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1. Introduction
In 2006, Bougoffa [6] introduced the following reverse Minkowski integral in-

equality:
Let ζ and η be positive functions defined on [c, d]. Then(∫ d

c

ζp(t)dt

) 1
p

+

(∫ d

c

ηp(t)dt

) 1
p

≤ K

(∫ d

c

(
ζ(t) + η(t)

)p
dt

) 1
p

, (1.1)

where 0 < l ≤ ζ(t)

η(t)
≤  L, for all t ∈ [c, d] and K =

 L(l + 2) + 1

(l + 1)( L + 1)
.

Inequalities play an important role in mathematical analysis due to its wide
applications in various branches of Mathematics. In recent years, many researchers
have generalized and improved the above inequality (1.1) in a number of ways. For



98 South East Asian J. of Mathematics and Mathematical Sciences

instance, in 2012, through his contribution to developing the theory of integral
inequality, Sulaiman in [35] obtained some reverses of Minkowski’s inequalities
which provides a new bound for inequality (1.1), while Sroysang [33] and Benaissa
[3] established some more generalized integral inequalities related to the reverse
Minkowski’s inequality. Similarly some researchers have generalized the Hardy
and Hölder type inequalities. Pachpatte in [20] proved some variants of Hardy
type inequalities involving the function of two variables. In [32, 34], the authors
obtained some improvements in the Hardy-like inequalities. Pečarić [21] established
an extension of Hölder type inequalities by using log convexity. Benaissa and
Budak [4] obtained various results on integral inequalities of Hölder’s type. Since
inequalities have a great impact on substantial fields of research, many authors
have paid a great deal of attention in obtaining various types of inequalities; for
more details see [1, 2, 5, 8, 9, 15, 30, 37, 38].

Fractional calculus is important in mathematics due to its applications in di-
verse fields. It plays a very important role, especially in the study of various
fractional differential equations and inequalities. Recently, many researchers have
worked on the generalization of integral inequalities using different mathematical
approaches. The use of fractional integral operators is one of the most popular and
effective methods as it extends classical integral inequalities to fractional integral
inequalities. In 2010, Dahmani [11] presented the fractional version of inequality
(1.1) for Riemann-Liouville operator.

Sousa with Olivera [31] and Restrepo et al. [29] presented some reverse Minko-
wski’s type inequalities by employing generalized Katugampola and weighted frac-
tional operator respectively. Rahman et al. [22] established reverse Minkowski’s
type inequalities by considering generalized proportional fractional operator. In
2020, reverse Minkowski’s type inequalities were studied by Rashid et al. [23] via
generalized proportional fractional definition with respect to another function. In
[12], authors established some Hardy type inequalities using generalized fractional
integral operator while in [14], authors studied Hardy type inequalities for Hilfer
and generalized fractional operators. Using different fractional operators, a wide
range of inequalities have been obtained and analysed; see [7, 10, 13, 19, 24-28,
38] and the references therein. In [36], Wu et al. presented generalized Hardy-like
inequalities and a fractional version of it was obtained by Khameli et al. [16] using
Riemann-Liouville integral operators.

In 2020, Benaissa [3] established the following generalized Hardy type integral
inequality:
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(i) For p ≥ 1, we have

p

∫ d

c

( ∫ s
c
ζ(t)dt

)p
η(s)

ds ≤ (d− c)p
∫ d

c

ζp(s)

η(s)
ds−

∫ d

c

(s− c)p

η(s)
ζp(s)ds (1.2)

(ii) For 0 < p < 1,

p

∫ d

c

( ∫ s
c
ζ(t)dt

)p
η(s)

ds ≥ (d− c)p

η(d)

∫ d

c

ζp(s)ds− 1

η(d)

∫ d

c

(s− c)pζp(s)ds, (1.3)

where ζ, η are positive functions defined on [c, d] and η is non decreasing.
Motivated by the above literature, in this paper we established the reverses of

Minkowski’s, Hölder’s and Hardy’s type integral inequalities proved in [3, 4] by
employing ψ-fractional integral operator. The paper is organized as follows: In the
next section 2, we will give some preliminaries, definitions and lemmas. In section
3, we established Hardy type integral inequalities by using ψ-fractional integral
operator. Reverses of Minkowski and Hölder inequalities for ψ-fractional integral
are given in section 4.

2. Preliminaries
In this section, we give some preliminaries, basic definitions of fractional inte-

gral operators and lemmas which are helpful in proving our main results.

Definition 1. [17] The Riemann-Liouville fractional integral operator of the inte-
grable function ζ on [c, d] of order β > 0 is defined as

Jβc+ζ(t) =
1

Γ(β)

∫ t

c

(t− s)β−1ζ(s)ds, for all t > c,

where Γ is the Gamma function.

Definition 2. [17] The Hadamard fractional integral of the integrable function ζ
on [c, d] of order β > 0 is defined as

HJβc+ζ(t) =
1

Γ(β)

∫ t

c

(
log

t

s

)
ζ(s)

s
ds, (c < t < d),

where Γ is the Gamma function.

Definition 3. [17] Let ζ be an integrable function defined on [c, d] and ψ ∈ C1[c, d]
an increasing function such that ψ′(t) 6= 0, for all t ∈ [c, d]. Then ψ-Riemann-
Liouville fractional integral of the function ζ with respect to the function ψ of order
β > 0 is defined by

Jβ,ψc+ ζ(t) =
1

Γ(β)

∫ t

c

ψ′(s)(ψ(t)− ψ(s))β−1ζ(s)ds, for all t > c,
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where Γ is the Gamma function.

Lemma 2.1. (Hölder inequality) [18, 36]. Let ζ and η be non-negative integrable
functions defined on [c, d] and 1

p
+ 1

q
= 1 with p > 1, then∫ d

c

ζ(s)η(s)ds ≤
(∫ d

c

ζp(s)ds
) 1
p
(∫ d

c

ηq(s)ds
) 1
q
. (2.1)

Lemma 2.2. (Reverse Hölder inequality) [36]. Let ζ and η be positive integrable
functions defined on [c, d] and 1

p
+ 1

q
= 1 with 0 < p < 1, then∫ d

c

ζ(s)η(s)ds ≥
(∫ d

c

ζp(s)ds
) 1
p
(∫ d

c

ηq(s)ds
) 1
q
. (2.2)

3. Hardy Type Inequalities Using ψ-fractional Integral
In this section, we prove Hardy type inequalities using ψ-fractional integral.

Our proofs based on the applications of the well known Fubini’s theorem.

Theorem 3.1. Let β > 0, p > 1 and ζ, η be two positive functions defined on
[c, d] ⊆ [0,∞) such that η is non-decreasing and ψ is defined as in Definition 3,
then following inequalities hold:∫ d

c

[Jβ,ψc+ ζ(t)]p

η(t)
dt ≤ 1

(βp− β + 1)Γp−1(β + 1)

[
(ψ(d)− ψ(c))βp−β+1Jβ,ψc+

ζp(d)

η(d)

−Jβ,ψc+
(ζp(d)

η(d)
(ψ(d)− ψ(c))βp−β+1

)]
. (3.1)

Proof. For p > 1, we have∫ d

c

[Jβ,ψc+ ζ(t)]p

η(t)
dt =

∫ d

c

η−1(t)
( 1

Γ(β)

∫ t

c

ψ′(s)(ψ(t)− ψ(s))β−1ζ(s)ds
)p
dt. (3.2)

By using Hölder inequality (2.1), we get∫ d

c

[Jβ,ψc+ ζ(t)]p

η(t)
dt ≤

∫ d

c

η−1(t)

[( 1

Γ(β)

∫ t

c

ψ′(s)(ψ(t)− ψ(s))β−1ζp(s)ds
) 1
p

( 1

Γ(β)

∫ t

c

ψ′(s)(ψ(t)− ψ(s))β−1ds
) p−1

p

]p
dt

=
1

Γ(β)Γp−1(β)

∫ d

c

η−1(t)
(∫ t

c

ψ′(s)(ψ(t)− ψ(s))β−1ζp(s)ds
)

(∫ t

c

ψ′(s)(ψ(t)− ψ(s))β−1ds
)p−1

dt
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=
1

Γ(β)Γp−1(β + 1)

∫ d

c

η−1(t)(ψ(t)− ψ(c))β(p−1)

(∫ t

c

ψ′(s)(ψ(t)− ψ(s))β−1ζp(s)ds
)
dt.

Since η is non decreasing and by changing the order of integration, we obtain∫ d

c

[Jβ,ψc+ ζ(t)]p

η(t)
dt ≤ 1

Γ(β)Γp−1(β + 1)

∫ d

c

η−1(s)ψ′(s)(ψ(d)− ψ(s))β−1ζp(s)(∫ d

s

(ψ(t)− ψ(c))β(p−1)dt
)
ds.

It follows that∫ d

c

[Jβ,ψc+ ζ(t)]p

η(t)
dt ≤ 1

(βp− β + 1)Γp−1(β + 1)Γ(β)

[ ∫ d

c

η−1(s)ψ′(s)(ψ(d)− ψ(s))β−1

(ψ(d)− ψ(c))βp−β+1ζp(s)ds−
∫ d

c

η−1(t)ψ′(s)(ψ(d)− ψ(s))β−1

(ψ(s)− ψ(c))βp−β+1ζp(s)ds

]
.

From above we get the required inequality (3.1).

Remark 3.1. For ψ(s) = s and β = 1, the inequality (3.1), reduces to the inequal-
ity (2.5) of Theorem(2.2) in [3].

Theorem 3.2. Let β > 0, 0 < p < 1 and ζ, η be two positive functions defined
on [c, d] ⊆ [0,∞) such that η is non-decreasing and ψ is defined as in Definition 3,
then following inequalities hold:∫ d

c

[Jβ,ψc+ ζ(t)]p

η(t)
dt ≥ η−1(d)

(βp− β + 1)Γp−1(β + 1)

[(−1)βp−β+1Γ(βp+ 1)

Γ(β)
Jβp+1,ψ
d ζp(c)

−(ψ(d)− ψ(c))βp−β+1Jβ,ψd ζp(c)
]
. (3.3)

Proof. For 0 < p < 1, we have∫ d

c

[Jβ,ψc+ ζ(t)]p

η(t)
dt =

∫ d

c

η−1(t)
( 1

Γ(β)

∫ t

c

ψ′(s)(ψ(t)− ψ(s))β−1ζ(s)ds
)p
dt. (3.4)
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By using reverse Hölder inequality (2.2), we get∫ d

c

[Jβ,ψc+ ζ(t)]p

η(t)
dt ≥

∫ d

c

η−1(t)

[( 1

Γ(β)

∫ t

c

ψ′(s)(ψ(t)− ψ(s))β−1ζp(s)ds
) 1
p

( 1

Γ(β)

∫ t

c

ψ′(s)(ψ(t)− ψ(s))β−1ds
) p−1

p

]p
dt

=
1

Γ(β)Γp−1(β)

∫ d

c

η−1(t)
(∫ t

c

ψ′(s)(ψ(t)− ψ(s))β−1ζp(s)ds
)

(∫ t

c

ψ′(s)(ψ(t)− ψ(s))β−1ds
)p−1

dt

=
1

Γ(β)Γp−1(β + 1)

∫ d

c

η−1(t)(ψ(t)− ψ(c))β(p−1)

(∫ t

c

ψ′(s)(ψ(t)− ψ(s))β−1ζp(s)ds
)
dt.

Since η is non decreasing and by changing the order of integration, we have∫ d

c

[Jβ,ψc+ ζ(t)]p

η(t)
dt ≥ 1

Γ(β)Γp−1(β + 1)

∫ d

c

η−1(d)ψ′(s)(ψ(c)− ψ(s))β−1ζp(s)(∫ d

s

(ψ(t)− ψ(c))β(p−1)dt
)
ds.

Therefore∫ d

c

[Jβ,ψc+ ζ(t)]p

η(t)
dt ≥ 1

Γ(β)Γp−1(β + 1)

∫ c

d

η−1(d)ψ′(s)(ψ(c)− ψ(s))β−1ζp(s)(∫ s

d

(ψ(t)− ψ(c))β(p−1)dt
)
ds.

From above we get∫ d

c

[Jβ,ψc+ ζ(t)]p

η(t)
dt ≥ 1

(βp− β + 1)Γp−1(β + 1)Γ(β)

[ ∫ c

d

η−1(d)ψ′(s)(ψ(c)− ψ(s))β−1

(ψ(s)− ψ(c))βp−β+1ζp(s)ds−
∫ c

d

η−1(d)ψ′(s)(ψ(c)− ψ(s))β−1

(ψ(d)− ψ(c))βp−β+1ζp(s)ds

]
.
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It follows that∫ d

c

[Jβ,ψc+ ζ(t)]p

η(t)
dt ≥ η−1(d)

(βp− β + 1)Γp−1(β + 1)

[
1

Γ(β)

∫ c

d

ψ′(s)(ψ(c)− ψ(s))β−1

(ψ(s)− ψ(c))βp−β+1ζp(s)ds− 1

Γ(β)
(ψ(d)− ψ(c))βp−β+1∫ c

d

ψ′(s)(ψ(c)− ψ(s))β−1ζp(s)ds

]
.

Therefore∫ d

c

[Jβ,ψc+ ζ(t)]p

η(t)
dt ≥ η−1(d)

(βp− β + 1)Γp−1(β + 1)[
(−1)βp−β+1

Γ(β)

∫ c

d

ψ′(s)(ψ(c)− ψ(s))βpζp(s)ds

− 1

Γ(β)
(ψ(d)− ψ(c))βp−β+1

∫ c

d

ψ′(s)(ψ(c)− ψ(s))β−1ζp(s)ds

]
.

From above we get the required inequality (3.3).

Remark 3.2. For ψ(s) = s and β = 1, the inequality (3.3), reduces to the inequal-
ity (2.6) of Theorem(2.2) in [3].

4. Reverse Minkowski and Hölder type Inequality using ψ-fractional
Integral

In this section, we obtain some reverse Minkowski type and Hölder type in-
equalities for ψ-Riemann-Liouville fractional integral.

Our next result deals with reverses of Minkowski type inequality by using ψ-
fractional integral operator.

Theorem 4.1. Let β > 0, p ≥ 1. Let ζ and η be two positive functions defined on
[c, t], for all t > c ≥ 0 such that Jβ,ψc+ ζp(t) < ∞, Jβ,ψc+ ηp(t) < ∞ and ψ is defined

as in Definition 3. If 0 < k < l ≤ θζ(s)
η(s)
≤  L, for θ > 0, s ∈ [c, t], then following

inequalities hold:

 L + θ

θ( L− k)

[
Jβ,ψc+ (θζ − kη)p(t)

] 1
p ≤
[
Jβ,ψc+ ζp(t)

] 1
p +

[
Jβc+η

p(t)
] 1
p

≤ l + θ

θ(l − k)

[
Jβ,ψc+ (θζ − kη)p(t)

] 1
p . (4.1)

Proof. Since for θ > 0, s ∈ [c, t], t > 0, we have

0 < k < l ≤ θζ(s)

η(s)
≤  L, (4.2)
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then

−1

l
≤ − η(s)

θζ(s)
≤ − 1

 L
,

which implies
1

k
− 1

l
≤ 1

k
− η(s)

θζ(s)
≤ 1

k
− 1

 L
.

Therefore
l − k
kl
≤ θζ(s)− kη(s)

kθζ(s)
≤  L− k

k L
.

From above we get
 L

 L− k
≤ θζ(s)

θζ(s)− kη(s)
≤ l

l − k
.

It follows that

 L

θ( L− k)

(
θζ(s)− kη(s)

)
≤ ζ(s) ≤ l

θ(l − k)

(
θζ(s)− kη(s)

)
. (4.3)

Taking pth power of (4.3), we get[  L

θ( L− k)

]p(
θζ(s)− kη(s)

)p ≤ ζp(s) ≤
[ l

θ(l − k)

]p(
θζ(s)− kη(s)

)p
. (4.4)

Multiplying (4.4) by 1
Γ(β)

ψ′(s)(ψ(t) − ψ(s))β−1, s ∈ (c, t) and integrating with
respect to s from c to t, we get[  L

θ( L− k)

][
Jβ,ψc+ (θζ − kη)p(t)

] 1
p ≤
[
Jβ,ψc+ ζp(t)

] 1
p

≤
[ l

θ(l − k)

][
Jβ,ψc+ (θζ − kη)p(t)

] 1
p . (4.5)

Now from the condition (4.2), we have

l − k ≤ θζ(s)− kη(s)

η(s)
≤  L− k.

Therefore
1

 L− k
≤ η(s)

θζ(s)− kη(s)
≤ 1

l − k
.

It follows that

(θζ(s)− kη(s))p

( L− k)p
≤ ηp(s) ≤ (θζ(s)− kη(s))p

(l − k)p
. (4.6)
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Multiplying by 1
Γ(β)

ψ′(s)(ψ(t) − ψ(s))β−1, s ∈ (c, t) to (4.6) and integrating with
respect to s from c to t, we get

1

 L− k
[
Jβ,ψc+ (θζ − kη)p(t)

] 1
p ≤
[
Jβ,ψc+ ηp(t)

] 1
p

≤ 1

l − k
[
Jβ,ψc+ (θζ − kη)p(t)

] 1
p . (4.7)

Adding inequalities (4.5) and (4.7), we get required inequality (4.1).

Remark 4.1. For ψ(s) = s and β = 1, the inequality (4.1), reduces to the inequal-
ity (2.2) of Theorem(2.1) in [3].

In next theorem we prove reverse Hölder type inequalities in the sense of ψ-
fractional integral operator.

Theorem 4.2. Let β > 0, p > 1 with 1
p

+ 1
q

= 1 and m > 0, n > 0, t > c ≥ 0. Let

ζ and η be two positive integrable functions defined on [c, t] and ψ is defined as in

Definition 3. Let w be a weight function defined on [c, t] . If 0 < l ≤ ζm(s)
ηn(s)

≤  L,

for s ∈ [c, t], then following inequalities hold:

(
Jβ,ψc+ ζm(t)w(t)

) 1
p
(
Jβ,ψc+ ηn(t)w(t)

) 1
q ≤

(
 L

l

) 1
pq (

Jβ,ψc+ ζ
m
p (t)η

n
q (t)w(t)

)
. (4.8)

Proof. Since for m,n > 0 and s ∈ [c, t], we have

0 < l ≤ ζm(s)

ηn(s)
≤  L. (4.9)

Then (
1

l

) 1
q

≥ η
n
q (s)

ζ
m
q (s)

≥
(

1

 L

) 1
q

. (4.10)

Multiplying (4.10) by ζm(s), we get(
1

l

) 1
q

ζm(s) ≥ η
n
q (s)ζm(s)

ζ
m
q (s)

≥
(

1

 L

) 1
q

ζm(s). (4.11)

From (4.11), we have(
1

l

) 1
q

ζm(s) ≥ η
n
q (s)ζ

m
p (s) ≥

(
1

 L

) 1
q

ζm(s).
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Which gives

l
1
q ζ

m
p (s)η

n
q (s) ≤ ζm(s) ≤  L

1
q ζ

m
p (s)η

n
q (s). (4.12)

Multiplying right hand side of (4.12) by w(s), we obtain

ζm(s)w(s) ≤  L
1
q ζ

m
p (s)η

n
q (s)w(s). (4.13)

Multiplying (4.13) by 1
Γ(β)

ψ′(s)(ψ(t) − ψ(s))β−1, s ∈ (c, t) and integrating with
respect to s from c to t, we get[

Jβ,ψc+ ζm(t)w(t)
] 1
p ≤  L

1
pq
[
Jβ,ψc+ ζ

m
p (t)η

n
q (t)w(t)

] 1
p . (4.14)

Now from (4.9), we have

l
1
p ≤ ζ

m
p (s)

η
n
p (s)

≤  L
1
p . (4.15)

Multiplying (4.15) by ηn(s), we get

l
1
pηn(s) ≤ ζ

m
p (s)ηn(s)

η
n
p (s)

≤  L
1
pηn(s).

Which gives

l
1
pηn ≤ ζ

m
p (s)η

n
q (s) ≤  L

1
pηn(s). (4.16)

It follows that (
1

 L

) 1
p

ζ
m
p (s)η

n
q (s) ≤ ηn(s) ≤

(
1

l

) 1
p

ζ
m
p (s)η

n
q (s). (4.17)

Multiplying right hand side inequality of (4.17) by w(s), we obtain

ηn(s)w(s) ≤
(

1

l

) 1
p

ζ
m
p (s)η

n
q (s)w(s). (4.18)

Multiplying (4.18) by 1
Γ(β)

ψ′(s)(ψ(t) − ψ(s))β−1, s ∈ (c, t) and integrating with
respect to s from c to t, we get

[
Jβ,ψc+ ηn(t)w(t)

] 1
q ≤

(
1

l

) 1
pq [

Jβ,ψc+ ζ
m
p (t)η

n
q (t)w(t)

] 1
q . (4.19)

Multiplying (4.14) and (4.19), we get required inequality (4.8).
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Remark 4.2. For ψ(s) = s and β = 1, the inequality (4.8), reduces to the inequal-
ity (6) of Theorem(2.1) in [4].

Corollary 4.1. Let β > 0, p > 1 with 1
p

+ 1
q

= 1. Let ζ and η be two positive inte-

grable functions on [c, t] and ψ is defined as in Definition 3. If 0 < l ≤ ζp−1(s)
η(s)

≤  L,

for s ∈ [c, t], where t > c ≥ 0,then following inequalities hold:

[
Jβ,ψc+ ζp(t)

] 1
p
[
Jβ,ψc+ ηq(t)

] 1
q ≤

(
 L

l

) 1
p

Jβ,ψc+ ζ(t)η(t).

Corollary 4.2. Let β > 0, p > 1 with 1
p

+ 1
q

= 1. Let ζ and η be two positive

integrable functions on [c, t], for all t > c ≥ 0, and ψ is defined as in Definition 3.

If 0 < l ≤ ζ(s)
ηq−1(s)

≤  L, for s ∈ [c, t], then following inequalities hold:

[
Jβ,ψc+ ζp(t)

] 1
p
[
Jβ,ψc+ ηq(t)

] 1
q ≤

(
 L

l

) 1
q

Jβ,ψc+ ζ(t)η(t).

Remark 4.3. For ψ(s) = s and β = 1, the inequalities in corollary (4.1) and (4.2)
reduces to the inequalities in corollary (2.4) and (2.5) in [4] respectively.

Theorem 4.3. Let β > 0, θ > 0, k > 0, p > 0, q > 0, µ > 0, ν > 0. Let ζ, η be
non-negative integrable functions defined on [c, t], for all t > c ≥ 0 and ψ is defined

as in Definition 3. If 0 < k < l ≤ θζ(s)
η(s)
≤  L, for all s ∈ [c, t], where t ≥ c > 0, then

following inequalities hold:

[
Jβ,ψc+ ζp(t)

] 1
p
[
Jβ,ψc+ ηq(t)

] 1
q ≤

(
 L

θ

)(
θ

l

) 2µ
µ+ν

(l + k)
µ−ν
µ+ν ( L + k)

ν−µ
µ+ν[

Jβ,ψc+
(
ζµ(t)ην(t)

) p
µ+ν

] 1
p
[
Jβ,ψc+

(
ζµ(t)ην(t)

) q
µ+ν

] 1
q
. (4.20)

Proof. Since for θ > 0, s ∈ [c, t], t > c ≥ 0 we have

0 < k < l ≤ θζ(s)

η(s)
≤  L, (4.21)

then

l + k ≤ θζ(s) + kη(s)

η(s)
≤  L + k. (4.22)

From above we have

(l + k)q ≤
(θζ(s) + kη(s)

η(s)

)q
≤ ( L + k)q. (4.23)
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Multiplying left hand side inequality of (4.23) by 1
Γ(β)

ψ′(s)(ψ(t)−ψ(s))β−1, s ∈ (c, t)
and integrating with respect to s from c to t, we get

(l + k)
[
Jβ,ψc+ ηq(t)

] 1
q ≤

[
Jβ,ψc+ (θζ + kη)q(t)

] 1
q . (4.24)

Also, from (4.21) we have

 L + k

 L
≤ θζ(s) + kη(s)

θζ(s)
≤ l + k

l
. (4.25)

Multiplying the left hand side inequality of (4.25) by 1
Γ(β)

ψ′(s)(ψ(t) − ψ(s))β−1,

s ∈ (c, t) and integrating with respect to s from c to t, we get

θ

(
 L + k

 L

)[
Jβ,ψc+ ζp(t)

] 1
p ≤

[
Jβ,ψc+ (θζ + kη)p(t)

] 1
p
. (4.26)

Multiplying inequalities (4.24) and (4.26), we obtain(
θ

 L

)
( L + k)(l + k)

[
Jβ,ψc+ ζp(t)

] 1
p
[
Jβ,ψc+ ηq(t)

] 1
q

≤
[
Jβ,ψc+ (θζ + kη)p(t)

] 1
p
[
Jβ,ψa+ (θζ + kη)q(t)

] 1
q . (4.27)

From the right hand side inequalities of (4.22) and (4.25), we get

(θζ(s) + kη(s))ν ≤ ( L + k)νην(s) (4.28)

and

(θζ(s) + kη(s))µ ≤
(θ
l
(l + k)

)µ
ζµ(s). (4.29)

Adding inequalities (4.28) and (4.29), we obtain

θζ(s) + kη(s) ≤
(θ
l

) µ
µ+ν (l + k)

µ
µ+ν ( L + k)

ν
µ+ν

(
ζµ(s)ην(s)

) 1
µ+ν

. (4.30)

Multiplying (4.30) by 1
Γ(β)

ψ′(s)(ψ(t) − ψ(s))β−1, s ∈ (c, t) and integrating with
respect to s from c to t, we get[
Jβ,ψc+ (θζ + kη)p(t)

] 1
p ≤

(θ
l

) µ
µ+ν (l + k)

µ
µ+ν ( L + k)

ν
µ+ν

[
Jβ,ψc+ (ζµ(t)ην(t))

p
µ+ν

] 1
p
. (4.31)

Similarly, from (4.30), we have[
Jβ,ψc+ (θζ + kη)q(t)

] 1
q ≤

(θ
l

) µ
µ+ν (l + k)

µ
µ+ν ( L + k)

ν
µ+ν

[
Jβ,ψc+ (ζµ(t)ην(t))

q
µ+ν

] 1
q
. (4.32)
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Multiplying inequalities (4.31) and (4.32), we get[
Jβ,ψc+ (θζ + kη)p(t)

] 1
p
[
Jβ,ψc+ (θζ + kη)q(t)

] 1
q

≤
(θ
l

) 2µ
µ+ν (l + k)

2µ
µ+ν ( L + k)

2ν
µ+ν

[
Jβ,ψc+ (ζµ(t)ην(t))

p
µ+ν

] 1
p

[
Jβ,ψc+ (ζµ(t)ην(t))

q
µ+ν

] 1
q
. (4.33)

From the inequalities (4.27) and (4.33), we obtain

θ

 L
( L + k)(l + k)

[
Jβ,ψc+ ζp(t)

] 1
p
[
Jβ,ψc+ ηq(t)

] 1
q

≤
(θ
l

) 2µ
µ+ν (l + k)

2µ
µ+ν ( L + k)

2ν
µ+ν

[
Jβ,ψc+ (ζµ(t)ην(t))

p
µ+ν

] 1
p

[
Jβ,ψc+ (ζµ(t)ην(t))

q
µ+ν

] 1
q
. (4.34)

From inequality (4.34), we get required inequality (4.20).

Remark 4.4. For ψ(s) = s and β = 1, the inequality (4.20), reduces to the
inequality (13) of Theorem(2.6) in [4].

5. Conclusion
In this paper we obtained reverses of Hardy’s, Minkowski’s and Hölder’s type

inequalities using the ψ-Riemann-Liouville fractional integral. The obtained results
are more generalized in nature. If we put different values of ψ, the ψ-Riemann-
Liouville fractional integral operator are reduced to the many classical results as
Riemann-Liouville, Hadamard and Erdélyi–Kober fractional integral operator for
ψ(s) = s, ψ(s) = ln s and ψ(s) = sσ, respectively.
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