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Abstract: Let FG be the group algebra of a group G over a finite field F of char-
acteristic p > 0 with q = pn elements. In this paper, a complete characterization
of the unit group U(FC37) of the group algebra FC37 for the group C37 of order
37, over a finite field of characteristic p > 0 has been obtained.
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1. Introduction
Let FG be the group algebra of a group G over a field F , for a given normal

subgroup H of G, we can extend any group homomorphism G to G/H, to an
F -algebra homomorphism from FG onto F [G/H]. The homomorphism is defined
as: ∑

g∈G

agg 7→
∑
g∈G

aggH, for ag ∈ F.

It can be written as FG
ω(H)

∼= F [ F
H

], where ω(H) is the kernal of F−algebra homo-
morphism. Also,

ω(H) = ω(FH)FG = FGω(FH),
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where ω(FG) is called the augmentation ideal of FG. It is easy to see that, if
U(FG) is the unit group of FG and V (FG) is the normalized unit group of FG,
then

U(FG) ∼= V (FG)× F ∗.
Let G be a finite p-group. Then V (FG) is a finite p-group of order |F ||G|−1. If F is
a finite field of characteristic p > 0, then element g ∈ G is called a p-regular ele-
ment if, (p, o(g)) = 1. Let m be the L.C.M. of all the p-regular elements of G and ξ
be a primitive mth root of unity over the field F . Now define a multiplicative group
T of integers modulo m as T = {t : ξ → ξt is an automorphism ofF (ξ) overF}.
Any two p-regular elements g, h ∈ G are said to be F -conjugate if gt = x−1hx,
for some x ∈ G and t ∈ T , which gives an equivalence relation which partitions
the p-regular elements of G onto p-regular F -conjugacy classes. Our main results
depend on the Witt-Berman Theorem [14, Ch.17, Theorem 5.3], which says the
number of non-isomorphic simple FG-modules is equal to number of F -conjugacy
classes of p-regular elements of G.

The problem of determining the unit group structure of group algebras is a
classical problem. Many researchers have shown interest in characterizing the
structures of unit groups of FG. Some of the interesting results can be seen in
[2-5, 7-13, 26, 27]. Sharma, Srivastava and Khan in [15, 23-25] established the
structure of the unit groups of the group algebras for the finite groups D10, S3, A4

and S4. Makhijani, Sharma and Srivastava [16-18] characterized the unit group of
the group algebras for some dihedral groups. Further, Sahai and Ansari [1, 20-22],
characterized the unit group of group algebras for the abelian groups of order up to
24. Recently, Bhatt and Chandra [6] characterized the unit group of group algebras
for the abelian groups of order 32. In this paper we have classified the complete
structure of unit group of the group algebra for the group of order 37, namely C37.
2. Preliminaries

Lemma 2.1. [20, Lemma 2.3] Let F be a finite field of characteristic p with
|F | = q = pn. Then

U(FCpk) ∼=

{
C

n(p−1)
p × Cpn−1 if k = 1;∏k
s=1C

hs
ps × Cpn−1, otherwise,

where hk = n(p− 1) and hs = npk−s−1(p− 1)2 for all s, 1 ≤ s < k.

Lemma 2.2. [19] Let G be a group and R be a commutative ring. Then the set of
all finite class sums forms an R-basis of Z(RG), the center of RG.

Lemma 2.3. [19] Let FG be a semi-simple group algebra. If G′ denotes the
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commutator subgroup of G, then

FG = FGeG′ ⊕∆(G,G′)

where FGeG′
∼= F (G/G′) is the sum of all commutative simple components of FG

and ∆(G,G′) is the sum of all the others.

3. Main Results

Theorem 3.1. Let F be a finite field of characteristic p with |F | = q = pn and G
∼= C37.
(A) Let p = 37. Then, U(FC37) ∼= C36n

37 × C37n−1.
(B) Let p 6= 37. Then, we have:

1. If q ≡ 1 mod 37, then U(FC37) ∼= C37
pn−1.

2. If q ≡ −1mod 37, then U(FC37) ∼= C18
p2n−1 × Cpn−1.

3. If q ≡ ±2, −3, ±5,−11, −13,±15, ±17, ±18 mod 37, then
U(FC37) ∼= Cp36n−1 × Cpn−1.

4. If q ≡ 3, 4, −7, −9, −12, 13, −16 mod 37, then U(FC37) ∼= C2
p18n−1×Cpn−1.

5. If q ≡ −4, 7, 9, 12, 16 mod 37, then U(FC37) ∼= C4
p9n−1 × Cpn−1.

6. If q ≡ ±6 mod 37, then U(FC37) ∼= C9
p4n−1 × Cpn−1.

7. If q ≡ ±8 mod 37, then U(FC37) ∼= C3
p12n−1 × Cpn−1.

8. If q ≡ −10, 11 mod 37, then U(FC37) ∼= C6
p6n−1 × Cpn−1.

9. If q ≡ 10 mod 37, then U(FC37) ∼= C12
p3n−1 × Cpn−1.

10. If q ≡ ±14 mod 37, then U(FC37) ∼= C3
p12n−1 × Cpn−1.

Proof. The Group C37 is given by:

C37 =< r | r37 = 1 > .

(A) If p = 37, then |F | = q = (37)n and G ∼= C37 thus using Lemma 2.1, we get

U(FC37) ∼= C36n
37 × C(37)n−1.

(B) If p 6= 37, then p does not divides |C37|, therefore FC37 is semisimple over
F . Now using Wedderburn decomposition theorem and by Lemma 2.3, we have
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FC37
∼= ⊕r

i=1M(ni, Ki)), where for each i, ni ≥ 1 and K ′is are finite field extension
of F . Since group is abelian, therefore dimension constraint gives ni = 1, for every
i. It is clear that C37 has 37 conjugacy classes. Here xq

k
= x, for all x ∈ Z(FC37),

for any k ∈ N iff C qt

i = Ci, for every 1 ≤ i ≤ 37, where Ci denotes the conjugacy
class of C37. This holds if and only if 37|qs− 1 or 37|qs + 1. Now if k∗i =< yi >, for
all i , 1 ≤ i ≤ r , then xq

s
= x, for all x ∈ Z(FC37) if and only if yq

s

i = 1, which
satisfied if and only if [Ki : F ]|s, for all 1 ≤ i ≤ r. Therefore the least number t,

t = l.c.m.{[Ki : F ]|1 ≤ i ≤ r}.

Therefore all conjugacy classes of C37 are p-regular hence m = 37 as described in
introduction section. By observation we have following possibilities for q:

1. If q ≡ 1 mod 37, then t=1;

2. If q ≡ −1 mod 37, then t=2;

3. If q ≡ 2 mod 37, then t=36;

4. If q ≡ −2 mod 37, then t=36;

5. If q ≡ 3 mod 37, then t=18;

6. If q ≡ −3 mod 37, then t=36;

7. If q ≡ 4 mod 37, then t=18;

8. If q ≡ −4 mod 37, then t=9;

9. If q ≡ 5 mod 37, then t=36;

10. If q ≡ −5 mod 37, then t=36;



The Structure of the Unit Group of a Group Algebra of a Group of Order 37 89

11. If q ≡ 6 mod 37, then t=4;

12. If q ≡ −6 mod 37, then t=9;

13. If q ≡ 7 mod 37, then t=9;

14. If q ≡ −7 mod 37, then t=18;

15. If q ≡ 8 mod 37, then t=12;

16. If q ≡ −8 mod 37, then t=12;

17. If q ≡ 9 mod 37, then t=9;

18. If q ≡ −9 mod 37, then t=18;

19. If q ≡ 10 mod 37, then t=3;

20. If q ≡ −10 mod 37, then t=6;

21. If q ≡ 11 mod 37, then t=6;

22. If q ≡ −11 mod 37, then t=36;

23. If q ≡ 12 mod 37, then t=9;

24. If q ≡ −12 mod 37, then t=18;
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25. If q ≡ 13 mod 37, then t=18;

26. If q ≡ −13 mod 37, then t=36;

27. If q ≡ 14 mod 37, then t=12;

28. If q ≡ −14 mod 37, then t=12;

29. If q ≡ 15 mod 37, then t=36;

30. If q ≡ −15 mod 37, then t=36;

31. If q ≡ 16 mod 37, then t=9;

32. If q ≡ −16 mod 37, then t=18;

33. If q ≡ 17 mod 37, then t=36;

34. If q ≡ −17 mod 37, then t=36;

35. If q ≡ 18 mod 37, then t=36;

36. If q ≡ −18 mod 37, then t=36;

Now we will find T and the number of p-regular F− conjugacy classes denoted by
c. Using Lemma 2.2, we have dimF (Z(FC37)) = 37, therefore

∑r
i=1[Ki : F ] = 37

and it gives the following cases:

1. If q ≡ 1mod 37, then T={1} mod 37. Thus p− regular F− conjugacy classes
are the conjugacy classes of C37 and c=37. Hence FC37

∼= F 37.
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2. If q ≡ −1 mod 37, then T={−1, 1} mod 37. Thus p− regular F− conjugacy
classes are {1}, {r±1}, {r±2}, {r±3}, {r±4}, {r±5}, {r±6}, {r±7}, {r±8}, {r±9},
{r±10}, {r±11}, {r±12}, {r±13}, {r±14}, {r±15}, {r±16}, {r±17}, {r±18}. and c =
19. Hence, if Fk denotes the finite field of order qk, then FC37

∼= F 18
2 ⊕ F .

3. If q ≡ 2 mod 37, then T= {j | 1 ≤ j ≤ 36, j ∈ N} mod 37. Thus p− regular
F−conjugacy classes are {1}, {r±i, 1 ≤ i ≤ 18} and c = 2. Hence FC37

∼=
F36 ⊕ F .

4. If q ≡ −2 mod 37, then T= {j | 1 ≤ j ≤ 36, j ∈ N}mod 37. Thus p− regular
F−conjugacy classes are {1}, {r±i, 1 ≤ i ≤ 18} and c = 2. Hence FC37

∼=
F36 ⊕ F .

5. If q ≡ 3mod 37, then T= {1, 3, 4, 7, 9, 10, 11, 12, 16, 21, 25, 26, 27, 28, 30, 33, 34,
36}mod 37. Thus p− regular F− conjugacy classes are {1}, {r±1, r±3, r±4, r±7,
r±9, r±10, r±11, r±12, r±16, }, {r±2, r±6, r±8, r±14, r±18, r±5, r±13, r±15, r±17} and
c = 3. Hence FC37

∼= F 2
18 ⊕ F .

6. If q ≡ −3 mod 37, then T= {j | 1 ≤ j ≤ 36, j ∈ N}mod 37. Thus p− regular
F−conjugacy classes are {1}, {r±i, 1 ≤ i ≤ 18}, and c = 2. Hence FC37

∼=
F36 ⊕ F .

7. If q ≡ 4mod 37, then T= {1, 3, 4, 7, 9, 10, 11, 12, 16, 21, 25, 26, 27, 28, 30, 33, 34,
36}mod 37. Thus p− regular F− conjugacy classes are {1}, {r±1, r±3, r±4, r±7,
r±9, r±10, r±11, r±12, r±16, }, {r±2, r±6, r±8, r±14, r±18, r±5, r±13, r±15, r±17} and
c = 3. Hence FC37

∼= F 2
18 ⊕ F .

8. If q ≡ −4 mod 37, then T={1, 7, 9, 10, 12, 16, 26, 33, 34}mod 37. Thus p− reg-
ular F− conjugacy classes are {1}, {r, r7, r9, r−17, r10, r12, r16, r−11, r−4, r−3},
{r2, r14, r18, r−17, r−13, r−5, r15, r−8, r−6, }, {r3, r−16, r−10, r−7, r−1, r11, r4, r−12,
r−9}, {r5, r−2, r8, r13, r−14, r6, r−18, r17, r−15} and c = 5. Hence FC37

∼= F 4
9 ⊕

F .

9. If q ≡ 5 mod 37, then T= {j | 1 ≤ j ≤ 36, j ∈ N}mod 37. Thus p− regular
F−conjugacy classes are {1}, {r±i, 1 ≤ i ≤ 18} and c = 2. Hence FC37

∼=
F36 ⊕ F .

10. If q ≡ −5 mod 37, then T= {j | 1 ≤ j ≤ 36, j ∈ N}mod 37. Thus p− regular
F−conjugacy classes are {1}, {r±i, 1 ≤ i ≤ 18} and c = 2. Hence FC37

∼=
F36 ⊕ F .
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11. If q ≡ 6 mod 37, then T={1, 6, 31, 36}mod 37. Thus p−regular F−conjugacy
classes are {1},{r±1, r±6}, {r±2, r±12}, {r±3, r±18}, {r±4, r±13}, {r±5, r±7}, {r±8,
r±11}, {r±9, r±17}, {r±10, r±14}, {r±15, r±16} and c = 10. Hence FC37

∼= F 9
4 ⊕

F .

12. If q ≡ −6 mod 37, then T={1, 7, 9, 10, 12, 16, 26, 33, 34}mod 37. Thus p− reg-
ular F− conjugacy classes are {1}, {r, r7, r9, r−17, r10, r12, r16, r−11, r−4, r−3}, {r2,
r14, r18, r−17, r−13, r−5, r15, r−8, r−6, }, {r3, r−16, r−10, r−7, r−1, r11, r4, r−12, r−9},
{r5, r−2, r8, r13, r−14, r6, r−18, r17, r−15} and c = 5. Hence FC37

∼= F 4
9 ⊕ F .

13. If q ≡ 7 mod 37, then T={1, 7, 9, 10, 12, 16, 26, 33, 34}mod 37. Thus p− regu-
lar F− conjugacy classes are {1}, {r, r7, r9, r−17, r10, r12, r16, r−11, r−4, r−3}, {r2,
r14, r18, r−17, r−13, r−5, r15, r−8, r−6, }, {r3, r−16, r−10, r−7, r−1, r11, r4, r−12, r−9},
{r5, r−2, r8, r13, r−14, r6, r−18, r17, r−15} and c = 5. Hence FC37

∼= F 4
9 ⊕ F .

14. If q ≡−7mod 37, then T={1, 2, 3, 5, 6, 7, 11, 12, 13, 17, 21, 24, 26, 27, 28, 30, 31,
33}mod 37. Thus p−regular F−conjugacy classes are {1}, {r, r2, r3, r−4, r5, r±6,
r±7, r−9, r−10, r±11, r12, r±13, r−16, r17}, {r−1, r−2, r−3, r4, r−5, r±8, r9, r10, r−12,
r±14, r±15, r16, r−17, r±18} and c = 3. Hence FC37

∼= F 2
18 ⊕ F .

15. If q ≡ 8mod 37, then T={1, 6, 8, 10, 11, 14, 23, 26, 27, 29, 31, 36}mod 37. Thus
p− regular F− conjugacy classes are {1}, {r±1, r±6, r±8, r±10, r±11, r±14}, {r±2,
r±9, r±12, r±15, r±16, r±17}, {r±3, r±4, r±5, r±7, r±13, r±18} and c = 4. Hence
FC37

∼= F 3
12 ⊕ F .

16. If q ≡ −8 mod 37, then T={1, 6, 8, 10, 11, 14, 23, 26, 27, 29, 31, 36} mod 37.
Thus p− regular F− conjugacy classes are {1}, {r±1, r±6, r±8, r±10, r±11, r±14},
{r±2, r±9, r±12, r±15, r±16, r±17}, {r±3, r±4, r±5, r±7, r±13, r±18} and c = 4.
Hence FC37

∼= F 3
12 ⊕ F .

17. If q ≡ 9 mod 37, then T={1, 7, 9, 10, 12, 16, 26, 33, 34}mod 37. Thus p− regu-
lar F− conjugacy classes are {1}, {r, r7, r9, r−17, r10, r12, r16, r−11, r−4, r−3}, {r2,
r14, r18, r−17, r−13, r−5, r15, r−8, r−6, }, {r3, r−16, r−10, r−7, r−1, r11, r4, r−12, r−9},
{r5, r−2, r8, r13, r−14, r6, r−18, r17, r−15} and c = 5. Hence FC37

∼= F 4
9 ⊕ F .

18. If q ≡ −9 mod 37, then T={1, 2, 3, 5, 6, 7, 11, 12, 13, 17, 21, 24, 26, 27, 28, 30,
31, 33} mod 37. Thus p−regular F−conjugacy classes are {1}, {r, r2, r3, r−4,
r5, r±6, r±7, r−9, r−10, r±11, r12, r±13, r−16, r17}, {r−1, r−2, r−3, r4, r−5, r±8, r9, r10,
r−12, r±14, r±15, r16, r−17, r±18} and c = 3. Hence FC37

∼= F 2
18 ⊕ F .
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19. If q ≡ 10 mod 37, then T={1, 10, 26} mod 37. Thus p−regular F− conjugacy
classes are {1}, {r, r10, r−11}, {r2, r−17, r15}, {r3, r−7, r4}, {r5, r13, r−18}, {r6, r−14,
r8}, {r7, r−4, r−3}, {r9, r16, r12}, {r11, r−1, r−10}, {r14, r−8, r−6}, {r17, r−15, r−2},
{r18, r−5, r−13}, {r−16, r−12, r−9} and c = 13. Hence FC37

∼= F 12
3 ⊕ F .

20. If q ≡ −10 mod 37, then T={1, 10, 11, 26, 27, 36} mod 37. Thus p− regular
F− conjugacy classes are {1}, {r±1, r±10, r±11, }, {r±2, r±15, r±17}, {r±3, r±4, r±7},
{r±5, r±13, r±18, }, {r±6, r±8, r±14}, {r±9, r±12, r±16} and c = 7. Hence FC37

∼=
F 6
6 ⊕ F .

21. If q ≡ 11 mod 37, then T={1, 10, 11, 26, 27, 36} mod 37. Thus p− regular F−
conjugacy classes are {1}, {r±1, r±10, r±11, }, {r±2, r±15, r±17}, {r±3, r±4, r±7},
{r±5, r±13, r±18, }, {r±6, r±8, r±14}, {r±9, r±12, r±16} and c = 7. Hence FC37

∼=
F 6
6 ⊕ F .

22. If q ≡ −11 mod 37, then T= {j | 1 ≤ j ≤ 36, j ∈ N}mod 37. Thus p−
regular F−conjugacy classes are {1}, {r±i, 1 ≤ i ≤ 18} and c = 2. Hence
FC37

∼= F36 ⊕ F .

23. If q ≡ 12 mod 37, T={1, 7, 9, 10, 12, 16, 26, 33, 34} mod 37. Thus p− regular
F− conjugacy classes are {1}, {r, r7, r9, r−17, r10, r12, r16, r−11, r−4, r−3}, {r2, r14,
r18, r−17, r−13, r−5, r15, r−8, r−6, }, {r3, r−16, r−10, r−7, r−1, r11, r4, r−12, r−9}, {r5,
r−2, r8, r13, r−14, r6, r−18, r17, r−15} and c = 5. Hence FC37

∼= F 4
9 ⊕ F .

24. If q ≡−12mod 37, then T={1, 2, 3, 5, 6, 7, 11, 12, 13, 17, 21, 24, 26, 27, 28, 30, 31,
33}mod 37. Thus p−regular F−conjugacy classes are {1}, {r, r2, r3, r−4, r5, r±6,
r±7, r−9, r−10, r±11, r12, r±13, r−16, r17}, {r−1, r−2, r−3, r4, r−5, r±8, r9, r10, r−12,
r±14, r±15, r16, r−17, r±18} and c = 3. Hence FC37

∼= F 2
18 ⊕ F .

25. If q ≡ 13mod 37, then T={1, 2, 3, 5, 6, 7, 11, 12, 13, 17, 21, 24, 26, 27, 28, 30, 31, 33}
mod 37. Thus p−regular F−conjugacy classes are {1}, {r, r2, r3, r−4, r5, r±6, r±7,
r−9, r−10, r±11, r12, r±13, r−16, r17}, {r−1, r−2, r−3, r4, r−5, r±8, r9, r10, r−12, r±14,
r±15, r16, r−17, r±18} and c = 3. Hence FC37

∼= F 2
18 ⊕ F .

26. If q ≡ −13 mod 37, then T= {j | 1 ≤ j ≤ 36, j ∈ N}mod 37. Thus p−
regular F−conjugacy classes are {1}, {r±i, 1 ≤ i ≤ 18} and c = 2. Hence
FC37

∼= F36 ⊕ F .

27. If q ≡ 14 mod 37, then T={1, 6, 8, 10, 11, 14, 23, 26, 27, 29, 31, 36} mod 37.
Thus p− regular F− conjugacy classes are {1}, {r±1, r±6, r±8, r±10, r±11, r±14},
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{r±2, r±9, r±12, r±15, r±16, r±17}, {r±3, r±4, r±5, r±7, r±13, r±18} and c = 4.
Hence FC37

∼= F 3
12 ⊕ F .

28. If q ≡ −14 mod 37, then T={1, 6, 8, 10, 11, 14, 23, 26, 27, 29, 31, 36} mod 37.
Thus p− regular F− conjugacy classes are {1}, {r±1, r±6, r±8, r±10, r±11, r±14},
{r±2, r±9, r±12, r±15, r±16, r±17}, {r±3, r±4, r±5, r±7, r±13, r±18} and c = 4.
Hence FC37

∼= F 3
12 ⊕ F .

29. If q ≡ 15 mod 37, then T= {j | 1 ≤ j ≤ 36, j ∈ N}mod 37. Thus p− regular
F−conjugacy classes are {1}, {r±i, 1 ≤ i ≤ 18} and c = 2. Hence FC37

∼=
F36 ⊕ F .

30. If q ≡ −15 mod 37, then T= {j | 1 ≤ j ≤ 36, j ∈ N}mod 37. Thus p−
regular F−conjugacy classes are {1}, {r±i, 1 ≤ i ≤ 18}, and c = 2. Hence
FC37

∼= F36 ⊕ F .

31. If q ≡ 16 mod 37, then T={1, 7, 9, 10, 12, 16, 26, 33, 34} mod 37. Thus p− reg-
ular F− conjugacy classes are {1}, {r, r7, r9, r−17, r10, r12, r16, r−11, r−4, r−3},
{r2, r14, r18, r−17, r−13, r−5, r15, r−8, r−6, }, {r3, r−16, r−10, r−7, r−1, r11, r4, r−12,
r−9}, {r5, r−2, r8, r13, r−14, r6, r−18, r17, r−15} and c = 5. Hence FC37

∼= F 4
9 ⊕

F .

32. If q ≡ −16mod 37, then T={1, 2, 3, 5, 6, 7, 11, 12, 13, 17, 21, 24, 26, 27, 28, 30, 31,
33}mod 37. Thus p−regular F−conjugacy classes are {1}, {r, r2, r3, r−4, r5, r±6,
r±7, r−9, r−10, r±11, r12, r±13, r−16, r17}, {r−1, r−2, r−3, r4, r−5, r±8, r9, r10, r−12,
r±14, r±15, r16, r−17, r±18} and c = 3. Hence FC37

∼= F 2
18 ⊕ F .

33. If q ≡ 17 mod 37, then T= {j | 1 ≤ j ≤ 36, j ∈ N}mod 37. Thus p− regular
F−conjugacy classes are {1}, {r±i, 1 ≤ i ≤ 18} and c = 2. Hence FC37

∼=
F36 ⊕ F .

34. If q ≡ −17 mod 37, then T= {j | 1 ≤ j ≤ 36, j ∈ N}mod 37. Thus p−
regular F−conjugacy classes are {1}, {r±i, 1 ≤ i ≤ 18} and c = 2. Hence
FC37

∼= F36 ⊕ F .

35. If q ≡ 18 mod 37, then T= {j | 1 ≤ j ≤ 36, j ∈ N}mod 37. Thus p− regular
F−conjugacy classes are {1}, {r±i, 1 ≤ i ≤ 18} and c = 2. Hence FC37

∼=
F36 ⊕ F .

36. If q ≡ −18 mod 37, then T= {j | 1 ≤ j ≤ 36, j ∈ N}mod 37. Thus p−
regular F−conjugacy classes are {1}, {r±i, 1 ≤ i ≤ 18} and c = 2. Hence
FC37

∼= F36 ⊕ F .
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