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Abstract: The quinary quintic non-homogeneous diophantine equation repre-
sented by (z* —y*) = 125(2% —w?)p? is analyzed for its patterns of non-zero distinct
integral solutions and some properties among the solutions are also illustrated.
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1. Introduction

The theory of Diophantine equations offers a rich variety of fascinating prob-
lems [1, 2, 8, 9]. Particularly,in [3, 4] quintic equations with three unknowns are
studied for their integral solutions. In [5] quintic equations with four unknowns
for their non-zero integer solutions. [6, 7] analyze quintic equations with five un-
knowns for their non-zero integer solutions. This communication concerns with yet
another interesting non-homogeneous quintic equation with five unknowns given by
(z* — y*) = 125(2? — w?)p? for finding its infinitely many non-zero distinct integer
solutions and some properties among the solutions are also illustrated.
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2. Notations

1. Polygonal number of rank n with size m :
-1 -2
o a3 D

2. Centered pyramidal number of rank n with size m :
m(n —1)n(n+ 1)+ 6n

OPm n —
’ 6
3. Centered icosipentagonal pyramidal number of rank n with size 25 :
Cp — n(25n* — 19)

6

4. Pyramidal number of rank n with size m :
Pt = gln(n+ D][(m = 2)n + (5 — m)]
5. Pentagonal pyramidal number of rank n with size 5 : P5 = %n2(n +1)
3. Definition

Nasty number : A positive integer n is said to be a nasty number if it has atleast
four different factors such that the difference between one pair of factors equals the
sum of another pair of factors.

4. Method of Analysis

The non-homogeneous fifth degree equation with five unknowns is
(¢' —y") = 125(2" — w?)p’ (1)
Introduction of the linear transformations
r=u+v,y=u—v, z=2u+v, w=2u—v (2)

in (1) leads to
u? +v? = 125p° (3)

To solve the above equation, the method of factorization is employed as illustrated
below:
Let

p=a’+b (4)

Write the number 125 as

125 = (10 + 5i)(10 — 5i) (5)
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Substituting (4), (5) in (3) and applying the method of factorization, consider
u+iv = (10 + 5i)(a + ib)? (6)
Equating the real and imaginary parts, one obtains

u = 10(a® — 3ab*) — 5(3a*b — b*)
v = 10(3a*b — b*) + 5(a® — 3ab?)

In view of (2) the values of x, y, z, w satisfying (1) are given by

Properties:
i. 6[50P> — 25(a — 1) — z(a,1)] is a nasty number
ii. 50P5 — tsa,, — 2(a, 1) = 0(mod11)
iii. z(a,1) +56a = 6C P2

Note 1:
It is to be noted that in addition to (5), 125 may be represented as the product of
complex conjugates as shown below:

e Choice(i) : 125 = (5+10i)(5-101)
e Choice(ii) : 125 = (11+2i)(11-2i)
e Choice(iii): 125 = (2+11i)(2-11i)

For each of the above choices, the corresponding solutions to (1) are presented
below:
Solution for choice(i):

x = 15(a® — 3ab*) — 5(3a*b — b*)
y = —5(a® — 3ab?) — 15(3a*b — b*)
z = 20(a® — 3ab?) — 15(3a*b — b*)
w = —25(3a*b — b*)
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Solution for choice(ii):

x = 13(a® — 3ab*) + 9(3a*b — b*)
y = 9(a® — 3ab?) — 13(3ab — b°)
z = 24(a® — 3ab®) + 7(3a*b — b°)
w = 20(a® — 3ab®) — 15(3a*b — b°)

Solution for choice(iii):

r = 13(a® — 3ab*) — 9(3a*b — b*)

y = —9(a® — 3ab?) — 13(3a®b — b*)
z = 15(a® — 3ab?) — 20(3a%b — b%)
w = —7(a*® — 3ab?) — 24(3a*b — b*)

Note 2:
It is worth mentioning below, that, the two choices for the values of z and w in the
linear transformations (2) may be taken as follows:

e Choice(iv) : x = utv,y = u-v,z = uv+2 , w = uv-2
e Choice(v) : x = u+v, y = u-v, z = 2uv+1, w = 2uv+1
e Choice(vi) : x =u+v,y = u-v, z = u+2v, w = u-2v

For simplicity and brevity, the integer solution to (1) for the corresponding choices
of z, w and 125 are exhibited below:
Solution for choices(iv) and (5):

z = 15(a® — 3ab*) + 5(3a®b — b*)
y = 5(a’® — 3ab*) + 15(—3a’b + b°)
z = 50[(a® — 3ab*)* — (3a*b — b*)?

+ 75[(a® — 3ab*)(3a*b — b*)] + 2
w = 50[(a* — 3ab?)* — (3a%b — b*)*] + 7

5[(a® — 3ab*)(3a®b — b*)] — 2

—

Solution for choices(iv) and (i):

r = 15(a® — 3ab*) — 5(3a*b — b*)

y = —5(a* — 3ab?) — 15(3a*b — b*)

z = 50[(a® — 3ab*)? — (3a*b — b*)?] — 75[(a® — 3ab?)(3a%b — b*)] 4 2
w = 50[(a® — 3ab*)? — (3a®b — b*)?] — 75[(a® — 3ab®)(3a®b — b*)] — 2
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Solution for choices(iv) and (ii):
z = 13(a® — 3ab*) + 9(3a°b — b*)
y = 9(a® — 3ab?) — 13(3a%b + b*)
z = 22[(a® — 3ab*)? — (3a*b — b*)?] + 117[(a® — 3ab*)(3a*b — b*)] + 2
w = 22[(a® — 3ab*)?* — (3a*b — b*)?] + 117[(a* — 3ab*)(3a%b — b*)] — 2
Solution for choices(iv) and (iii):
r = 13(a® — 3ab*) — 9(3a*b — b*)
y = —9(a® — 3ab?) — 13(3a®b + b*)
z = 22[(a® — 3ab*)? — (3a*b — b*)?] — 117[(a® — 3ab*)(3a*b — b*)] + 2
w = 22[(a® — 3ab*)? — (3a®b — b*)?] — 117[(a® — 3ab?)(3a®b — b*)] — 2
Solution for choices(v) and (5):
x = 15(a® — 3ab*) + 5(3a*b — b*)
y = 5(a® — 3ab?) — 15(3a%b — b°)
z = 100[(a® — 3ab®)* — (3a®b — b*)*] + 150[(a® — 3ab®)(3a®b — b*)] + 1
w = 100[(a® — 3ab®)* — (3a®b — b*)*] + 150[(a® — 3ab?)(3a’b — b*)] — 1
Solution for choices(v) and (i):
r = 15(a® — 3ab*) — 5(3a*b — b*)
y = —5(a® — 3ab?) — 15(3ab — b*)
z = 100[(a® — 3ab?)* — (3a%b — b*)?] — 150[(a® — 3ab?)(3a%b — b*)] + 1
w = 100[(a® — 3ab*)? — (3a*b — b*)?] — 150[(a® — 3ab*)(3a*b — b*)] — 1
Solution for choices(v) and (ii):
z = 13(a® — 3ab*) + 9(3a°b — b*)
y = 9(a® — 3ab*) — 13(3a®b + b*)
z = 44[(a® — 3ab*)?® — (3a*b — b*)?] + 234[(a® — 3ab*)(3a*b — b*)] + 1
w = 44[(a® — 3ab*)? — (3a®b — b*)?] + 234[(a® — 3ab*)(3a*b — b*)] — 1
Solution for choices(v) and (iii):
r = 13(a® — 3ab*) — 9(3a*b — b*)
y = —9(a® — 3ab?) — 13(3a®b + b*)
2 = 44[(a® — 3ab*)? — (3a®b — b*)?] — 234[(a® — 3ab*)(3a%b — b*)] + 1
w = 44[(a® — 3ab*)? — (3a®b — b*)?] — 234[(a® — 3ab*)(3a*b — b*)] — 1
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Solution for choices(vi) and (5):

z = 15(a® — 3ab*) + 5(3a®b — b*)
y = 5(a® — 3ab*) — 15(3a*b — b°)
z = 20(a* — 3ab?) + 15(3a%b — b°)
w = —25(3a*b — b*)

Solution for choices(vi) and (i):

x = 15(a® — 3ab*) — 5(3a*b — b*)

y = —5(a® — 3ab?) — 15(3a*b — b*)
z = 25(a® — 3ab?)

w = —15(a® — 3ab*) — 20(3ab — b°)

Solution for choices(vi) and (ii):

x = 13(a® — 3ab*) + 9(3a*b — b*)
y = 9(a® — 3ab*) — 13(3a*b + b°)
z = 15(a* — 3ab?) + 20(3a®b — b°)
w = 7(a® — 3ab*) — 24(3a®b — b°)

Solution for choices(vi) and (iii):

r = 13(a® — 3ab?) — 9(3a*b — b%)

y = —9(a® — 3ab?) — 13(3a*b + b*)
z = 24(a® — 3ab?®) — 7(3a*b — b*)

w = —20(a® — 3ab?) — 15(3ab — b°)

5. Conclusion

In this paper, we have made an attempt to determine different patterns of non-
zero distinct integer solutions to the non-homogeneous quinary quintic equation
given by (z*—y*) = 125(22 —w?)p3. As the quintic equations are rich in variety, one
may search for integer solutions to other forms of quintic equation with variables
grater than or equal to five.
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