(k)) + asΞ(gxn(k), gz) + bsΞ(gz, Pz)]

+ sc
Ξ(gxn(k), P z) + Ξ(gz, Pxn(k))

s
+ sd

Ξ(gxn(k), Pxn(k))Ξ(Pz, gz)

1 + Ξ(gxn(k), gz) + Ξ(Pxn(k), P z)

+ se
Ξ(gxn(k), P z)Ξ(gz, Pxn(k))

1 + Ξ(gxn(k), gz) + Ξ(gz, Pxn(k)

which implies

‖ θ ‖≤ s ‖ Ξ(gz, Pxn(k)) ‖ +as ‖ Ξ(gxn(k), gz) ‖ +sb ‖ Ξ(gz, Pz) ‖

+ sc
‖ Ξ(gxn(k), P z) ‖ + ‖ Ξ(gz, Pxn(k)) ‖

s
+ sd

‖ Ξ(gxn(k), Pxn(k)) ‖‖ Ξ(Pz, gz) ‖
‖ 1 + Ξ(gxn(k), gz) + Ξ(Pxn(k), P z) ‖

+ se
‖ Ξ(gxn(k), P z) ‖‖ Ξ(gz, Pxn(k)) ‖
‖ 1 + Ξ(gxn(k), gz) + Ξ(gz, Pxn(k) ‖

.
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On taking limits as k → +∞, using (2.1.9), we get
‖ θ ‖≤ sb ‖ Ξ(gz, Pz) ‖
‖ Ξ(gz, Pz) ‖≤ sb ‖ Ξ(gz, Pz) ‖
(1− sb) ‖ Ξ(Pz, gz) ‖≤ 0
‖ Ξ(Pz, gz) ‖= 0.
Hence Pz = gz. Thus, P and g have a common fixed point in X.

Theorem 2.2. In addition to the hypotheses of Theorem 2.1, suppose that for
u, v ∈ C(P, g) if α(gu, gv) ≥ 1 and the pair (P, g) is weakly compatible, then P and
g have a unique common fixed point in X.
Proof. From the proof of Theorem 2.1, we have {gxn} is a non decreasing sequence
and converges to gz and Pz = gz. Also, since P and g are weakly compatible, we
have

Pz = Pgz = gPz = gz.

Hence Px = gx = x so that P and g have a common fixed point. To prove
uniqueness, let x and x′ be two common fixed points of P and g i.e.,

Px = gx = x and Px′ = gx′ = x′. (2.2.1)

Since
1

2s
min{‖ Ξ(Px, gx) ‖, ‖ Ξ(Px′, gx′) ‖} = 0

≤ max{‖ Ξ(gx, gx′) ‖, ‖ Ξ(Px, Px′) ‖}
⇒ from (2.1.1), we have

Ξ(x, x′) = Ξ(Px, Px′) �i2 α(gx, gx′)Ξ(Px, Px′)

�i2 aΞ(gx, gx′) + bΞ(gx′, Px′) + c
Ξ(gx, Px′) + Ξ(gx′, Px)

s

+ d
Ξ(Px, gx)Ξ(gx′, Px′)

1 + Ξ(gx, gx′) + Ξ(Px, Px′)
+ e

Ξ(gx, Px′)Ξ(gx′, Px)

1 + Ξ(gx, gx′) + Ξ(Px, Px′)

‖ Ξ(x, x′) ‖≤ a ‖ Ξ(gx, gx′) ‖ +b ‖ Ξ(gx′, Px′) ‖ +c
‖ Ξ(gx, Px′) ‖ + ‖ Ξ(gx′, Px) ‖

s

+ d
‖ Ξ(Px, gx) ‖‖ Ξ(gx′, Px′) ‖
‖ 1 + Ξ(gx, gx′) + Ξ(Px, Px′) ‖

+ e
‖ Ξ(gx, Px′) ‖‖ Ξ(gx′, Px) ‖
‖ 1 + Ξ(gx, gx′) + Ξ(Px, Px′) ‖

,

which implies

‖ Ξ(x, x′) ‖≤ (a+
c

s
+ e) ‖ Ξ(x, x′) ‖,

this implies ‖ Ξ(x, x′) ‖= 0. Therefore P and g have a unique common fixed point
in X.
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3. Examples and Corollaries
The following examples are in support of Theorem 2.2.

Example 3.1. Let X = [0, 5], we define Ξ : X ×X → C2 by

Ξ(x, y) =


0 if x = y

(i1 + i2 + 2i1i2)(x+ y)2 if x 6= y

Then (X,Ξ) is complete bi complex valued b-metric space with s = 2 and 1 +
Ξ(x, y) + Ξ(u, v) degenerated for all x, y, u, v ∈ X.
We define P, g : X → X by

Px =


3x
4

if x ∈ [0, 1]

x
4
if x ∈ (1, 5]

and gx =


3x if x ∈ [0, 1]

x if x ∈ (1, 5].

Clearly, PX ⊆ gX and gX is closed set.
Define the function α : X ×X → [0,+∞) by

α(x, y) =


2 if x ∈ [0, 3]

3 otherwise.

We now verify inequality (2.1.1) with a = 3
16
, b = 1

4
, c = 1

8
, d = 0 = e.

Case (i): Let x, y ∈ [0, 1] with x 6= y. Then α(gx, gy) = α(3x, 3y) = 2.
If x > y, then

1

2s
min{‖ Ξ(Px, gx) ‖, ‖ Ξ(Py, gy) ‖} =

√
6

4

225

16
y2 ≤ 9

√
6(x+ y)2

= max{‖ Ξ(gx, gy) ‖, ‖ Ξ(Px, Py) ‖}.

Then from (2.1.1), we have

α(gx, gy)Ξ(Px, Py) = 2(i1 + i2 + 2i1i2)
9

16
(x+ y)2 =

2

16
(i1 + i2 + 2i1i2)(3x+ 3y)2

≤ 3

16
(i1 + i2 + 2i1i2)(3x+ 3y)2 =

3

16
Ξ(gx, gy)

�i2

3

16
Ξ(gx, gy) +

1

4
Ξ(gy, Py) +

1

8

Ξ(gx, Py) + Ξ(gy, Px)

s

+ 0
Ξ(Px, gx)Ξ(gy, Py)

1 + Ξ(gx, gy) + Ξ(Px, Py)
+ 0

Ξ(gx, Py)Ξ(gy, Px)

1 + Ξ(gx, gy) + Ξ(Px, Py)
.
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Similarly, when x < y, condition (2.1.1) follows.
Case (ii): Let x, y ∈ (1, 5] with x 6= y. Then α(gx, gy) = 3. Also,

1

2s
min{‖ Ξ(Px, gx) ‖, ‖ Ξ(Py, gy) ‖} =

√
6

4

25

16
y2 ≤

√
6(x+ y)2

= max{‖ Ξ(gx, gy) ‖, ‖ Ξ(Px, Py) ‖}

⇒ from (2.1.1), we have

α(gx, gy)Ξ(Px, Py) = 3(i1 + i2 + 2i1i2)
1

16
(x+ y)2

=
3

16
(i1 + i2 + 2i1i2)(x+ y)2 =

3

16
Ξ(gx, gy)

�i2

3

16
Ξ(gx, gy) +

1

4
Ξ(gy, Py) +

1

8

Ξ(gx, Py) + Ξ(gy, Px)

s

+ 0
Ξ(Px, gx)Ξ(gy, Py)

1 + Ξ(gx, gy) + Ξ(Px, Py)
+ 0

Ξ(gx, Py)Ξ(gy, Px)

1 + Ξ(gx, gy) + Ξ(Px, Py)
.

Case (iii): Let x ∈ [0, 1] and y ∈ (1, 5]. Then α(gx, gy) = 3 and

1

2s
min{‖ Ξ(Px, gx) ‖, ‖ Ξ(Py, gy) ‖} =

√
6

4

225

16
x2 ≤

√
6(3x+ y)2

= max{‖ Ξ(gx, gy) ‖, ‖ Ξ(Px, Py) ‖}.

This implies from (2.1.1), we have

α(gx, gy)Ξ(Px, Py) = 3(i1 + i2 + 2i1i2)
1

16
(3x+ y)2

=
3

16
(i1 + i2 + 2i1i2)(3x+ y)2 =

3

16
Ξ(gx, gy)

�i2

3

16
Ξ(gx, gy) +

1

4
Ξ(gy, Py) +

1

8

Ξ(gx, Py) + Ξ(gy, Px)

s

+ 0
Ξ(Px, gx)Ξ(gy, Py)

1 + Ξ(gx, gy) + Ξ(Px, Py)
+ 0

Ξ(gx, Py)Ξ(gy, Px)

1 + Ξ(gx, gy) + Ξ(Px, Py)
.

Case (iv): Let x ∈ (1, 5] and y ∈ [0, 1]. Then α(gx, gy) = 3. Also,

1

2s
min{‖ Ξ(Px, gx) ‖, ‖ Ξ(Py, gy) ‖} =

√
6

4

225

16
y2 ≤

√
6(x+ 3y)2

= max{‖ Ξ(gx, gy) ‖, ‖ Ξ(Px, Py) ‖}.
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Then from (2.1.1), we have

α(gx, gy)Ξ(Px, Py) = 3(i1 + i2 + 2i1i2)
1

16
(x+ 3y)2

=
3

16
(i1 + i2 + 2i1i2)(x+ 3y)2 =

3

16
Ξ(gx, gy)

�i2

3

16
Ξ(gx, gy) +

1

4
Ξ(gy, Py) +

1

8

Ξ(gx, Py) + Ξ(gy, Px)

s

+ 0
Ξ(Px, gx)Ξ(gy, Py)

1 + Ξ(gx, gy) + Ξ(Px, Py)
+ 0

Ξ(gx, Py)Ξ(gy, Px)

1 + Ξ(gx, gy) + Ξ(Px, Py)
.

Thus inequality (2.1.1) is satisfied with a = 3
16
, b = 1

4
, c = 1

8
, d = 0 = e. Also, we

have α(Px0, gx0) ≥ 1 for any x0 ∈ [0, 2]. Clearly, P is α- admissible with respect
to g. Now, all the hypotheses of Theorem 2.1 are satisfied. Consequently, P and g
have a coincidence point. Here, 0 is a coincidence point of P and g. Also, clearly
all the hypotheses of Theorem 2.2 are satisfied. In this example, 0 is the unique
common fixed point of P and g.

Example 3.2. Let X = [0, 2], we define Ξ : X ×X → C2 by

Ξ(x, y) =


0 if x = y

(3i1 + 3i2 + 18i1i2)max{x, y}2 if x 6= y

Clearly, (X,Ξ) is complete bi complex valued b-metric space with s = 2 and
1 + Ξ(x, y) + Ξ(u, v) degenerated for all x, y, u, v ∈ X.
We define P, g : X → X by

Px =


0 if x = 0
1−x2

4
if x ∈ (0, 1]

1
4

if x ∈ (1, 2]

and gx =


0 if x = 0

1− x2 if x ∈ (0, 1]
1+x
4

if x ∈ (1, 2]

Clearly, PX ⊆ gX and gX is closed set.
Define the function α : X ×X → [0,+∞) by

α(x, y) =


2 if x ∈ [0, 1]

1 otherwise.

We now verify inequality (2.1.1).
Case (i): Let x, y ∈ [0, 1] with x 6= y , then α(gx, gy) = α(1 − x2, 1 − y2) = 2.
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First we suppose that x > y, then we have

1

2s
min{‖ Ξ(Px, gx) ‖, ‖ Ξ(Py, gy) ‖} =

1

4

√
342(1− x2)2 ≤ 2

√
342(1− y2)2

= max{‖ Ξ(gx, gy) ‖, ‖ Ξ(Px, Py) ‖},

which implies from (2.1.1), we have

α(gx, gy)Ξ(Px, Py) = 2ρmax{1− x2

4
,
1− y2

4
}2

where ρ = (3i1 + 3i2 + 18i1i2) then

α(gx, gy)Ξ(Px, Py) = 2ρ
(1− y2)2

16
= ρ

1

8
(1− y2)2 �i2 ρ

1

4
(1− y2)2 =

1

4
Ξ(gx, gy)

�i2

1

4
Ξ(gx, gy) +

1

4
Ξ(gy, Py) +

1

16

Ξ(gx, Py) + Ξ(gy, Px)

s

+ 0
Ξ(Px, gx)Ξ(gy, Py)

1 + Ξ(gx, gy) + Ξ(Px, Py)
+ 0

Ξ(gx, Py)Ξ(gy, Px)

1 + Ξ(gx, gy) + Ξ(Px, Py)
.

Next, we suppose that x < y, then we have

1

2s
min{‖ Ξ(Px, gx) ‖, ‖ Ξ(Py, gy) ‖} =

1

4

√
342(1− y2)2 ≤

√
342(1− x2)2

= max{‖ Ξ(gx, gy) ‖, ‖ Ξ(Px, Py) ‖},

which implies from (2.1.1), we have

α(gx, gy)Ξ(Px, Py) = 2ρmax{1− x2

4
,
1− y2

4
}2

where ρ = (3i1 + 3i2 + 18i1i2) then

α(gx, gy)Ξ(Px, Py) = 2ρ
(1− x2)2

16
= ρ

1

8
(1− x2)2 �i2 ρ

1

4
(1− x2)2 =

1

4
Ξ(gx, gy)

�i2

1

4
Ξ(gx, gy) +

1

4
Ξ(gy, Py) +

1

16

Ξ(gx, Py) + Ξ(gy, Px)

s

+ 0
Ξ(Px, gx)Ξ(gy, Py)

1 + Ξ(gx, gy) + Ξ(Px, Py)
+ 0

Ξ(gx, Py)Ξ(gy, Px)

1 + Ξ(gx, gy) + Ξ(Px, Py)
.

Case (ii): Let x, y ∈ (1, 2] with x 6= y. Then α(gx, gy) = α(1+x
2
, 1+y

2
) = 1.

First we suppose that x > y, then we have

1

2s
min{‖ Ξ(Px, gx) ‖, ‖ Ξ(Py, gy) ‖} =

1

4
min{

√
342(

1 + x

2
)2,
√

342(
1 + y

2
)2}
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=
1

4

√
342(

1 + y

2
)2 ≤

√
342(

1 + x

2
)2 = max{‖ Ξ(gx, gy) ‖, ‖ Ξ(Px, Py) ‖}.

Thus from (2.1.1), we have

α(gx, gy)Ξ(Px, Py) = 0 �i2

1

4
Ξ(gx, gy) +

1

4
Ξ(gy, Py) +

1

16

Ξ(gx, Py) + Ξ(gy, Px)

s

+0
Ξ(Px, gx)Ξ(gy, Py)

1 + Ξ(gx, gy) + Ξ(Px, Py)
+ 0

Ξ(gx, Py)Ξ(gy, Px)

1 + Ξ(gx, gy) + Ξ(Px, Py)
.

Similarly, when x < y, we have

1

2s
min{‖ Ξ(Px, gx) ‖, ‖ Ξ(Py, gy) ‖} =

1

4
min{

√
342(

1 + x

2
)2,
√

342(
1 + y

2
)2}

≤
√

342(
1 + y

2
)2 = max{‖ Ξ(gx, gy) ‖, ‖ Ξ(Px, Py) ‖}.

Thus from (2.1.1), we have

α(gx, gy)Ξ(Px, Py) = 0 �i2

1

4
Ξ(gx, gy) +

1

4
Ξ(gy, Py) +

1

16

Ξ(gx, Py) + Ξ(gy, Px)

s

+0
Ξ(Px, gx)Ξ(gy, Py)

1 + Ξ(gx, gy) + Ξ(Px, Py)
+ 0

Ξ(gx, Py)Ξ(gy, Px)

1 + Ξ(gx, gy) + Ξ(Px, Py)
.

Case (iii): Let x ∈ [0, 1] and y ∈ (1, 2]. Then α(gx, gy) = 1. Also,

1

2s
min{‖ Ξ(Px, gx) ‖, ‖ Ξ(Py, gy) ‖} =

1

4
min{

√
342(

1 + y

2
)2,
√

342(1− x2)2}

=
1

4

√
342(1− x2)2 ≤

√
342(

1 + y

2
)2 = max{‖ Ξ(gx, gy) ‖, ‖ Ξ(Px, Py) ‖}

⇒ from (2.1.1), we have

α(gx, gy)Ξ(Px, Py) = ρ(
1

4
)2 =

ρ

16
�i2

1

4
ρ

(y + 1)2

4
=

1

4
Ξ(gx, gy)

�i2

1

4
Ξ(gx, gy) +

1

4
Ξ(gy, Py) +

1

16

Ξ(gx, Py) + Ξ(gy, Px)

s

+0
Ξ(Px, gx)Ξ(gy, Py)

1 + Ξ(gx, gy) + Ξ(Px, Py)
+ 0

Ξ(gx, Py)Ξ(gy, Px)

1 + Ξ(gx, gy) + Ξ(Px, Py)
.
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Case (iv): Let x ∈ (1, 2] and y ∈ [0, 1]. Then α(gx, gy) = 1. Also,

1

2s
min{‖ Ξ(Px, gx) ‖, ‖ Ξ(Py, gy) ‖} =

1

4
min{

√
342(

1 + x

2
)2,
√

342(1− y2)2}

=
1

4

√
342(1− y2)2 ≤

√
342(

1 + x

2
)2 = max{‖ Ξ(gx, gy) ‖, ‖ Ξ(Px, Py) ‖}

⇒ from (2.1.1), we have

α(gx, gy)Ξ(Px, Py) = ρ(
1

4
)2 =

ρ

16
�i2

1

4
ρ

(x+ 1)2

4
= aΞ(gx, gy)

�i2

1

4
Ξ(gx, gy) +

1

4
Ξ(gy, Py) +

1

16

Ξ(gx, Py) + Ξ(gy, Px)

s

+0
Ξ(Px, gx)Ξ(gy, Py)

1 + Ξ(gx, gy) + Ξ(Px, Py)
+ 0

Ξ(gx, Py)Ξ(gy, Px)

1 + Ξ(gx, gy) + Ξ(Px, Py)
.

Thus condition (2.1.1) is satisfied with a = 1
4
, b = 1

4
, c = 1

16
, d = 0 = e. Also, we

have α(Px0, gx0) ≥ 1 for any x0 ∈ [0, 2]. Clearly, P is α- admissible with respect
to g.
Now, all the hypotheses of Theorem 2.1 are satisfied. Consequently, P and g have
a coincidence point. Here, 0 is a coincidence point of P and g. Also, clearly all the
hypotheses of Theorem 2.2 are satisfied. In this example, 0 is the unique common
fixed point of P and g.
By choosing s = 1, we have the following corollary.

Corollary 3.3. Let (X,Ξ) be a complete bicomplex valued metric space and 1 +
Ξ(x, y) + Ξ(u, v) degenerated for all x, y, u, v ∈ X. Assume that α : X ×X → R+

be a mapping and P and g are selfmaps on X satisfying the following conditions:
(i) PX ⊆ gX.
(ii)

1

2s
min{‖ Ξ(Px, gx) ‖, ‖ Ξ(Py, gy) ‖} ≤ max{‖ Ξ(gx, gy) ‖, ‖ Ξ(Px, Py) ‖}

=⇒ α(gx, gy)Ξ(Px, Py) �i2 aΞ(gx, gy) + bΞ(gy, Py) + c
Ξ(gx, Py) + Ξ(gy, Px)

s

+Ξ
Ξ(Px, gx)Ξ(gy, Py)

1 + Ξ(gx, gy) + Ξ(Px, Py)
+ e

Ξ(gx, Py)Ξ(gy, Px)

1 + Ξ(gx, gy) + Ξ(Px, Py)

for all x, y ∈ X , where a, b, c, d, e ≥ 0 and a+ sb+ 2c+ d+ e < 1
(iii) P is α- admissible with respect to g



230 South East Asian J. of Mathematics and Mathematical Sciences

(iv) there exists x0 ∈ X such that α(gx0, Px0) ≥ 1
(v) If {gxn} is a sequence in X such that α(gxn, gxn+1) ≥ 1 for all n and gxn →
gz ∈ gX as n → +∞ then there exists a subsequence {gxn(k)} of {gxn} such that
α(gxn(k), gz) ≥ 1 for all k
(vi) gX is closed.
Then P and g have a unique coincidence point in X.
By choosing g = I, the identity map, we have the following corollary.

Corollary 3.4. Let (X,Ξ) be a complete bicomplex valued metric space with s ≥ 1
and 1+Ξ(x, y)+Ξ(u, v) degenerated for all x, y, u, v ∈ X. Assume that α : X×X →
R+ be a mapping and P is selfmap on X satisfying the following conditions:
(i)

1

2s
min{‖ Ξ(Px, x) ‖, ‖ Ξ(Py, y) ‖} ≤ max{‖ Ξ(x, y) ‖, ‖ Ξ(Px, Py) ‖}

=⇒ α(x, y)Ξ(Px, Py) �i2 aΞ(x, y) + bΞ(y, Py) + c
Ξ(x, Py) + Ξ(y, Px)

s

+Ξ
Ξ(Px, x)Ξ(y, Py)

1 + Ξ(x, y) + Ξ(Px, Py)
+ e

Ξ(x, Py)Ξ(y, Px)

1 + Ξ(x, y) + Ξ(Px, Py)
(3.4.1)

for all x, y ∈ X, where a, b, c, d, e ≥ 0 and a+ sb+ 2c+ d+ e < 1
(ii) P is α- admissible
(iii) there exists x0 ∈ X such that α(x0, Px0) ≥ 1
(iv) If {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn → z ∈ X
as n→ +∞ then there exists a subsequence {xn(k)} of {xn} such that α(xn(k), z) ≥ 1
for all k.
Then P has a fixed point in X.

4. Fixed point theorems on bicomplex valued metric space endowed
with a partial order

Definition 4.1. [7] Let (X,Ξ) be a partially ordered set and P : X → X be a given
mapping. We say that P is nondecreasing with respect to � if for all x, y ∈ X,
x � y implies Px � Py.

Definition 4.2. [7] Let (X,�) be a partially ordered set. A sequence {xn} ⊆ X is
said to be nondecreasing with respect to � if xn � xn+1 for all n.

Definition 4.3. [12] Let (X,�) be a partially ordered set and Ξ be a metric on
X. We say that (X,�,Ξ) is regular if for every nondecreasing sequence {xn} ∈ X
such that xn ⊆ X such that xn → x ∈ X as n → +∞, there exists a subsequence
{xn(k)} of {xn} of {xn} such that xn(k) � x for all k.
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Definition 4.4. [19] Let (X,�) be a partially ordered set and P, g : X → X be a
given mappings. We say that P is g−nondecreasing if for all x, y ∈ X, gx � gy
implies Px � Py.

Definition 4.5. Let (X,�) be a partially ordered set and d be a metric on X.
We say that is g−regular if for every nondecreasing sequence {gxn} ∈ X such that
gxn → gz ∈ X as n→ +∞, there exists a subsequence {gxn(k)} of {gxn} such that
gxn(k) � gz for all k.

Corollary 4.6. Let (X,�) be a poset and Ξ is a complete bicomplex valued metric
space with s ≥ 1 and 1+Ξ(x, y)+Ξ(u, v) degenerated for all x, y, u, v ∈ X. Assume
that P and g are selfmaps on X satisfying the following conditions:
(i) PX ⊆ gX.
(ii)

1

2s
min{‖ Ξ(Px, gx) ‖, ‖ Ξ(Py, gy) ‖} ≤ max{‖ Ξ(gx, gy) ‖, ‖ Ξ(Px, Py) ‖}

=⇒ α(gx, gy)Ξ(Px, Py) �i2 aΞ(gx, gy) + bΞ(gy, Py) + c
Ξ(gx, Py) + Ξ(gy, Px)

s

+d
Ξ(Px, gx)Ξ(gy, Py)

1 + Ξ(gx, gy) + Ξ(Px, Py)
+ e

Ξ(gx, Py)Ξ(gy, Px)

1 + Ξ(gx, gy) + Ξ(Px, Py)
(4.6.1)

for all x, y ∈ X , with gx � gy and a, b, c, d, e ≥ 0 and a+ sb+ 2c+ d+ e < 1
(iii) P is g-nondecreasing with respect to �
(iv) (X,�,Ξ) is g-regular.
(v) gX is closed.
Then P and g have a unique coincidence point in X. Moreover, for u, v ∈ C(P, g)
such that u � v and if P and g commute at their coincidence points then P and g
have a unique common fixed point.
Proof. Define the mapping α : X ×X → [0,+∞) by

α(x, y) =


1 if x � y or y � x

0 otherwise.

For any x, y ∈ X, we have α(x, y) = 1 if and only if x � y or x � y, so condition
(4.6.1) follows. In view of condition (iii), i.e., P is g-nondecreasing with respect
to �, then we have α(gx, gy) ≥ 1 ⇒ gx � gy or gx � gy ⇒ Px � Py or
Px � Py ⇒ α(Px, Py) ≥ 1, which implies P is α-admissible with respect to g. Let
{gxn} be a sequence in X such that α(gxn, gxn+1) ≥ 1 for all n and gxn → gz ∈ X
as n→ +∞.
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From condition (iv) of our hypotheses there exists a subsequence {gxn(k)} of
{gxn} such that gxn(k) � gz for all k which amounts α(gxn(k), gz) ≥ 1. Also,
by condition (iii), we have α(gx0, Px0) ≥ 1. Thus all the conditions of Theorem
2.1 are satisfied. Hence f and g have a coincidence point. Moreover, by the
hypotheses if for all u, v ∈ C(P, g) with u � v then by definition of α we have
α(gx, gy) ≥ 1. Hence we infer that the existence and uniqueness of common fixed
point by Theorem 2.2.
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