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1. Introduction

In [1, 2], Carlitz initiated the study of the degenerate Bernoulli and Euler poly-
nomials and obtained some arithmetic and combinatorial results. In recent years,
many mathematicians have drawn their attention to various degenerate versions
of some old and new polynomials and numbers, namely some degenerate versions
of Bernoulli numbers and polynomials of the second kind, Changhee numbers of
the second kind, Daehee numbers of the second kind, Bernstein polynomials, cen-
tral Bell numbers, and polynomials, central factorial numbers of the second kind,
Cauchy numbers, Eulerian numbers and polynomials, Fubini polynomials, Stirling
numbers of the first kind, Stirling polynomials of the second kind, central com-
plete Bell polynomials, Bell numbers, and polynomials, type 2 Bernoulli numbers
and polynomials, type 2 Bernoulli polynomials of the second kind, poly-Bernoulli
numbers, and polynomials, poly-Cauchy polynomials, and of Frobenius-Euler poly-
nomials, to name a few [7-10, 18-28] and the references therein.

The degenerate versions of some special numbers and polynomials have been
studied by many researchers. The notion of degeneracy provides a powerful tool in
defining special numbers and polynomials of their degenerate versions. The most
important applications of these polynomials are in the theory of finite differences,
analytic number theory, and applications in classical analysis and statistics. Despite
the applicability of special functions in classical analysis and statistics, they also
arise in communications systems, quantum mechanics, nonlinear wave propagation,
electric circuit theory, electromagnetic theory, and so on.

The type 2 Bernoulli polynomials B, (z), (n > 0) and the type 2 Euler polyno-
mials E,(z), (n > 0) are respectively defined by (see [4])

t t > "
xt
e""—csch— = - 1.1
2 2 e% e E ZO . ( )
and

t = "
e"sec h— = E.(x)—. 1.2
2 62 +e 3 ; ( )

In the case when z = 0, B,, = B,,(0) and E,, = E,,(0) are called the type 2 Bernoulli
and Euler numbers.
The generalized Bernoulli polynomials of order r are defined by

( ! )rext:ZBg)(x)t—T [t]< 2 (see [1, 7). (1.3)

et —1
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When z = 0, BY) = Bff)(()) are called the generalized Bernoulli numbers of order
T.
For any non-zero A € R (or C), the degenerate exponential function is defined

by

eZ(t) = (1+ A5, ex(t) = (14 At)x (see [7-10]). (1.4)
By binomial expansion, we get
T OO tn
ex(t) = ;(w)n,w (see [12, 15]), (1.5)

where (z)o =1, (2)pr = (x = A)(x —=2X) - (z — (n— 1)) (n>1).
Note that

_ n_’_ _ xt
)\1210 ex(t) = Zx =
In [1], Carlitz considered the degenerate Bernoulli polynomials given by

t e A
m(1+>\t) —;%ﬁm( ) (\eR). (1.6)

When z = 0, 8, » = 8,,1(0) are called the degenerate Bernoulli numbers.
As is well known, the higher-order degenerate Bernoulli polynomials are con-
sidered by Carlitz [2] as follows:

(ﬁ) L+ A5 =Y 80 (). (1.7)

In the special case when z = 0, 57(:; = ﬁfg(O) are called the higher-order degenerate

Bernoulli numbers.
From (1.3) and (1.7), we note that

3 lim B(r = lim <(;> (14 Xt)>

)\—>0
(L) e oy Bt (18)
C\et—1 N " n!’ )

n=

Thus, by (1.8), we get

A—0
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Jang and Kim introduced the type 2 degenerate Bernoulli polynomials defined by
(see [7])
t

(14 M)2x — (14 At)" 2

When z = 0, B, » = B, ,(0) are called the type 2 degenerate Bernoulli numbers.
The Bernoulli polynomials of the second kind of order r are given by (see [4])

t " RN
(m) (141 _Zb,)(x)a. (1.10)

From (1.3) and (1.10), we note that

14 M)% = ZBM (1.9)

b (z) = BO (x4 1) (n>0).

n

Kim et al. [16] introduced the degenerate Bernoulli polynomials of the second kind
of order o defined by

t @ z e o tn
(o) 040 =t .

Note that lim_q b;a;(:r;) = b (z) (n>0).
The Daehee polynomials are defined by

log(1 +
f (1+1)° ZD —. (see [5, 12, 15]). (1.12)
When z =0, D,, = D,,(0) are called the Dachee numbers.

Kim et al. [21] introduced the new type degenerate Dachee polynomials defined
by

log, (1 + 1)
loga(1+1) 1 | pye ZDM © (see [22)). (1.13)

When z =0, D,,, = D, ,(0) are called the degenerate Daehee numbers.
Recently, Jang and Kim [4, 5] introduced the type 2 degenerate Daehee poly-
nomials of order « defined by

( log(1 + 1)

x

(1—|—t))_1) (1+Alog(1+41))> Zd
2\

(14 Mog(1+1))2x — (1 + Alog
(1. 14)
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When x = 0, dfla; = dfla/)\(O) are called the type 2 degenerate numbers of order a.
The degenerate Stirling numbers of the first kind are defined by (see [18, 24])

log, (1 41)) ZSH n, k (k> 0). (1.15)

k'(

Note here that limy_,0 S1x(n, k) = Si(n, k), where Si(n, k) are called the Stirling
numbers of the first kind given by

/i' (log(1+1)) ZSl n, k (k>0) (see [1-15]).

The degenerate Stirling numbers of the second kind (see [22]) are given by
1 L "
H(ex(t) —1)" = Zsz,x(n, k)m (k> 0). (1.16)

It is clear that limy o Sy (n, k) = Sa(n, k), where Sa(n, k) are called the Stirling
numbers of the second kind given by

(el —1)* Zsz (n, k 5 (k>0) (see [16-28]).
The degenerate central factorial numbers of the second kind (see [20]) are given by

%(eé(t) e ) ZTA n, k). )= (1.17)

Note that limy_,o T\(n, k) = T'(n, k) are called the central factorial numbers of the
second kind given by

% (e%(t) - e—%(t))k = ZT(n,k)% (see [11, 19]).

Motivated by the works of Sharma et al. [27], we first define type 2 degenerate
Daehee numbers and polynomials of the second kind. We investigate some new
properties of these numbers and polynomials and derive some new identities and
relations between the type 2 degenerate Daehee numbers and polynomials of the
second kind and Carlitzs degenerate Bernoulli polynomials.



16 South FEast Asian J. of Mathematics and Mathematical Sciences

2. Type 2 degenerate Daehee polynomials and numbers

For A € R, the degenerate logarithm function log, (1+t), which is the composi-
tional inverse of the degenerate exponential function ey(t) and the motivation for
the definition of degenerate polylogarithm function by (see [21])

= VA e " 1
logy(L+1) => X" (D)~ = Z = (T+)*=1).  (21)

nl A
n=1
Note that
o0 tn
: _ _1\n—1~_ —
lim log, (1 + 1) _Zl( 1) =log(1+1).

Let A € R. The new type of degenerate Daehee polynomials of the second kind are
defined by (see [27])

n

log,(1+1¢ -
oga(1+1) ; (1+ Xlog,(1+1t))> Z —. (2.2)
(1+ Alogy(1+1))x —1 —

When x = 0, ﬁn = ﬁn A(0) are called the new type of degenerate Dachee numbers
of the second kind.
From (1.16) and (2.2), we have

Doa(r) = 3 Durla) - (ea(t) — 1)
[ee] . 0o g
= ZZOD”)\(Z') ; SQ ,\(n, m)—'
[e'¢) n . 1
= Z:; ( > 527,\(n,m)Dn7,\(x)> — (2.3)

Comparing the coefficients on both sides of (2.3), we have

x) = Z 527,\(n,m)l3n7)\(x).

Motivated by (2.1) and (2.2), we define the type 2 degenerate Daehee polynomials
of the second kind which are given by the following generating function to be

log, (1 +¢ : ¢
0gy(1+1) (1+)\logA(1+t A :Zdn/\Q )=
(1+)\log/\(1+t))2x — (L + Alogy (1 +1t))72x n=0 n!

(2.4)
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When x = 0,d;, , , = d;, , 5(0) are called the type 2 degenerate Dachee numbers of
the second kind.

Theorem 2.1. Forn > 0, we have

&l ZZ() DSk )y

k=0 m=0
Proof. Using (2.4), we note that

PAZ Il (1 4+ Aogy (1 +1))3% — (14 Mogy (1 + )2

_ Zd (e " i(x)/\m()\log,\(l +t))™

(14 Alog, (1 + t))§

n=0

S’ m!
g oo k tk
EITIE 3) o EIR
k=0 m=0
k n i
—z(zz stk (i) 5 0o
k=0 m=0 ’

Therefore, by (2.5), we obtain the result.
Theorem 2.2. Forn > 0, we have

d;’)\Z ZBm)\ Sl)\ n m)

Proof. By changing t by log,(1+¢) in (1.9), we have

Z By log)\ (14+1t)" log, (1 +2)(1 + Aog, (1 + ))%
n! T (14 Mogy(1+6)3 — (1+ Mlogy(1+£)) %
= Zdzu(a:)g (2.6)

ZBmA< )(logk(:n;i_ t)) _ ZBmA(x) Z Sl,\(n,m)t‘
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Therefore, by (2.6) and (2.7), we get the result.
Theorem 2.3. Forn > 0, we have

Z Ay r2(1) S22 (1, m).
Proof. By replacing ¢ by e)(t) — 1 in (2.4), we get

de“ exlt) —1) (L4 M) — (14 M) p (LA

=Y B
n=0

On the other hand,

Z Tl g @30 = 0" = s 3 Soalnm)
tn
_Z<de)\2 Sz,\nm)>ﬁ

Therefore, by (2.8) and (2.9), we obtain the required result.

Theorem 2.4. Forn > 0, we have

n n n
Z(fv)m7/\)\m51,z\(”am) = (m> brx2n—m2(T)-

Proof. From (2.4), we observe that

s _ (14 Alogy(141))2x — (1 + Alog, (1 +1¢)) "2
(14 Mog, (1 +1)x = g (11 1) Zd
3 sistnny = (St | (3t
n=0 m=0 m=0 n=0
- Z < (m)bm,)\2dn mAQ(x)> m
n=0 \m=0

Therefore, by (2.10), we obtain the result.

(2.8)

(2.9)
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For r € N, we define type 2 higher-order degenerate Daehee polynomials of the
second kind by

log, (1 +1)
(1+ Alog,(1+1))25 — (1 + Alog,

) (ot
= Zdnfgg(x)ﬁ. (2.11)
n=0 ’

When z = 0, dz(gg = dz(f\)Q (0) are called the higher-order type 2 degenerate Dachee
numbers of the second kind.

Theorem 2.5. Forn > 0, we have

i t)>2&> (1+ Alog,(1+41t))x

(x4 y) = Z( )d“) (%) (1) m AN S (K, ).
n,\,2 k n—k,\,2 m, s ’

Proof From (2 9), we note that

Zd:;(’;2 c

_ log, (1 +t)
(14 Mog, (1 +1))2x — (14 Alog,

X 1" — Mog, (14 t))™
= Zdn(,)\)ﬂ(x)m Z(?J)m,x( al )
n=0 ’

T t))_zlx) (1+ Alog,(14+1¢)) >

\
o
?r
o
i
=)

- Z (Z ) ( ) sl )(y)m,,\AmSLA(k,m)> Z_"' (2.12)

k=0 m=0

Thus, by (2.12), we obtain the result.
Theorem 2.6. Forn > 0, we have

B(r Z d:gr)\ 5525 (n,m).
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Proof. By replacing t by e(t) — 1 in (2.11), we get

) xie - 1" = t T X
de,)\,2( )m'( A(t) 1) ((1+)\t)21h—1+)\t)_21/\> (1+)‘t)

—~

m=0
S B ()L 2.13
=D B~ (2.13)
n=0
On the other hand
[e%¢} r . [e%¢) r [e%e) n
> dia(@) —(ex(t) = 1) = D" Do) D Soaln,m)—
m=0 m=0 n=m
= (S a (x)S r 2.14
Do (Do da@Saa(nm) | = (214)
n=0 \m=0 :

Therefore, by (2.13) and (2.14), we get the result.
Theorem 2.7. Forr,k € N, with r > k, we have

n

*\r n *(r— *
dn(,)\),2<x) = Z (Z>dl,&72 k)dn(ifl)A72(:v), (n>0).

=0

Proof. By (2.11), we see that

( log, (1 + 1)

& = | (1+ Aog,(1+1))3
(14 Alogy (14 1))2x — (1 + Alog, (1 +¢)) "2

_ log, (1 + 1)
(1+ Alog, (1 +1))7 — (1 + Alogy (1 +1¢)) =

y log,(1 +1)
1+ Aog,(1+1))zx — (1+ Alog,

= *(k "
< dl A2 _) (Z drrE)?Q(x)%>
1= m=0 ’

0
S n *(r—k *(k t"
- (Z < l)dl,(m )Dn(—l),,\,Q(l')> E (2.15)
=0 :
(2

1 +t))&> (1+ Alog,(141¢))x

n=0

Therefore, by (2.11) and (2.15), we obtain the result.
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It is well known that the type 2 degenerate Bernoulli polynomials of order r are
defined by (see [4])

! T s _ N~ g0 o
((1+At)2&_(1+At)2&) (L+2)% = B(@) - (2.16)

n=

When z =0, Bn \ =B, (T) 1(0) are called the type degenerate Bernoulli numbers.
Theorem 2.8. Forn 2 0, we have

d7) o(z) = ZB<”< 2)S1a(n,m).

m=0

Proof. Replacing ¢ by log,(1 +¢) in (2.16), we get

log, (1 +1)
(1+ Aog,(1+1t))2x — (14 Alog,

o0

=3 BO\(@) (logy(1 +¢))™

m)!

T t))2&> (14+ Alog,(141¢))>

- i Bih(@)Sian, m)) — (2.17)

On the other hand,

log, (1 + 1)
(1+ Mog,(1+1))2x — (14 Alog,

T t))2&> (14 Alog, (1 +1t))>

RN
=Y dnfgz(x)—. (2.18)

Therefore, by (2.17) and (2.18), we get the result.
Theorem 2.9. Forn > 0, we have

% 1
Zdré/\kQ)Sg,\ (n,m) = T\(n + k, k)

)
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Proof. Let us take r = —k and replacing ¢ by e(¢) — 1 in (2.11), we note that

(%)k<(1+)\t)2lx—(1+)\t > de“” fl)

(— "
- Z Z d ) Ss (0, m-—. (2.19)

n=0 m=0

On the other hand,

koo k! ((1 + /\t)ﬁ —(1+ /\t)_2)1A>k

Ttk k!
k! o tn
ZTA (n+ k., k) nik t—'
n=0 ( )

Comparing the coefficients on equations (2.19) and (2.20), we get the result.
Theorem 2.10. For n > 0, we have

n i+k n

Z()\];) ZZ z+k: T2)\ m k)Sl)\(Z—Fk m)b ( )

zOmk:i

Proof. For k € N, let r = —k, x = 0 in (2.11). Then we have

> n
>l -
n,\,2 n
n=0

L ans - (e H)

(2.20)

k
(14 Mog, (1 +1))2x — (14 Alogy (1 +¢)) "=
log, (1 +t)

Il
/‘\A

log, (

)) Zszmk logk( )"
io%bkfl:) (thTg,\mk ZSl,\zmt—|>
ib ><kZ<ZTQ,\mkSMzm>

- (?

n=0
(nz
7

I
N~

SHICY

)

T2 )\(m ]C)Sl )\(Z + k m)b )\ ) (221)

ZM8
?T‘
S|
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Comparing the coefficients of ¢t on both sides, we get the result.
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