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Abstract: In this paper basic analogues of generating relations for certain multi-
ple series with essentially arbitrary terms due to M.A. Pathan, B.B. Jaimini and
Shiksha Gautam [1] and Srivastava and Pathan [9] are obtained. The importance
of these results lies in obtaining new multiple series transformations and reduction
formula which may be capable of yielding number theoretic and combinatorial in-
terpretations.
1. Introduction

Generalizing Heine’s series, we shall define an ,.¢4 basic hypergeometric series by
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Where M = Z mik;.

In 2008, M. A Pathan, B.B. Jaimini and Shiksha Gautam [1] established new
classes of bilateral generating relations for functions of several variables. The two
general multivariable theorems given by them are stated as follows:

Theorem A. Let
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Where M = Z m;k;, provided that for every complex number A # 0, —1, —2
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the result in (1. 9) exists.
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Theorem B. Let
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be defined by (2.1), then for arbitrary o and 3, 5 # 0;
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Where M = Y m;k;, provided that the result in (1.10) exists.
i=1
Theorem C. Let {A,}, {B,} and {C,} be sequences of arbitrary complex numbers,
and let A(mag,...,m,), r > 2 denote a multiple sequence. Suppose also let the
complex parameter o and 3 be independent of n, 5 # 0, and set M = mqy+...+m,
for allm; € {0,1,2,...},i=1,...,r

Then
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for every integer N > 1 provided that both members of Theorem C exist.
In this paper, we derive g-analogues of the above three theorems in section 2.
In section 3, we give a simple application of our theorems.
2. Main Theorems
For bounded complex coefficients A(k; ... k,) and Q24 for alln, k; € (0,1,2,...),
l;€(0,1,2,...),i=1,...,r,j=2,...,s.
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Theorem 1. Let ¢(t\" x1, ..., 17" 2, ta .. . ts) be defined by (2.1), then
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Where M = > m;k;, provided that for every complex number A # 0, —1, =2, ...
i=1
the result in (2.2) exists.

Proof: Let A; denote the following series of multiple basic hyper geometric sum:
Then (A1) = o(t" xq, ... 17"z te . . . ty)
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Now on making use of series rearrangements (1.8) and (1.7) respectively, it reduces
to:
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On applying (1.3) and (1.4) respectively and then on using the formula (1.6) and
(1.5) therein we have
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The above basic hypergeometric 4¢3 series is well poised and therefore by applying
g-analogue of Dixon’s theorem.
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We at once arrive at the desired result (2.2).
We shall now prove the following basic analogue of Theorem B for the complex
parameter « is taken to be zero.

Theorem 2. Let ¢(t7" zy, ... 11"zt . .. t5) be defined by (2.1), then for arbitrary
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Where M = Z mik;, provided that the result (2.5) exists.
Proof: To prove the Theorem 2 we denote the R.H.S. of (2.5) by As, i.e.
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Now in (2.6) the sum of 1¢o(¢~";¢"), becomes zero if I; > 0. Therefore, we must
take [; = 0 in (2.6). We then get the R.H.S. of Theorem B on replacing k by [;.

We shall now prove ¢-generalization of another Theorem C' of Srivastava and
Pathan [9, Theorem 2] for the case when N = 1 and the complex parameter « is
taken to be zero.

Theorem 3. Let {A,}, {B,}, {Cn} and A(ma,...,m,), r > 2, be arbitrary com-
plex sequences, and let M = mq +ms+ ...+ m,. Then
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provided that each side has a meaning.
Proof: Let M (3, q) denote the following series of multiple basic hypergeometric
sums:
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After some simplification and then taking n + k for n, we get
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on using the series transformation (1.7).
As in the case of Theorem 1, let us now replace m; by m; — n and use the
transformation (1.7) in the other direction. We then get
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(Dmy
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must taken m; = 0 in (2.8). We then get the right-hand of Theorem 3 on replacing
k by mi.
If we take 23 = ... = 2, = 0 and A(n,0,...,0) = D,, n > 0 in (3.1) above,
we get the following g-analogue of Srivastava and Pathan’s theorem [9, Theorem
2] for the case when N =1 and a = 0, namely
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provided that each side has a meaning.
3. Applications

(1) If we take r = 1 in (2.2) and set A(k1,0,...0) — Ci

(@’
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r > 2, be arbitrary complex sequences, then on replacing x; by €2. These reduces
to the known results [10, (2.1)] which in turn at s = 2 provides the know results
10, (2.6)].

(2) On similar setting at » = 1, as in (1) the result in (2.5) at s = 2 reduces to the
above result (2.7) and (2.7).

(3)If we take x5 = ... =2, =0 and A(n,0,...,0) = D,, n > 0 in (2.7),

we get the following g-analogue of Srivastava and Pathan’s theorem [9, Theorem
2] for the case when N =1 and a = 0, namely
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