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1. Introduction
In 1995, Murali Krishna Rao [9, 14] introduced the notion of a Γ− semiring as

a generalization of Γ− ring, ternary semiring and semiring. The set of all negative
integers Z− is not a semiring with respect to usual addition and multiplication
but Z− forms a Γ− semiring where Γ = Z. Historically semiring first appear im-
plicitly in Dedekind and later in Macaulay, Neither and Lorenzen in connection
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with the study of a ring. However, semirings first appear explicitly in Vandiver,
also in connection with the axiomatization of arithmetic of natural numbers. The
concept of semiring was first introduced by Vandiver [20] in 1934. Indeed the first
Mathematical structure we encounter the set of all non-negative integers is a semir-
ing. The theory of semirings and ordered semiring have wide applications in linear
and combinatorial optimization problems such as path problems, transformation
and assignment problems, matching problems and eigenvalue value problems. The
theory of ordered semiring is very popular since it has wide applications in the
theory of computer science, optimization theory and theoretical physics. Semirings
are useful in the areas of theoretical computer science as well as in the solutions
of graph theory in particular for studying automata, coding theory and formal
languages. Semiring theory has many applications in other branches. As a gener-
alization of ring, the notion of a Γ− ring was introduced by Nobusawa [7] in 1964.
The important reason for the development of Γ− semiring is a generalization of
results of the rings, Γ− rings, semirings, semi groups and ternary semirings. M. M.
K Rao and Venkateswarlu [12] introduce the notion Γ− incline, zero divisor free
Γ− semiring and field Γ− semiring and study properties of regular Γ− incline and
field Γ− semiring.

Since a semiring which is both centreless and entire is an information algebra.
Such semirings are very important applications in graph theory and the theory of
discrete event dynamical systems [2]. Also the family of all congruence relations
on a semiring R is a complete lattice with meets and joins defined as follows: (1)
If Y is a non empty family of congruence relations on R then ∧Y is the congruence
relation on R defined by r(∧y)r′ if and only if rρr′ for all relation ρ in Y. (2) If Y is a
non empty family of congruence relations on R then ∨Y is the congruence relation
on R defined by r(∨y)r′ if and only if there exist elements r = s0, s1, ....sn = r′ of R
and elements ρ1, ....ρn of Y such that si−1ρisi for all 1 6 i 6 n. Indeed, by an easy
modification of a result of Funayama and Nakayama, The set of all congruences is
in fact a frame [19], and hence a semiring [1]. Also a recent interesting applications
of idempotent analysis has been in the study of amoebas as part of an emerging
area known as ”tropical algebraic geometry”, which has important applications in
string theory and other applications in physics [6]. So, it is worth looking at this
idea in the more general context of Γ− semiring.

As a continuation of previous papers ”Some conditions on Γ− semirings” [15]
and ”Ideals of a Bourne factor Γ− semirings” [17], here, we study the consequences
of imposing more condition like centreless, semi subtractive, zero divisor, division
Γ− semiring, additively and multiplicatively cancellative Γ− semiring. Further,
we study maximal and minimal ideals by imposing the cancellative of strongly



More Conditions on a Γ Semiring ... 73

multiplicative Γ− idempotent and strong identity of Γ− semiring. Finally, we
characterize some results regarding Γ− field, Γ− semi field, plain and division Γ−
semiring of Izuka and Bourne factor Γ− semiring.

2. Preliminaries
Here we give some basic definitions required for the development of this paper.

Throughout this paper, R represents a Γ− semiring.

Definition 2.1. [7] Let R and Γ be two additive abelian groups. Then R is called
a Γ− ring if there exists a mapping R × Γ × R → R written as (xαy) → xαy for
all x, y, z ∈ R and α, β ∈ Γ satisfying the following conditions:

(i) xα(y + z) = xαy + xαz

(ii) (x+ y)αz = xαz + yαz

(iii) x(α + β)z = xαz + xβz

(iv) (xαy)βz = xα(yβz).

Definition 2.2. [9] Let R and Γ be two additive commutative semi group. Then R
is called a Γ− semiring if there exists a mapping R × Γ× R→ R denoted by xαy
for all x, y ∈ R and α ∈ Γ satisfying the following conditions:

(i) (x+ y)αz = xαz + yαz

(ii) x(α + β)z = xαz + xβz

(iii) xα(y + z) = xαy + xαz

(iv) (xαy)βz = xα(yβz) for all x, y, z ∈ R and α, β ∈ Γ.

Definition 2.3. [15] A Γ− semiring R is said to have a zero element if 0γx = 0 =
xγ0 and x+ 0 = x = 0 + x for all x ∈ R and γ ∈ Γ.

Definition 2.4. [15] A Γ− semiring R is said to have an identity element if for
all x ∈ R there exists α ∈ Γ such that 1αx = x = xα1.

Definition 2.5. A Γ− semiring R is said to have a strong identity element if for
all x ∈ R, 1αx = x = xα1, for all α ∈ Γ.

Definition 2.6. [9] A Γ− semiring R is said to be commutative if xγy = yγx for
all x, y ∈ R and for all γ ∈ Γ.

Definition 2.7. [17] A Γ− semiring R is centreless if and only if x+y = 0 implies
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that x = y = 0.

Definition 2.8. [17] Let R be a Γ− semiring. Then R is said to be right additively
cancellable if and only if for each x ∈ R, x + z = y + z implies that x = y. Left
additively cancellable elements are similarly defined. An element of R is additively
cancellable if and only if it is both left and right additively cancellable. We will
denote the set of all additively cancellable elements by AC(ΓR).

Definition 2.9. [12] A Γ− semiring R with zero element is said to satisfy can-
cellation law if for all a, b, c ∈ R and α ∈ Γ we have that a 6= 0, aαb = aαc and
bαa = cαa implies b = c.

We will denote the set of all Γ− multiplicatively cancellable elements by
MC(ΓR).

Definition 2.10. If R is both additive and multiplicatively cancellative then R is
cancellative. We denote the set of all cancellative elements by C(ΓR).

Definition 2.11. [17] A non empty subset I of R is said to be left (right) ideal of
R if I is sub semi group of (R,+) and xαy ∈ I(yαx ∈ I) for all y ∈ I, x ∈ R and
α ∈ Γ.

If R is a Γ− semiring with zero element then it is easy to verify that every ideal
of R has zero element.

Definition 2.12. [17] If I is both left and right ideal of R, then I is known to be
an ideal of R.

Definition 2.13. [8] Let R be a Γ− ring with unity. An element x ∈ R is called
unity of R if it has a multiplicative inverse in R. If every non zero element of R is
a unity then we say R is division Γ− ring.

Remark 2.14. All through here, R will signify with ”0” and ”1” as zero and
identity element except if in any case expressed.

3. More Conditions on a Γ− Semiring

”Let x be an element of a Γ− semiring R. An element y of R is an additive
inverse of x if and only if x+y = 0 = y+x. If x has an additive inverse, then such an
inverse is unique. For if x+y = 0 = x+y′ then y = y+0 = y+x+y′ = 0+y′ = y′.
We will denote the additive inverse of an element x, if it exists, by −x. Let us
denote the set of all elements of R having additive inverse by A(ΓR). This set is
non empty since 0 ∈ A(ΓR), with −0 = 0. Moreover, if x + y ∈ A(ΓR) then both
x and y belong to A(ΓR). Clearly R is a Γ− ring if and only if R = A(ΓR) and R
is centreless if and only if A(ΓR) = 0.

We now turn from additive inverse to multiplicative inverse.
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An element x of a Γ− semiring R is unit if and only if there exists an element
y of R satisfying xαy = 1 = yαx for all α ∈ Γ. The element y of R is called the
inverse of x in R. We will denote the inverse of an element x, if it exist by x−1. It
is straightforward to see that if x and y are units of R then (xαy)−1 = y−1α−1x−1.
Thus in particular (x−1)−1 = x. Let us denote the set of all elements of R having
units by U(ΓR). This set is non empty since 1 ∈ U(ΓR) and is not all of R” [17].

Definition 3.1. [10] A Γ− semiring R is called a division Γ− semiring if each
non zero element of R has a multiplicative inverse.

Example 3.2. Let N be the set of positive integers and R = (N,+) be the semi-
group of positive integers and let Γ = (2N,+) be the semigroup of even positive
integers. Then R is a multiplicatively cancellative Γ− semiring, but is not division
Γ− semiring. For this U(ΓR) = {1}.
Theorem 3.3. Let R be a division Γ− semiring with a strong identity. Then R is
cancellative if and only if AC(ΓR) 6= {0}.
Proof. Let R be additively cancellative Γ− semiring then AC(ΓR) = R 6= {0}.
Conversely, let 0 6= r ∈ AC(ΓR) and x, y, z ∈ R be such that x + y = x + z. In
case x = 0 then y = z. Otherwise, multiply rαx−1 both side of the equation for
some r, x ∈ R and α ∈ Γ. Therefore (rαx−1)β(x+ y) = (rαx−1)β(x+ z), α, β ∈ Γ
so rα(x−1βx) + rα(x−1βy) = rα(x−1βx) + rα(x−1βz) thus rα1 + rα(x−1βy) =
rα1 + rα(x−1βz) hence r + rα(x−1βy) = r + rα(x−1βz) gives that rα(x−1βy) =
rα(x−1βz) (by left cancellation law). Now, multiply both side of the equation on the
left by xγr−1, we get (xγr−1)δ[rα(x−1βy)] = (xγr−1)δ[rα(x−1βz)], γ, δ ∈ Γ there-
fore xγ(r−1δr)α(x−1βy) = xγ(r−1δr)α(x−1βz) so (xγ1)α(x−1βy) = (xγ1)α(x−1βz)
thus (xαx−1)βy = (xαx−1)βz implies that 1βy = 1βz. Hence y = z.

Definition 3.4. [13] A Γ− semiring R is said to be semi subtractive Γ− semiring
R if for every x, y ∈ R there exists r ∈ R such that r + x = y or r + y = x.

Definition 3.5. [13] Let R be a Γ− semiring. An element x ∈ R is said to be
zeroid if there exists r ∈ R such that x + r = r or r + x = r. Set of all zeroids is
denoted by Z(R). If Z(R) 6= R, then it is non zeroid.

Every additive idempotent element of Γ− semiring R is zeroid of R.

A Γ− semiring R is plain if and only if Z(R) = {0}. In case R is cancellative,
then it is definitely plain. However, the following result provides partial converse
of this fact.

Theorem 3.6. Let R be a semi subtractive Γ− semiring. Then R is cancellative
if and only if it is plain.
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Theorem 3.7. Let R is a division Γ− semiring. Then R is either centreless or
division Γ− ring.
Proof. Let R be not centreless. Then there exists 0 6= x ∈ R having an additive
inverse (−x). Let 0 6= z ∈ R and α, β ∈ Γ then z + (zαx−1)β(−x) = zα1 +
(zαx−1)β(−x) = zα(x−1βx)+(zαx−1)β(−x) = (zαx−1)β[x+(−x)] = (zαx−1)β0 =
0. This implies that z has an additive inverse. Then (R,+) is a group. So, R is a
Γ− ring, at that point R be a division Γ− ring.

Theorem 3.8. Let R be a multiplicatively cancellative Γ− semiring. In case, an
element having finite multiplicative order other than 1, then R is Γ− ring.
Proof. Let 1 6= x ∈ R satisfying (xα)n−1x = 1, α ∈ Γ where

(xα)n−1 = (xα)(xα) (n−1) times... (xα). Let y = 1+x+(xα)x+(xα)2x+...+(xα)n−2x.
Then xαy = xα[1 +x+ (xα)x+ (xα)2x+ ...+ (xα)n−2x] = xα1 + (xα)x+ (xα)2x+
... + (xα)n−2x + (xα)n−1x = 1 + x + (xα)x + (xα)2x + ... + (xα)n−2x = y. This
suggests that xαy = 1αy. In any case, x 6= 1, hence y = 0 so 1 ∈ A(ΓR), showing
that A(ΓR) = R. Hence R is Γ− ring.

Definition 3.9. [17] A non zero element x in a Γ− semiring R is a left zero divisor
if and only if there exists a non zero element y ∈ R and α ∈ Γ satisfying xαy = 0.
It is a right zero divisor if and only if there exists non zero y ∈ R and α ∈ Γ
satisfying yαx = 0. It is a zero divisor if and only if it is both left and right zero
divisor. A Γ− semiring R having no Γ− zero divisor is Γ− entire.

Definition 3.10. A Γ− semiring which is both centreless and Γ− entire is an
information algebra.

Theorem 3.11. Let R be a cancellative semi subtractive Γ− semiring and x be
any element of R. Then x is not a zero divisor but multiplicatively cancellative.
Proof. Let x ∈ R such that x is not a zero divisor. Let y, z ∈ R and α ∈ Γ be
such that yαx = zαx. Since R is semi subtractive Γ− semiring, therefore there
exists an element r ∈ R such that y = z+ r or z = y+ r. Let y = z+ r. Therefore,
zαx+0 = zαx = yαx = (z+r)αx = zαx+rαx. Since R is cancellative, this implies
that rαx = 0. Once more, since x is certainly not a zero divisor, therefore we should
have r = 0. So y = z, showing that x is right multiplicatively cancellative. An
overall affirmation shows that x is also left multiplicative cancellative.

Definition 3.12. [17] An ideal I of a Γ− semiring R is called k-ideal if for x, y ∈
R, x+ y ∈ I and y ∈ I implies that x ∈ I.

Definition 3.13. [17] If R has no non-zero left k-ideal then R is called left rigid.
Right rigid is similarly defined.

The following Corollary is proved in [17].
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Corollary 3.14. [17] Let R be a Γ− semiring. Then R is left rigid if and only if for
each 0 6= r ∈ R there exist elements x, y ∈ R and α ∈ Γ satisfying xαr + 1 = yαr.

Theorem 3.15. Let R be a cancellative rigid semi subtractive Γ− semiring with
strong identity. Then R is division Γ− semiring.
Proof. Let 0 6= r ∈ R. By Corollary 3.14, there exist elements x, y ∈ R and
α, β ∈ Γ such that xαr + 1 = yαr. Since R is semi subtractive Γ− semiring,
so z ∈ R such that x = y + z or y = x + z. Now, in case x = y + z then
xαr = yαr+ zαr = xαr+ 1 + zαr implies that 0 = 1 + zαr, since R is cancellative.
So 1 ∈ A(ΓR). Hence R is a Γ− ring. Since each left ideal of a Γ− ring is k-ideal,
so we assume that R has a no non-zero remaining left ideal and it is satisfactory to
exhibit that R is a division Γ− ring. Let y = x+z then xαr+zαr = yαr = xαr+1
implies that zαr = 1 implies that z 6= 0. Therefore in a similar way either R is
a Γ− ring or there exists an element z′ ∈ R and β ∈ Γ satisfying z′βz = 1. But
z′ = z′β1 = z′β(zαr) = (z′βz)αr = 1αr = r, for all α ∈ Γ implies that r ∈ U(ΓR)
with z = r−1. In this way, every non zero element of R is unit. Hence R is division
Γ− semiring.

Theorem 3.16. Let R be a division Γ− semiring. Then {0} and R are the only
ideals of R.

Definition 3.17. [15] A non empty subset S of a Γ− semiring R is said to be a
sub Γ− semiring of R if (S,+) is a sub semi group of (R,+) and xγy ∈ S for all
x, y ∈ S and γ ∈ Γ.

Theorem 3.18. Let R be a semi subtractive Γ− semiring. If I and J are sub Γ−
semiring of R such that IΓI ⊆ A(ΓR) or JΓJ ⊆ A(ΓR).
Proof. Let IΓI * A(ΓR). Then x, x′ ∈ I and α ∈ Γ such that xαx′ /∈ A(ΓR). Let
y, y′ ∈ J . If r ∈ R such that x+ r = y. Then x′αx+ x′αr = x′αy ∈ IΓJ ⊆ A(ΓR).
Therefore x′αx ∈ A(ΓR). Which is inconsistency. Hence r ∈ R such that x = y+r,
since R is semi subtractive. But yαy′ + rαy′ = xαy′ ∈ IΓJ ⊆ A(ΓR). Thus
yαy′ ∈ A(ΓR). Hence JΓJ ⊆ A(ΓR).

Definition 3.19. [15] A Γ− semiring R with zero element is simple if and only if
x+ 1 = 1 = 1 + x for all x ∈ R.

Clearly simple Γ− semiring are additive idempotent but converse is not true.

Theorem 3.20. Let R be a simple Γ− semiring. Then U(ΓR) = {1}.
Proof. Let x ∈ U(ΓR) then y ∈ R,α ∈ Γ such that xαy = 1. Hence by Lemma
3.2 (i) [15], we have x = x+ xαy = x+ 1 = 1.



78 South East Asian J. of Mathematics and Mathematical Sciences

4. Maximal and Minimal Ideals of a Γ− Semiring

In this section, we study the consequences of imposing some other conditions
on maximal and minimal ideals.

Definition 4.1. [16] A proper ideal M of a Γ− semiring R is said to be maximal
ideal if there does not exist any other proper ideal of R containing M properly.

Theorem 4.2. Let R be a Γ− semiring and I be a maximal ideal of R. Then each
ideal of R is contained in I.
Proof. It is straightforward.

Theorem 4.3. Let R be a Γ− semiring with strong identity and I be one sided
maximal ideal of R. Then for any element x ∈ R, x ∈ U(ΓR) if and only if x /∈ I.
Proof. Let x ∈ U(ΓR) and I be the maximal left ideal of R. If x ∈ I then
for all α ∈ Γ, x−1αx ∈ I. This implies that 1 ∈ I, which is a contradiction.
Consequently x /∈ I. Likewise x /∈ I for any maximal right ideal I. Conversely, let
x /∈ I ⊆ R. By Theorem 4.2, RΓx is not a left ideal of R. Therefore RΓx = R.
Consequently xΓR = R. Thus there exist elements y, z ∈ R and β, γ ∈ Γ such
that yβx = 1 = xγz. In any case y = yβ1 = yβ(xγz) = (yβx)γz = 1γz = z thus
x ∈ U(ΓR) and y = x−1.

Definition 4.4. [11] Let R be a Γ− semiring. An element x of a Γ− semiring
R is said to be strongly multiplicative Γ− idempotent if x = xγx for all γ ∈ Γ.
If every element of R is strongly multiplicative Γ− idempotent then R is called
strongly multiplicative Γ− idempotent.

Definition 4.5. [5] An ideal M of a Γ− semiring R is said to be minimal if and
only if it does not contain any ideal of R other than itself and 0.

Theorem 4.6. Let R be a Γ− semiring. Let K be a minimal left ideal of R and
x ∈ R,α ∈ Γ. Then KΓx is a left ideal of R which is either {0} or minimal.
Proof. It is obvious that, KΓx is a left ideal of R. Now, let KΓx 6= {0} be such
that Q ⊂ KΓx, where 0 6= Q is a left ideal of R. Let us define P = {r ∈ K|rαx ∈ Q
for all x ∈ Q,α ∈ Γ} then P is a left ideal of R and P ⊂ K and K 6= {0}, which is
inconsistency to the minimality of K. Hence KΓx must be minimal.

Theorem 4.7. Let R be a Γ− semiring. If K be a minimal left ideal of R such
that J ⊃ K, J is an ideal of R and J ′ be the sum of all minimal left ideals of R
contained in J. Then J ′ is an ideals of R.
Proof. Since J ′ be sum of all minimal left ideals of R contained in J. Then J ′ is
left ideal of R. Let x ∈ R,α ∈ Γ and K be a minimal left ideal of R contained in
J, then KΓx ⊆ J so by Theorem 4.6, KΓx ⊆ J ′. Consequently J ′Γx ⊆ J ′ for each
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x ∈ R. Thus J ′ is an ideal of R.

Theorem 4.8. Let R be a strongly multiplicative Γ− idempotent Γ− semiring and
K be a minimal left ideal of R. In case 0 6= e ∈ K and e be strongly multiplicative
Γ− idempotent. Then eΓK is a division Γ− semiring with multiplicative identity
e.
Proof. Clearly eΓK is additive commutative semi group. Let Γ be a additive
commutative semi group. Define a mapping ((eΓK)×Γ× (eΓK)→ (eΓK) defined
by [(eαx), β, (eγy)] → [(eαx)β(eγy)], for all (eαx), (eγy) ∈ eΓK, α, β, γ ∈ Γ.
Clearly eΓK is a Γ− semiring. Since KΓe is a non zero left ideal of R such that
KΓe ⊂ K. Therefore KΓe = K. Thus x = yαe for all x, y ∈ K and α ∈ Γ. Now,
since e is strongly multiplicative Γ− idempotent so, (eγx)βe = (eγ(yαe))βe =
(eγy)α(eβe) = (eγy)αe = eγ(yαe) = eγx, for all α, β, γ ∈ Γ. Similarly eβ(eγx) =
(eβe)γx = eγx for all β, γ ∈ Γ. This implies that (eγx)βe = eγx = eβ(eγx). Then
e is multiplicative identity of eΓK. Now, let 0 6= eαx ∈ eΓK then eαx = (eβe)αx =
eβ(eαx) ∈ KΓ(eαx) and so KΓ(eαx) is a non zero left ideal of R contained in K.
Thus K = KΓ(eαx) and so eΓK = eΓKΓ(eαx). In particular, there exists an
element k of K and γ, α, β ∈ Γ satisfying (eγk)β(eαx) = e. Since e ∈ K is strongly
Γ− idempotent so eβe ∈ eΓK that is e ∈ eΓK. Again, there exists an element
h of K and γ, δ, ρ ∈ Γ satisfying (eδh)ρ(eγk) = e therefore eδh = (eδh)ρe =
(eδh)ρ((eγk)β(eαx)) = ((eδh)ρ(eγk))β(eαx) = eβ(eαx) = (eβe)αx = eαx. Hence
eΓK is a division Γ− semiring.

5. Ideals of a Izuka and Bourne Factor Γ− Semirings

”An equivalence relation ρ defined on a Γ− semiring R satisfying the condition
that if rρAr

′ in R then (r + s)ρ(r′ + s′) and (rαs)ρ(r′αs′) for all r, s, r′, s′ ∈ R and
α ∈ Γ is called a Γ− congruence on the Γ− semiring R. For a proper ideal A of Γ−
semiring R the Γ− congruence on R, denoted by ρA defined as sρAs

′ if and only if
s + a1 = s′ + a2 for some a1, a2 ∈ A is called Bourne Γ− congruence on R defined
by the ideal A.

We denote the Bourne Γ− congruence (ρA) class of an element r of R by R/ρA or
simply R/A and denote the set of all such Γ− congruence classes of the Γ− semiring
R by R/ρA or simply R/A. It should be noted here that for any proper ideal A of R
and for any s ∈ R, s/A is not necessarily equal to s+A = {s+a : a ∈ A} but surely
contain it. For any proper ideal A of Γ− semiring R, if the Bourne Γ− congruence
(ρA), defined by A, is proper that is 0/A 6= R then R/A is a Γ− semiring with the
following operation: s/A+ s′/A = (s+ s′)/A and (s/A)α(s′/A) = (sαs′)/A for all
α ∈ Γ. We call this Γ− semiring the Bourne factor Γ− semiring of R” [17].

Remark 5.1. [14] For a proper ideal X of a Γ− semiring R, the Γ− congruence
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on R denoted by σx and defined as rσxr
′ if and only if r + x1 + z = r′ + x2 + z

for some x1, x2 ∈ X and for some z ∈ R is called Izuka Γ− congruence on R
defined by the ideal X. Now, we denote Izuka Γ− congruence class of an element
r of R by r[/]X and denote the set of all such Γ− congruence class of an element
of the Γ− semiring R by R[/]X. If the Izuka Γ− congruence σX , defined by X, is
proper i.e. 0[/]X 6= R then R[/]X is a Γ− semiring with the following operations:
r[/]X + r′[/]X = (r + r′)[/]X and (r[/]X)α(r′[/]X) = (rαr′)[/]X for all α ∈ Γ.
We call this Γ− semiring, the Izuka Γ− semiring of R by X.

We now state the following theorems regarding Izuka Γ− semiring and Bourne
factor Γ− semiring which are analogous to the corresponding Theorems in semir-
ings, proofs of which are easy and straightforward and so we omit the proofs.

Theorem 5.2. Let R be a Γ− semiring. In case J is an ideal of R such that
R 6= 0[/]J = K then the Γ− semirings R[/]K and R/K are plain.

Corollary 5.3. Let R be a Γ− semiring. In case R is non zeroid. Then R/Z(R)
is plain.

Theorem 5.4. Let R be a semi subtractive Γ− semiring and J be a k-ideal of R.
Then J ⊇ Z(R) if and only if R/J is cancellative.

Theorem 5.5. Let R be a cancellative Γ− semiring. Then R/J is cancellative for
each ideal J of R.

Definition 5.6. A commutative division Γ− semiring R is said to be a Γ− semi
field.

Definition 5.7. [11] A Γ− semigroup R is said to be Γ− group if it satisfy the
following
(i) If there exists 1 ∈ R and for each x ∈ R there exists α ∈ Γ such that
xα1 = 1αx = x.
(ii) If for each element 0 6= x ∈ R there exists y ∈ R,α ∈ Γ such that xαy = yαx =
1.

Definition 5.8. [11] A commutative Γ− ring R is said to be Γ− field if R is a Γ−
group.

Example 5.9. Let M be the set of all rational numbers and Γ = M be a commuta-
tive semi group with respect to usual addition. Define a mapping M×Γ×M →M
by xαy as usual multiplication for all x, y ∈M and α ∈ Γ then M is field Γ− semir-
ing.

Theorem 5.10. Let R be a multiplicatively cancellative, centreless and commu-
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tative Γ− semiring with strong identity having no non-trivial proper congruence
relation then either R = B = {0, 1} or R is a Γ− field.
Proof. In case R has only two elements, then either R = B or R is a Γ− field
Z/(2). Therefore, the result is obvious. So, let R have more than two elements.
Let R be multiplicatively cancellative and each element x ∈ R and α ∈ Γ define
a congruence relation ρx on R by rρxr

′ if and only if xαr = xαr′. This is trivial
congruence relation, if x is multiplicatively cancellable and proper if x 6= 0. Since
R has no non-trivial proper congruence relation, so it should be multiplicatively
cancellative. Therefore R \ {0} is a submonoid of R. Eventually, except that R is
centreless. Then R\{0} is closed under addition and multiplication. So, we have a
non-trivial proper congruence relation ρ on R described by the condition that xρy
if and only if x = y or x 6= 0 and y 6= 0. This is an inconsistency, thus R cannot be
centreless. At that point 0 ⊆ A(ΓR) and atleast one non zero element contained in
A(ΓR). In addition, A(ΓR) is an ideal of R. The congruence relation ≡A(ΓR) define
on R is not trivial and hence by assumption, it must be improper. Specifically,
1 ≡A(ΓR) 0 thus there exists an element y ∈ A(ΓR) satisfying 1 + y = 0. Therefore,
for any r ∈ R,α ∈ Γ we have r+yαr = 1αr+yαr = (1+y)αr = 0 so each element
of R has an additive inverse. Thus R is a Γ− ring. Again, if 0 6= x ∈ R and if
J = (x) is principal ideal of R generated by x then the congruence relation ≡J is
non trivial, thus it should be improper. Specifically, 1 ≡J 0 and so 1 ∈ J . Thus x
is a unit. Hence R is a Γ− field.

Corollary 5.11. [18] Let R be a Γ− semiring and P be any maximal ideal of R.
Then P is prime.

It is clear from Theorem 5.9 that a division Γ− semiring or Γ− semi field may
have proper non-trivial congruence relation. If ρ is a proper congruence relation
on a division Γ− semiring, then surely R/ρ is a Γ− semiring.

We now turn to considering the Bourne factor Γ− semirings.

Theorem 5.12. Let R be a commutative Γ− semiring. If I is maximal k-ideal of
R. Then R/I is Γ− semi field.
Proof. Let 0/I 6= x/I ∈ R/I. In case xαx ∈ I then by commutative property,
(x)Γ(x) ⊆ I so by Corollary 5.10, we have x ∈ I, which is contradiction to the
choice of x. Since xαx ∈ (x) for all α ∈ Γ. So I ⊂ I + (x). Hence by maximality
of I, we have R = I + (x). Consequently there exists an element y ∈ I, r ∈ R and
β ∈ Γ such that 1 = y + rβx. This implies that 1/I = (rβx)/I = (r/I)β(x/I).
Thus x/I ∈ U(Γ(R/I)), hence R/I is a Γ− semi field.

Theorem 5.13. Let R be a Γ− semiring with a strong identity. Then B is the
only finite Γ− semi field which is not a Γ− field.
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Proof. Let R 6= B be finite Γ− semi field. Let x ∈ R \ {0, 1}. Since R is finite,
then there exist positive integer h < k such that (xα)h−1x = (xα)k−1x, for all
α ∈ Γ. Since R is Γ− semi field, we have 1 = (xα)n−1x where n = k − h. Let
y = 1 + (xα)1 + (xα)x + (xα)2x + ... + (xα)n−2x. Then xαy = xα(1 + (xα)1 +
(xα)x + (xα)2x + ... + (xα)n−2x) = (xα)1 + (xα)x + (xα)2x + ... + (xα)n−1x =
(xα)1 + (xα)x+ (xα)2x+ ...+ (xα)n−2x+ 1 = 1 + (xα)1 + (xα)x+ (xα)2x+ ...+
(xα)n−2x = y. If y 6= 0 then x = xα(yβy−1) = (xαy)βy−1 = yβy−1 = 1, for all
β ∈ Γ, which is a contradiction as x ∈ R \ {0, 1}. Therefore, we must have y = 0.
So 1 + (xα)1 + (xα)x + (xα)2x + ... + (xα)n−2x = 0. Which shows that 1 has an
additive inverse z = (xα)1 + (xα)x + (xα)2x + ... + (xα)n−2x. Therefore for any
r ∈ R,α ∈ Γ, we have r + rαz = rα1 + rαz = rα(1 + z) = rα0 = 0 for all α ∈ Γ.
So each element of R has an additive inverse, proving this R is Γ− field.
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