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1. Introduction
Zadeh [36] introduced the concepts of a fuzzy set. Intuitionistic fuzzy set (in

short IFS) introduced by Atanassov [1]. Intuitionistic fuzzy sets have been found to
be very useful in diversely applied areas of science and technology. A lattice is an
abstract structure studied in the mathematical subdisciplines of order theory and
abstract algebra. It consists of a partially ordered set in which every two elements
have a unique supremum (also called a least upper bound or join) and a unique
infimum (also called a greatest lower bound or meet). An example is given by the
natural numbers, partially ordered by divisibility, for which the unique supremum is
the least common multiple and the unique infimum is the greatest common divisor.
In the history of fuzzy mathematics, fuzzy relations were early considered to be
useful in various applications, and have therefore been extensively investigated. For
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a contemporary general approach to fuzzy relations one should look in Belohlavek,s
book [2], and also to other general publications e.g., the books by Klir and Yuan [8]
and Turunen [34]. Relational equations and applications are presented by Di Nola,
Sessa, Pedrycz and Sanchezin [5], and some new approaches to fuzzy relations are
given by Ignjatovic, Ciric and Bogdanovicin [7, 3]. Das [4] and Yijia [35] have
introduced the concept of fuzzy congruences in the background of semigroups. The
author investigated some properties of fuzzy algebraic structures [10-33]. In this
paper, the concepts of intuitionistic fuzzy equivalence relation and intuitionistic
fuzzy congruence on lattices are introduced and discussed. Let X and Y be lattices
such that A = (µA, νA) ∈ IFS(X×X) and B = (µB, νB) ∈ IFS(Y ×Y ). We define
intuitionistic fuzzy congruences on lattice X as IFC(X×X) and investigate some
properties of them. We introduce direct product of A and B and we prove that if
A ∈ IFC(X×X) and B ∈ IFC(Y ×Y ), then A×B ∈ IFC(X×Y ×X×Y ) and
under some conditions, we show the converse of about assertion. Finally, we prove

isomorphism
X ×X
A

× Y × Y
B

∼=
X × Y ×X × Y

A×B
as factor lattices of similarity

classes.

2. Preliminaries

This section emphasizes on basic definitions, results and properties of lattices,
fuzzy sets and intuitionistic fuzzy sets, which serve as a prerequisite for the research
work done in the paper. For details we refer to [1, 6, 9].

Definition 2.1. Let P be a nonempty set. A partial order P is a binary relation
≤ on P such that, for all x, y, z ∈ P, the following conditions are hold:
(1) x ≤ x (reflexivity);
(2) x ≤ y and y ≤ x imply x = y (antisymmetry);
(3) x ≤ y and y ≤ z imply x = z (transivity).
A set P equipped with an order relation ≤ is said to be an ordered set (or partially
ordered set or poset).

Definition 2.2. A partially ordered set in which every pair of elements has a join
(or least upper bound) and a meet (or greatest lower bound) is called a lattice.

Definition 2.3. Let L and K be lattices. Then map ϕ : L→ K is an isomorphism
if ϕ is one-to-one, onto and if ϕ(a ∧ b) = ϕ(a) ∧ ϕ(b) and ϕ(a ∨ b) = ϕ(a) ∨ ϕ(b)
for all a, b ∈ L.
Definition 2.4. Let L and K be lattices. Define
∧ : L×K → L×K by (l1, k1)∧ (l2, k2) = (l1 ∧ l2, k1 ∧ k2) and ∨ : L×K → L×K
by (l1, k1)∨ (l2, k2) = (l1 ∨ l2, k1 ∨ k2) for all l1, l2 ∈ L and k1, k2 ∈ K. Then L×K
will be a lattice called the direct product of L and K.
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Definition 2.5. Let X be an arbitrary set. A fuzzy set of X, we mean a function
from X into [0, 1]. A fuzzy binary relation on X is a fuzzy set defined on X ×X.
Definition 2.6. For sets X, Y and Z, f = (f1, f2) : X → Y ×Z is called a complex
mapping if f1 : X → Y and f2 : X → Z are mappings.

Definition 2.7. Let X be a nonempty set. A complex mapping A = (µA, νA) :
X → [0, 1] × [0, 1] is called an intuitionistic fuzzy set (in short, IFS) in X if
µA + νA ≤ 1 where the mappings µA : X → [0, 1] and νA : X → [0, 1] denote the
degree of membership (namely µA(x)) and the degree of non-membership (namely
νA(x)) for each x ∈ X to A, respectively. In particular ∅X and UX denote the
intuitionistic fuzzy empty set and intuitionistic fuzzy whole set in X defined by
∅X(x) = (0, 1) ∼ 0 and UX(x) = (1, 0) ∼ 1, respectively. We will denote the set of
all IFSs in X as IFS(X).

Definition 2.8. Let X be a nonempty set and let A = (µA, νA) and B = (µB, νB)
be IFSs in X. Then
(1) Inclusion: A ⊆ B iff µA ≤ µB and νA ≥ νB.
(2) Equality:A = B iff A ⊆ B and B ⊆ A.

3. Intuitionistic Fuzzy Congruences on Product Lattices

Definition 3.1. Let X be a non empty set and A = (µA, νA) ∈ IFS(X × X).
We say that A = (µA, νA) is an equivalence relation on X × X if the following
conditions hold:
(1) A(x, x) = (1, 0),
(2) A(x, y) = A(y, x),
(3) A(x, z) ⊇ (supy∈X{µA(x, y) ∧ µA(y, z)}, infy∈X{ν(x, y)A ∨ νA(y, z)}),
for all x, y, z ∈ X.
Remark 3.2. Note that in Definition 3.1 we get the follwing statements for all
x, y, z ∈ X.
(1)

A(x, x) = (1, 0)⇐⇒ A(x, x) = (µA(x, x), νA(x, x)) = (1, 0)⇐⇒ µA(x, x) = 1, νA(x, x) = 0.

(2)

A(x, y) = A(y, x)⇐⇒ A(x, y) = (µA(x, y), νA(x, y)) = A(y, x) = (µA(y, x), νA(y, x))

⇐⇒ µA(x, y) = µA(y, x) and νA(x, y) = νA(y, x).

(3)
A(x, z) ⊇ (sup

y∈X
{µ(x, y) ∧ µ(y, z)}, inf

y∈X
{µ(x, y) ∨ µ(y, z)})

⇐⇒ A(x, z) = (µA(x, z), νA(x, z)) ⊇ (sup
y∈X
{µA(x, y)∧µA(y, z)}, inf

y∈X
{ν(x, y)A ∨ νA(y, z)})
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⇐⇒ (µA(x, z) ≥ sup
y∈X
{µA(x, y) ∧ µA(y, z)} and νA(x, z) ≤ inf

y∈X
{νA(x, y) ∨ νA(y, z)}.

Definition 3.3. Let A = (µA, νA) ∈ IFS(X × X) be an equivalence relation
on X × X. The similarity class for each x ∈ X is the intuitionistic fuzzy set
Ax : X → [0, 1]× [0, 1] such that Ax(y) = A(x, y) for all y ∈ X.
Lemma 3.4. Let X be a non empty set and A = (µA, νA) ∈ IFS(X ×X) be an
equivalence relation on X ×X. Then Ax = Ay if and only if A(x, y) = (1, 0) for all
x, y ∈ X.
Proof. Let x, y ∈ X. If Ax = Ay, then Ax(y) = Ay(y) = A(y, y) = (1, 0) and then
A(x, y) = (1, 0).
Conversely, if A(x, y) = (1, 0), then Ax(y) = (1, 0) = Ay(y) and so Ax = Ay.

Definition 3.5. Let X be a lattice and A = (µA, νA) ∈ IFS(X × X) be an
equivalence relation on X ×X. Then A = (µA, νA) is join compatible if

A(x1 ∨ x2, y1 ∨ y2) = (µA(x1 ∨ x2, y1 ∨ y2), νA(x1 ∨ x2, y1 ∨ y2))

⊇ (µA(x1, y1) ∧ µA(x2, y2), νA(x1, y1) ∨ νA(x2, y2))

and A = (µA, νA) is meet compatible if

A(x1 ∧ x2, y1 ∧ y2) = (µA(x1 ∧ x2, y1 ∧ y2), νA(x1 ∧ x2, y1 ∧ y2))

⊇ (µA(x1, y1) ∧ µA(x2, y2), νA(x1, y1) ∨ νA(x2, y2))

for all x1, x2, y1, y2 in X. If A = (µA, νA) is both join compatible and meet compat-
ible, thenA = (µA, νA) is an intuitionistic fuzzy congruence on X ×X.
Denote by IFC(X × X), the set of all intuitionistic fuzzy congruences on lattice
X.

Example 3.6. Let X be a non empty lattice and A = (µA, νA) ∈ IFS(X × X).
Define

µA(x, y) =

{
1 if x = y
0 otherwise

and

νA(x, y) =

{
0 if x = y
1 otherwise.

Then A = (µA, νA) ∈ IFC(X ×X).

Lemma 3.7. Let X be a lattice and A = (µA, νA) ∈ IFS(X×X) be an equivalence
relation on X ×X. Then
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(1) A = (µA, νA) is join compatible if and only if A(x1 ∨ t, y1 ∨ t) ⊇ A(x1, y1),
(2) A = (µA, νA) is meet compatible if and only if A(x1 ∧ t, y1 ∧ t) ⊇ A(x1, y1),
for all x1, y1, t in X.
Proof. Let x1, x2, y1, y2, t in X.
(1) If A = (µA, νA) is join compatible, then

A(x1 ∨ t, y1 ∨ t) = (µA(x1 ∨ t, y1 ∨ t), νA(x1 ∨ t, y1 ∨ t))

⊇ (µA(x1, y1) ∧ µA(t, t), νA(x1, y1) ∨ νA(t, t))

which means that

µA(x1 ∨ t, y1 ∨ t) ≥ µA(x1, y1) ∧ µA(t, t) = µA(x1, y1) ∧ 1 = µA(x1, y1)

and then
µA(x1 ∨ t, y1 ∨ t) ≥ µA(x1, y1). (a)

Also

νA(x1 ∨ t, y1 ∨ t) ≤ νA(x1, y1) ∨ νA(t, t) = νA(x1, y1) ∨ 0 = νA(x1, y1)

thus
νA(x1 ∨ t, y1 ∨ t) ≤ νA(x1, y1). (b)

Now from (a) and (b) we will have that

A(x1 ∨ t, y1 ∨ t) = (µA(x1 ∨ t, y1 ∨ t), νA(x1 ∨ t, y1 ∨ t))

⊇ (µA(x1, y1), νA(x1, y1)) = A(x1, y1).

Conversely, let A(x1, y1) ⊆ A(x1 ∨ t, y1 ∨ t) and A(x2, y2) ⊆ A(x2 ∨ t, y2 ∨ t). Then
µA(x1, y1) ≤ µA(x1 ∨ t, y1 ∨ t) and µA(x2, y2) ≤ µA(x2 ∨ t, y2 ∨ t). Now

µA(x1 ∨ x2, y1 ∨ y2) = µA((x1, y1) ∨ (x2, y2))

≥ sup
(t,t)∈X×X

{µA((x1, y1) ∨ (t, t)) ∧ µA((t, t) ∨ (x2, y2))}

= sup
(t,t)∈X×X

{µA((x1, y1) ∨ (t, t)) ∧ µA((x2, y2) ∨ (t, t))}

= sup
(t,t)∈X×X

{µA(x1 ∨ t, y1 ∨ t) ∧ µA(x2 ∨ t, y2 ∨ t)}

≥ µA(x1, y1) ∧ µA(x2, y2)
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and then
µA(x1 ∨ x2, y1 ∨ y2) ≥ µA(x1, y1) ∧ µA(x2, y2). (a)

Also as A(x1, y1) ⊆ A(x1∨ t, y1∨ t) and A(x2, y2) ⊆ A(x2∨ t, y2∨ t) so νA(x1, y1) ≥
νA(x1 ∨ t, y1 ∨ t) and νA(x2, y2) ≥ νA(x2 ∨ t, y2 ∨ t). Thus

νA(x1 ∨ x2, y1 ∨ y2) = νA((x1, y1) ∨ (x2, y2))

≤ inf
(t,t)∈X×X

{νA((x1, y1) ∨ (t, t)) ∨ νA((t, t) ∨ (x2, y2))}

= inf
(t,t)∈X×X

{νA((x1, y1) ∨ (t, t)) ∨ νA((x2, y2) ∨ (t, t))}

= inf
(t,t)∈X×X

{νA(x1 ∨ t, y1 ∨ t) ∨ νA(x2 ∨ t, y2 ∨ t)}

≤ νA(x1, y1) ∨ νA(x2, y2)

and
νA(x1 ∨ x2, y1 ∨ y2) ≤ νA(x1, y1) ∨ νA(x2, y2). (b)

Therefore (a) and (b) give us that

A(x1 ∨ x2, y1 ∨ y2) = (µA(x1 ∨ x2, y1 ∨ y2), νA(x1 ∨ x2, y1 ∨ y2))

⊇ (µA(x1, y1) ∧ µA(x2, y2), νA(x1, y1) ∨ νA(x2, y2))

which means that A = (µA, νA) is join compatible.
(2) The proof is similar as (1).

Definition 3.8. Let X and Y be lattices such that A = (µA, νA) ∈ IFS(X ×X)
and B = (µB, νB) ∈ IFS(Y × Y ). Define A×B ∈ IFS(X × Y ×X × Y ) as

A×B = (µA, νA)× (µB, νB) = (µA × µB, νA × νB) = (µA×B, νA×B)

such that
µA×B((x1, y1), (x2, y2)) = µA(x1, x2) ∧ µB(y1, y2)

and
νA×B((x1, y1), (x2, y2)) = νA(x1, x2) ∨ νB(y1, y2)

for all x1, x2 in X and y1, y2 in Y.
Thus

(A×B)((x1, y1), (x2, y2)) = (µA(x1, x2) ∧ µB(y1, y2), νA(x1, x2) ∨ νB(y1, y2))

for all x1, x2 in X and y1, y2 in Y.
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Preposition 3.9. Let X and Y be lattices and A = (µA, νA) ∈ IFC(X ×X) and
B = (µB, νB) ∈ IFC(Y × Y ). Then A×B ∈ IFC(X × Y ×X × Y ).
Proof. (1) Let x ∈ X and y ∈ Y. Then

(A×B)((x, y), (x, y)) = (µA×B((x, y), (x, y)), νA×B((x, y), (x, y)))

= (µA(x, x) ∧ µB(y, y), νA(x, x) ∨ νB(y, y)) = (1 ∧ 1, 0 ∨ 0) = (1, 0).

(2) Let x1, x2 ∈ X and y1, y2 ∈ Y. Then

(A×B)((x1, y1), (x2, y2))

= (µA×B((x1, y1), (x2, y2)), νA×B((x1, y1), (x2, y2)))

= (µA(x1, x2) ∧ µB(y1, y2), νA(x1, x2) ∨ νB(y1, y2))

= (µA(x2, x1) ∧ µB(y2, y1), νA(x2, x1) ∨ νB(y2, y1))

= (µA×B((x2, y2), (x1, y1)), νA×B((x2, y2), (x1, y1)))

= (A×B)((x2, y2), (x1, y1))

(3) Let x1, x2, x3 ∈ X and y1, y2, y3 ∈ Y. Then

µA×B((x1, y1), (x3, y3)) = µA(x1, x3) ∧ µB(y1, y3)

≥ sup
x2∈X
{µA(x1, x2) ∧ µA(x2, x3)} ∧ sup

y2∈Y
{µB(y1, y2) ∧ µB(y2, y3)}

= sup
(x2,y2)∈X×Y

{µA(x1, x2) ∧ µA(x2, x3) ∧ µB(y1, y2) ∧ µB(y2, y3)}

= sup
(x2,y2)∈X×Y

{µA(x1, x2) ∧ µB(y1, y2) ∧ µA(x2, x3) ∧ µB(y2, y3)}

= sup
(x2,y2)∈X×Y

{µA×B((x1, y1), (x2, y2)) ∧ µA×B((x2, y2), (x3, y3))}.

Also
νA×B((x1, y1), (x3, y3)) = νA(x1, x3) ∨ νB(y1, y3)

≤ inf
x2∈X
{νA(x1, x2) ∨ νA(x2, x3)} ∨ inf

y2∈Y
{νB(y1, y2) ∨ νB(y2, y3)}

= inf
(x2,y2)∈X×Y

{νA(x1, x2) ∨ νA(x2, x3) ∨ νB(y1, y2) ∨ νB(y2, y3)}

= inf
(x2,y2)∈X×Y

{νA(x1, x2) ∨ νB(y1, y2) ∨ νA(x2, x3) ∨ νB(y2, y3)}

= inf
(x2,y2)∈X×Y

{νA×B((x1, y1), (x2, y2)) ∨ νA×B((x2, y2), (x3, y3))}.
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Thus

(A×B)((x1, y1), (x3, y3)) ⊇ ( sup
(x2,y2)∈X×Y

{µA×B((x1, y1), (x2, y2))∧µA×B((x2, y2), (x3, y3))}

, inf
(x2,y2)∈X×Y

{νA×B((x1, y1), (x2, y2)) ∨ νA×B((x2, y2), (x3, y3))}).

Therefore from (1)-(3) we get that A×B is an equivalence relation on X×Y ×X×Y.
Now we show that A×B is join and meet compatible. Let (t1, t2) ∈ X × Y then

µA×B((x1, y1) ∨ (t1, t2), (x2, y2) ∨ (t1, t2))

= µA×B((x1 ∨ t1, y1 ∨ t2), (x2 ∨ t1, y2 ∨ t2))

= µA(x1 ∨ t1, y1 ∨ t2) ∧ µB(x2 ∨ t1, y2 ∨ t2)

≥ µA(x1, y1) ∧ µB(x2, y2) = µA×B((x1, y1), (x2, y2))

and so

µA×B((x1, y1) ∨ (t1, t2), (x2, y2) ∨ (t1, t2)) ≥ µA×B((x1, y1), (x2, y2)). (a)

Also
νA×B((x1, y1) ∨ (t1, t2), (x2, y2) ∨ (t1, t2))

= νA×B((x1 ∨ t1, y1 ∨ t2), (x2 ∨ t1, y2 ∨ t2))

= νA(x1 ∨ t1, y1 ∨ t2) ∨ νB(x2 ∨ t1, y2 ∨ t2)

≤ νA(x1, y1) ∨ νB(x2, y2) = νA×B((x1, y1), (x2, y2))

and so

νA×B((x1, y1) ∨ (t1, t2), (x2, y2) ∨ (t1, t2)) ≤ νA×B((x1, y1), (x2, y2)). (b)

Now from (a) and (b) we get that

(A×B)((x1, y1) ∨ (t1, t2), (x2, y2) ∨ (t1, t2)) ⊇ (A×B)((x1, y1), (x2, y2))

and so by Lemma 3.7 (part(1)) we obtain that A×B is join compatible. Also

µA×B((x1, y1) ∧ (t1, t2), (x2, y2) ∧ (t1, t2))

= µA×B((x1 ∧ t1, y1 ∧ t2), (x2 ∧ t1, y2 ∧ t2))

= µA(x1 ∧ t1, y1 ∧ t2) ∧ µB(x2 ∧ t1, y2 ∧ t2)
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≥ µA(x1, y1) ∧ µB(x2, y2) = µA×B((x1, y1), (x2, y2))

and so

µA×B((x1, y1) ∧ (t1, t2), (x2, y2) ∧ (t1, t2)) ≥ µA×B((x1, y1), (x2, y2)). (a)

Also
νA×B((x1, y1) ∧ (t1, t2), (x2, y2) ∧ (t1, t2))

= νA×B((x1 ∧ t1, y1 ∧ t2), (x2 ∧ t1, y2 ∧ t2))

= νA(x1 ∧ t1, y1 ∧ t2) ∨ νB(x2 ∧ t1, y2 ∧ t2)

≤ νA(x1, y1) ∨ νB(x2, y2) = νA×B((x1, y1), (x2, y2))

and

νA×B((x1, y1) ∧ (t1, t2), (x2, y2) ∧ (t1, t2)) ≤ νA×B((x1, y1), (x2, y2)). (b)

Thus from (a) and (b) we can say

(A×B)((x1, y1) ∧ (t1, t2), (x2, y2) ∧ (t1, t2)) ⊇ (A×B)((x1, y1), (x2, y2))

and as Lemma 3.7 (part(2)) so A×B is meet compatible.
Therefore A×B ∈ IFC(X × Y ×X × Y ).

Example 3.10. Let A = (µA, νA) ∈ IFS(X ×X) such that

µA(x, y) =

{
1 if x = y
0 otherwise

and

νA(x, y) =

{
0 if x = y
1 otherwise.

Define A× A = (µA×A, νA×A) ∈ IFS(X × Y ×X × Y ) as:

µA×A((x, y), (z, t) = µA(x, z) ∧ µA(y, t) =

{
1 if (x, y) = (z, t)
0 otherwise

and

νA×A((x, y), (z, t) = νA(x, z) ∨ νA(y, t) =

{
0 if (x, y) = (z, t)
1 otherwise

for all x, y, z, t ∈ X.
Then A = (µA, νA) ∈ IFC(X ×X) and A × A = (µA×A, νA×A) ∈ IFC(X × Y ×
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X × Y ).

Proposition 3.11. Let C = (µC , νC) ∈ IFC(X × Y × X × Y ). Then for all
x1, x2 ∈ X and y1, y2 ∈ Y we have the following statements.
(1) C((x1, y1), (x2, y1)) = C((x1, y2), (x2, y2)).
(2) C((x1, y1), (x1, y2)) = C((x2, y1), (x2, y2)).
Proof. Let x1, x2 ∈ X and y1, y2 ∈ Y. Then
(1)

C((x1, y1), (x2, y1)) ≤ C((x1, y1) ∨ (x1 ∧ x2, y2), (x2, y1) ∨ (x1 ∧ x2, y2))

(Lemma 3.7 part(1))

= ρ((x1 ∨ x1 ∧ x2, y1 ∨ y2), (x2 ∨ x1 ∧ x2, y1 ∨ y2)) = C((x1, y1 ∨ y2), (x2, y1 ∨ y2))

≤ C((x1, y1 ∨ y2) ∧ (x1 ∨ x2, y2), (x2, y1 ∨ y2) ∧ (x1 ∨ x2, y2)) (Lemma 3.7 part(2))

= C((x1 ∧ x1 ∨ x2, y1 ∨ y2 ∧ y2), (x2 ∧ x1 ∨ x2, y1 ∨ y2 ∧ y2)) = C((x1, y2), (x2, y2)).

Similarly we can prove that C((x1, y1), (x2, y1)) ≥ C((x1, y2), (x2, y2)) and thus
C((x1, y1), (x2, y1)) = C((x1, y2), (x2, y2)).
(2) The proof is similar as (1).

Not that we can prove the converse of Proposition 3.9 such that if C = (µC , νC) ∈
FCT (X × Y ×X × Y ), then C = A×B where A = (µA, νA) ∈ IFC(X ×X) and
B = (µB, νB) ∈ IFC(Y × Y ).

Proposition 3.12. Let C = (µC , νC) ∈ IFC(X × Y × X × Y ). Define A =
(µA, νA) ∈ IFS(X ×X) and B = (µB, νB) ∈ IFS(Y × Y ) by:

A(x1, x2) = (µA(x1, x2), νA(x1, x2))

= C((x1, y1), (x2, y1)) = (µC((x1, y1), (x2, y1)), νC((x1, y1), (x2, y1))

and

B(y1, y2) = (µB(y1, y2), νB(y1, y2))

= C((x1, y1), (x1, y2)) = (µC((x1, y1), (x1, y2)), νC((x1, y1), (x1, y2))

for all x1, x2 ∈ X and y1, y2 ∈ Y. Then C = A×B.
Proof. Using Proposition 3.11 we obtain that A = (µA, νA) and B = (µB, νB)
are well defined. Firstly, we must prove that A = (µA, νA) ∈ IFS(X ×X) be an
equivalence relation on X ×X and B = (µB, νB) ∈ IFS(Y ×Y ) be an equivalence
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relation on Y × Y.
(1) Let x1 ∈ X and y1 ∈ Y. Then

A(x1, x1) = (µA(x1, x1), νA(x1, x1)) = C((x1, y1), (x1, y1))

= (µC((x1, x1), (x1, x1)), νC((x1, x1), (x1, x1)) = ((1, 0) ∼ 1, (0, 1) ∼ 0) = (1, 0).

(2) Let x1, x2 ∈ X and y1, y2 ∈ Y. Then

A(x1, x2) = C((x1, y1), (x2, y1)) = C((x2, y1), (x1, y1)) = A(x2, x1).

(3) Let x1, x3 ∈ X and y1, y3 ∈ Y. Then

A(x1, x3) = (µA(x1, x3), νA(x1, x3))

= C((x1, y1), (x3, y1)) = (µC((x1, y1), (x3, y1)), νC((x1, y1), (x3, y1)).

As

µA(x1, x3) = µC((x1, y1), (x3, y1))

≥ sup
(x2,y2)∈(X×Y )

{µC((x1, y1), (x2, y2)) ∧ µC((x2, y2), (x3, y1))}

≥ sup
x2∈X
{µC((x1, y1), (x2, y1))∧µC((x2, y1), (x3, y1))} = sup

x2∈X
{µA(x1, x2)∧µA(x2, x3)}

and so

µA(x1, x3) ≥ sup
x2∈X
{µA(x1, x2) ∧ µA(x2, x3)}. (a)

Also

νA(x1, x3) = νC((x1, y1), (x3, y1))

≤ inf
(x2,y2)∈(X×Y )

{νC((x1, y1), (x2, y2)) ∨ νC((x2, y2), (x3, y1))}

≤ inf
x2∈X
{νC((x1, y1), (x2, y1))∨ νC((x2, y1), (x3, y1))} = inf

x2∈X
{νA(x1, x2)∨ νA(x2, x3)}

and thus

νA(x1, x3) ≤ inf
x2∈X
{νA(x1, x2) ∨ νA(x2, x3)}. (b)

Therefore

A(x1, x3) = (µA(x1, x3), νA(x1, x3)) ⊇

( sup
x2∈X
{µA(x1, x2) ∧ µA(x2, x3)}, inf

x2∈X
{νA(x1, x2) ∨ νA(x2, x3)})
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which means that A = (µA, νA) ∈ IFS(X × X) be an equivalence relation on
X ×X.
Now

A(x1∨x3, x2∨x3) = C((x1∨x3, y1), (x2∨x3, y1)) = C((x1, y1)∨(x3, y1), (x2, y1)∨(x3, y1))

≥ C((x1, y1), (x2, y1)) = A(x1, x2)

and

A(x1∧x3, x2∧x3) = C((x1∧x3, y1), (x2∧x3, y1)) = C((x1, y1)∧(x3, y1), (x2, y1)∧(x3, y1))

≥ C((x1, y1), (x2, y1)) = A(x1, x2)

mean that A = (µA, νA) ∈ IFC(X ×X).
In a similar way it can be proved that B = (µB, νB) ∈ IFC(Y × Y ).
Next we must show that C = A×B as

C((x1, y1), (x2, y2)) = (µC((x1, y1), (x2, y2)), νC((x1, y1), (x2, y2)))

= (µA×B((x1, y1), (x2, y2))), νA×B((x1, y1), (x2, y2))))

= (µA(x1, x2) ∧ µB(y1, y2), νA(x1, x2) ∨ νB(y1, y2))

for all x1, x2, x3 ∈ X and y1, y2, y3 ∈ Y. Firstly, we must prove that

µC((x1, y1), (x2, y2)) = µA×B((x1, y1), (x2, y2))).

As

µC((x1, y1), (x2, y2)) ≤ µC((x1, y1) ∧ (x1 ∨ x2, y1 ∧ y2)), (x2, y2) ∧ (x1 ∨ x2, y1 ∧ y2))

(Lemma 3.7(1))

= µC((x1∧x1∨x2, y1∧y1∧y2), (x2∧x1∨x2, y2∧y1∧y2)) = µC((x1, y1∧y2), (x2, y1∧y2))

= µA(x1, x2).

Thus
µC((x1, y1), (x2, y2)) ≤ µA(x1, x2). (a)

Also

µC((x1, y1), (x2, y2)) ≤ µC((x1, y1) ∧ (x1 ∧ x2, y1 ∨ y2)), (x2, y2) ∧ (x1 ∧ x2, y1 ∨ y2))
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(Lemma 3.7(1))

= µC((x1∧x1∧x2, y1∧y1∨y2), (x2∧x1∧x2, y2∧y1∨y2)) = µC((x1∧x2, y1), (x1∧x2, y2)

= µB(y1, y2).

Then
µC((x1, y1), (x2, y2)) ≤ µB(y1, y2). (b)

Now from (a) and (b) we get that

µC((x1, y1), (x2, y2)) = µC((x1, y1), (x2, y2)) ∧ µC((x1, y1), (x2, y2)))

≤ µA(x1, x2) ∧ µB(y1, y2)) = µA×B((x1, y1), (x2, y2))

and then
µC((x1, y1), (x2, y2)) ≤ µA×B((x1, y1), (x2, y2)). (c)

Now
µA×B((x1, y1), (x2, y2)) = µA(x1, x2) ∧ µB(y1, y2)

= µC((x1, y3), (x2, y3)) ∧ µC((x3, y1), (x3, y2))

= µC((x1, y1∧y2), (x2, y1∧y2))∧µC((x1∧x2, y1), (x1∧x2, y2)) (Proposition 3.11)

≤ µC((x1, y1 ∧ y2) ∨ (x1 ∧ x2, y1), (x2, y1 ∧ y2) ∨ (x1 ∧ x2, y2))) (Definition 3.5)

= µC((x1 ∨ x1 ∧ x2, y1 ∧ y2 ∨ y1), (x2 ∨ x1 ∧ x2, y1 ∧ y2 ∨ y2)) = µC((x1, y1), (x2, y2)).

Then
µA×B((x1, y1), (x2, y2))) ≤ µC((x1, y1), (x2, y2)). (d)

Then by (c) and (d) we obtain that

µC((x1, y1), (x2, y2)) = µA×B((x1, y1), (x2, y2))). (e)

Now we prove that

νC((x1, y1), (x2, y2)) = νA×B((x1, y1), (x2, y2))).

Then

νC((x1, y1), (x2, y2)) ≥ νC((x1, y1) ∧ (x1 ∨ x2, y1 ∧ y2)), (x2, y2) ∧ (x1 ∨ x2, y1 ∧ y2))

(Lemma 3.7(1))

= νC((x1∧x1∨x2, y1∧y1∧y2), (x2∧x1∨x2, y2∧y1∧y2)) = νC((x1, y1∧y2), (x2, y1∧y2))
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= µA(x1, x2).

Thus
νC((x1, y1), (x2, y2)) ≥ νA(x1, x2). (f)

Also

νC((x1, y1), (x2, y2)) ≥ νC((x1, y1) ∧ (x1 ∧ x2, y1 ∨ y2)), (x2, y2) ∧ (x1 ∧ x2, y1 ∨ y2)

(Lemma 3.7(1))

= νC((x1∧x1∧x2, y1∧y1∨y2), (x2∧x1∧x2, y2∧y1∨y2)) = νC((x1∧x2, y1), (x1∧x2, y2)

= νB(y1, y2).

Then
νC((x1, y1), (x2, y2)) ≥ νB(y1, y2). (g)

Now from (f) and (g) we get that

νC((x1, y1), (x2, y2)) = νC((x1, y1), (x2, y2)) ∨ νC((x1, y1), (x2, y2)))

≥ νA(x1, x2) ∨ νB(y1, y2)) = νA×B((x1, y1), (x2, y2))

and then
νC((x1, y1), (x2, y2)) ≥ νA×B((x1, y1), (x2, y2)). (h)

Now
νA×B((x1, y1), (x2, y2)) = νA(x1, x2) ∨ µB(y1, y2)

= νC((x1, y3), (x2, y3)) ∨ νC((x3, y1), (x3, y2))

= νC((x1, y1∧y2), (x2, y1∧y2))∨νC((x1∧x2, y1), (x1∧x2, y2)) (Proposition 3.11)

≥ νC((x1, y1 ∧ y2) ∨ (x1 ∧ x2, y1), (x2, y1 ∧ y2) ∨ (x1 ∧ x2, y2))) (Difinition 3.5)

= νC((x1 ∨ x1 ∧ x2, y1 ∧ y2 ∨ y1), (x2 ∨ x1 ∧ x2, y1 ∧ y2 ∨ y2)) = νC((x1, y1), (x2, y2)).

Then
νA×B((x1, y1), (x2, y2))) ≥ νC((x1, y1), (x2, y2)). (i)

Then by (c) and (d) we obtain that

νC((x1, y1), (x2, y2)) = νA×B((x1, y1), (x2, y2))). (j)

Therefore (e) and (j) give us that

C((x1, y1), (x2, y2)) = (µC((x1, y1), (x2, y2)), νC((x1, y1), (x2, y2)))
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= (µA×B((x1, y1), (x2, y2))), νA×B((x1, y1), (x2, y2)))) = (A×B)((x1, y1), (x2, y2))))

which yields C = A×B.
Remark 3.13. In the Propositions 3.9 and 3.12 it is also proved that if C ∈
IFC(X × Y ×X × Y ), then we can define A ∈ IFC(X ×X) and B ∈ IFC(Y ×
Y ) such that C = A × B where A(x1, x2) = C((x1, y), (x2, y)) and B(y1, y2) =
C((x, y1), (x, y2)) for all x, x1, x2 ∈ X and y, y1, y2 ∈ Y.
Definition 3.14. If A ∈ IFC(X×X), then A = (µA, νA) is an equivalence relation

on X × X and so it determines similarity classes. Let
X ×X
A

denote the set of

all similarity classes of X ×X determined by A. Suppose
X ×X
A

= {Ax | x ∈ X}
where Ax : X → [0, 1] such that Ax(y) = µ(x, y) for all y ∈ X. Define two binary

operations
∐

and
∏

on
X ×X
A

by Ax

∐
Ay = Ax∨y and Ax

∏
Ay = Ax∧y for all

x, y ∈ X. Then
X ×X
A

together with the binary operations
∐

and
∏

is a lattice,

which is called the factor lattice of X ×X corresponding to A.

Proposition 3.15. Let X, Y,A = (µA, νA), B = (µB, νB) and A × B be as in

Proposition 3.9. Then the factor lattice
X × Y ×X × Y

A×B
corresponding to A × B

is isomorphic to the product of the corresponding factor lattices
X ×X
A

and
Y × Y
B

.

Proof. Let
X ×X
A

= {Ax | x ∈ X} and
Y × Y
B

= {By | y ∈ Y } such that

X × Y ×X × Y
A×B

= {(A×B)(x,y) | (x, y) ∈ X × Y }.

Define the map

ϕ :
X ×X
A

× Y × Y
B

→ X × Y ×X × Y
A×B

as
ϕ(Ax, By) = (A×B)(x,y).

Let x1, x2 ∈ X and y1, y2 ∈ Y. Firstly, we show that ϕ is well defined. If
(Ax1 , By1) = (Ax2 , By2), then Ax1 = Ax2 and By1 = By2 so A(x1, x2) = (1, 0)
and B(y1, y2) = (1, 0) which mean that (A × B)((x1, y1), (x2, y2)) = (1, 0) and
then (A × B)(x1,y1)(x2, y2) = (1, 0) and Lemma 3.4 give us that (A × B)(x1,y1) =
(A×B)(x2,y2) and thus ϕ is well defined.
Secondly, we prove that ϕ is one to one. Let

(A×B)(x1,y1) = (A×B)(x2,y2)
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then
(A×B)((x1, y1), (x2, y2)) = (1, 0)

which means that

(µA(x1, x2) ∧ µB(y1, y2), νA(x1, x2) ∨ νB(y1, y2)) = (1, 0)

and so

µA(x1, x2) ∧ µB(y1, y2) = 1 and νA(x1, x2) ∨ νB(y1, y2)) = 0

and then

µA(x1, x2) = 1 = µB(y1, y2) and νA(x1, x2) = 0 = νB(y1, y2)).

Now we will have that

A(x1, x2) = (µA(x1, x2), νA(x1, x2)) = 1 andB(y1, y2) = (µB(y1, y2), νB(y1, y2)) = 0.

By Lemma 3.4 we get Ax1 = Ax2 and By1 = By2 and then (Ax1 , By1) = (Ax2 , By2)
which yields ϕ is one to one.
Thirdly, It is clearly that ϕ is onto.
Finally, we prove that ϕ is a lattice homomorphism. Let

(Ax1 , By1), (Ax2 , By2) ∈
X ×X
A

× Y × Y
B

and
∐

(
∏

) be the join(meet) in factor lattice. Then

ϕ((Ax1 , By1)
∐

(Ax2 , By2)) = ϕ(Ax1

∐
Ax2 , By1

∐
By2) = ϕ(Ax1∨x2 , By1∨y2)

(Definition 3.14)

= (A×B)(x1∨x2,y1∨y2) = (A×B)(x1,y1)∨(x2∨y2) = (A×B)(x1,y1)

∐
(A×B)(x2,y2)

= ϕ(Ax1 , By1)
∐

ϕ(Ax2 , By2).

Similarly

ϕ((Ax1 , By1)
∏

(Ax2 , By2)) = ϕ(Ax1 , By1)
∏

ϕ(Ax2 , By2).

Therefore ϕ is a lattice homomorphism and proof is complete.
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