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1. Introduction, Definitions and Notations
We denote by C the set of all finite complex numbers. Let f be an entire

function defined on C. The maximum modulus function Mf (r) and the maxi-

mum term µf (r) of f =
∞∑
n=0

anz
n on |z| = r are defined as Mf = max

|z|=r
|f (z)| and

µf (r) = max
n≥0

(|an|rn) respectively. Moreover, if f is non-constant entire function

then Mf (r) is also strictly increasing and continuous function of r. Therefore, its
inverse M−1

f : (Mf (0),∞)→ (0,∞) exists and is such that lim
s→+∞

M−1
f (s) =∞. We
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use the standard notations and definitions of the theory of entire functions which
are available in [23] and [24], and therefore we do not explain those in details.

Let L be a class of continuous non-negative functions α defined on (−∞,+∞)
such that α(x) = α(x0) ≥ 0 for x ≤ x0 with α(x) ↑ +∞ as x → +∞ and
α((1 + o(1))x) = (1 + o(1))α(x) as x → +∞. We say that α ∈ L0, if α ∈ L and
α(cx) = (1 + o(1))α(x) as x0 ≤ x → +∞ for each c ∈ (0,+∞), i.e., α is slowly
increasing function. Clearly L0 ⊂ L. The value

%(α,β)[f ] = lim sup
r→+∞

α(logMf (r))

β(log r)
(α ∈ L, β ∈ L)

is called [21] generalized order (α, β) of f . For details about generalized order (α, β)
one may see [21]. During the past decades, several authors made close investigations
on the properties of entire functions related to generalized order (α, β) in some
different direction. For the purpose of further applications, Biswas et al. [3, 5]
have given the definitions of the generalized order (α, β) and generalized lower
order (α, β) of an entire function after giving a minor modification to the original
definition of generalized order (α, β) of an entire function (e.g. see, [21]).

Definition 1. [3, 5] Let α, β ∈ L0. The generalized order (α, β) and generalized
lower order (α, β) denoted by %(α,β)[f ] and λ(α,β)[f ] respectively of an entire function
f are defined as:

%(α,β)[f ] = lim sup
r→+∞

α(Mf (r))

β(r)
and λ(α,β)[f ] = lim inf

r→+∞

α(Mf (r))

β(r)
.

Mainly the growth investigation of entire functions has usually been done through
their maximum moduli function in comparison with those of exponential function.
But if one is paying attention to evaluate the growth rates of any entire function
with respect to a new entire function, the notions of relative growth indicators (see
e.g. [1, 2]) will come. Now in order to make some progresses in the study of relative
order, Biswas et al. [9] have introduced the definitions of generalized relative order
(α, β) and generalized relative lower order (α, β) of an entire function with respect
to another entire function in the following way:

Definition 2. [9] Let α, β ∈ L0. The generalized relative order (α, β) and gener-
alized relative lower order (α, β) of an entire function f with respect to an entire
function g denoted by %(α,β)[f ]g and λ(α,β)[f ]g respectively are defined as:

%(α,β)[f ]g
λ(α,β)[f ]g

= lim
r→+∞

sup
inf

α(M−1
g (Mf (r)))

β(r)
.
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In terms of maximum terms of entire functions, Definition 2 can be reformulated
as:

Definition 3. Let α, β ∈ L0. The growth indicators ρ(α,β)[f ]g and λ(α,β)[f ]g of an
entire function f with respect to another entire function g are defined as:

%(α,β)[f ]g
λ(α,β)[f ]g

= lim
r→+∞

sup
inf

α(µ−1g (µf (r)))

β(r)
.

In fact, the Definition 2 and Definition 3 are equivalent {cf. [17]}.
The main aim of this paper is to establish some newly developed results related

to the growth rates of composition of two entire functions on the basis of generalized
relative order (α, β) and generalized relative lower order (α, β) of entire function
with respect to another entire function which extend some earlier results (see, e.g.,
[22]). In fact some works in this direction have already been explored in [3] to [16].

2. Lemmas
In this section we present some lemmas which will be needed in the sequel.

Lemma 1. [18] Let f and g are any two entire functions with g(0) = 0. Also let

B satisfy 0 < B < 1 and c(B) = (1−B)2

4B
. Then for all sufficiently large values of r,

Mf (c(B)Mg(Br)) ≤Mf(g)(r) ≤Mf (Mg(r)).

In addition if B = 1
2
, then for all sufficiently large values of r,

Mf(g)(r) ≥Mf

(1

8
Mg

(r
2

))
.

Lemma 2. [19] Let f and g be entire functions. Then for every δ > 1 and
0 < r < R,

µf◦g (r) ≤ δ

δ − 1
µf

( δR

R− r
µg (R)

)
.

Lemma 3. [19] If f and g are any two entire functions. Then for all sufficiently
large values of r,

µf◦g(r) ≥
1

2
µf

( 1

16
µg

(r
4

))
.

3. Main Results
In this section we present the main results of the paper. Below we suppose that

functions α1, α2, α3, β1, β2 and β3 belong to the class L0.

Theorem 1. Let f , g and h be any three entire functions such that 0 < λ(α1,β1)[f ]h ≤
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%(α1,β1)[f ]h < +∞. and λ(α2,β2)[g] > 0. Also let γ be a positive continuous function
on [0,+∞) increasing to +∞ and A ≥ 0 be any number.

(i) If β1(α
−1
2 (log r)) ≥ r and lim

r→+∞
log γ(r)
log r

= 0, then

lim
r→+∞

α1(M
−1
h (Mf(g)(β

−1
2 (log r))))

{α1(M
−1
h (Mf (β

−1
1 (γ(r)))))}1+A

= +∞ and (3.1)

(ii) if either β1(r) = B(α2(r)) where B is any positive constant and lim
r→+∞

log γ(r)
log r

= 0 or β1(α
−1
2 (r)) ∈ L0 and lim

r→+∞
log γ(r)

β1(α
−1
2 (log r))

= 0, then

lim
r→+∞

exp(α1(M
−1
h (Mf(g)(β

−1
2 (log r)))))

{α1(M
−1
h (Mf (β

−1
1 (γ(r)))))}1+A

= +∞. (3.2)

Proof. From the definition of %(α1,β1)[f ]h, it follows for all sufficiently large values
of r that

α1(M
−1
h (Mf (β

−1
1 (γ(r))))) ≤ (%(α1,β1)[f ]h + ε)γ(r). (3.3)

Since M−1
h (r) is an increasing function of r, it follows from Lemma 1 and for all

sufficiently large values r that

α1(M
−1
h (Mf(g)(β

−1
2 (log r)))) ≥ α1

(
M−1

h

(
Mf

(1

8
Mg

(β−12 (log r)

2

))))
i.e., α1(M

−1
h (Mf(g)(β

−1
2 (log r)))) ≥

(1 + o(1))(λ(α1,β1)[f ]h − ε)β1
(
Mg

(β−12 (log r)

2

))
. (3.4)

If β1(α
−1
2 (log r)) ≥ r, then from (3.4) it follows for all sufficiently large values of r

that

α1(M
−1
h (Mf(g)(β

−1
2 (log r)))) ≥

(1 + o(1))(λ(α1,β1)[f ]h − ε)β1
(
α−12

(
α2

(
Mg

(β−12 (log r)

2

))))
(3.5)

i.e., α1(M
−1
h (Mf(g)(β

−1
2 (log r)))) ≥

(1 + o(1))(λ(α1,β1)[f ]h − ε)β1(α−12 (log r(1+o(1))(λ(α2,β2)[g]−ε))). (3.6)
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Now combining (3.3) and (3.6) it follows for all sufficiently large values of r that

α1(M
−1
h (Mf(g)(β

−1
2 (log r))))

{α1(M
−1
h (Mf (β

−1
1 (γ(r)))))}1+A

≥

(1 + o(1))(λ(α1,β1)[f ]h − ε)β1(α−12 (log r(1+o(1))(λ(α2,β2)[g]−ε)))

(%(α1,β1)[f ]h + ε)1+A{γ(r)}1+A
.

Since lim
r→+∞

log γ(r)
log r

= 0 and β1(α
−1
2 (log r)) ≥ r, therefore

β1(α
−1
2 (log r

(1+o(1))(λ(α2,β2)
[g]−ε)

))

{γ(r)}1+A → +∞ as r → +∞, then from above it follows that

lim inf
r→+∞

α1(M
−1
h (Mf(g)(β

−1
2 (log r))))

{α1(M
−1
h (Mf (β

−1
1 (γ(r)))))}1+A

= +∞,

i.e., (3.1) is proved.
If β1(r) = Bα2(r) where B is any positive constant, then from (3.4) it follows

for all sufficiently large values of r that

α1(M
−1
h (Mf(g)(β

−1
2 (log r)))) ≥

B(1 + o(1))(λ(α1,β1)[f ]h − ε)α2

(
Mg

(β−12 (log r)

2

))
(3.7)

i.e., α1(M
−1
h (Mf(g)(β

−1
2 (log r)))) ≥ log rB(1+o(1))(λ(α1,β1)[f ]h−ε)(λ(α2,β2)[g]−ε)

i.e., exp(α1(M
−1
h (Mf(g)(β

−1
2 (log r))))) ≥ rB(1+o(1))(λ(α1,β1)[f ]h−ε)(λ(α2,β2)[g]−ε). (3.8)

Hence in view of (3.3) and (3.8), we get for all sufficiently large values of r that

exp(α1(M
−1
h (Mf(g)(β

−1
2 (log r)))))

{α1(M
−1
h (Mf (β

−1
1 (γ(r)))))}1+A

≥ rB(1+o(1))(λ(α1,β1)[f ]h−ε)(λ(α2,β2)[g]−ε)

(%(α1,β1)[f ]h + ε)1+A{γ(r)}1+A
.

As lim
r→+∞

log γ(r)
log r

= 0, so r
B(1+o(1))(λ(α1,β1)

[f ]h−ε)(λ(α2,β2)
[g]−ε)

{γ(r)}1+A → +∞ as r → +∞. Thus it

follows from above that

exp(α1(M
−1
h (Mf(g)(β

−1
2 (log r)))))

{α1(M
−1
h (Mf (β

−1
1 (γ(r)))))}1+A

→ +∞, as r → +∞,
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i.e., (3.2) is proved.
Finally if β1(α

−1
2 (r)) ∈ L0. Then from (3.5) we obtain for all sufficiently large

values of r that

α1(M
−1
h (Mf(g)(β

−1
2 (log r)))) > (1 + o(1))(λ(α1,β1)[f ]h − ε)β1(α−12 (log r))

i.e., exp(α1(M
−1
h (Mf(g)(β

−1
2 (log r))))) >

exp((1 + o(1))(λ(α1,β1)[f ]h − ε)β1(α−12 (log r))),

whence in view of (3.3) and the condition lim
r→+∞

log γ(r)

β1(α
−1
2 (log r))

= 0 we get from above

that

exp(α1(M
−1
h (Mf(g)(β

−1
2 (log r)))))

{α1(M
−1
h (Mf (β

−1
1 (γ(r)))))}1+A

≥
exp((1 + o(1))(λ(α1,β1)[f ]h − ε)β1(α−12 (log r)))

(%(α1,β1)[f ]h + ε)1+A{γ(r)}1+A
→ +∞ as r → +∞,

i.e., (3.2) is proved again. Thus the proof of Theorem 1 is completed.

Remark 1. Theorem 1 is still valid with “limit superior” instead of “limit” if we
replace the condition “0 < λ(α1,β1)[f ]h ≤ %(α1,β1)[f ]h < +∞” by “ 0 < λ(α1,β1)[f ]h <
+∞”.

In the line of Theorem 1 one may state the following theorem without proof:

Theorem 2. Let f , g, h and k be any four entire functions such that λ(α1,β1)[f ]h
> 0, %(α3,β3)[g]k < +∞ and λ(α2,β2)[g] > 0. Also let γ be a positive continuous
function on [0,+∞) increasing to +∞. For any number A ≥ 0,

(i) if β1(α
−1
2 (log r)) ≥ r and lim

r→+∞
log γ(r)
log r

= 0, then

lim
r→+∞

α1(M
−1
h (Mf(g)(β

−1
2 (log r))))

{α3(M
−1
k (Mg(β

−1
3 (γ(r)))))}1+A

= +∞ and

(ii) if either β1(r) = B(α2(r)) where B is any positive constant and lim
r→+∞

log γ(r)
log r

= 0 or β1(α
−1
2 (r)) ∈ L0 and lim

r→+∞
log γ(r)

β1(α
−1
2 (log r))

= 0, then

lim
r→+∞

exp(α1(M
−1
h (Mf(g)(β

−1
2 (log r)))))

{α3(M
−1
k (Mg(β

−1
3 (γ(r)))))}1+A

= +∞,

Remark 2. In Theorem 2 if we take the condition “λ(α3,β3)[g]k < +∞” instead
of “%(α3,β3)[g]k < +∞”, then also Theorem 2 remains true with “limit superior” in
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place of “ limit ”.

Theorem 3. Let f , g and h be any three entire functions such that 0 < λ(α1,β1)[f ]h ≤
%(α1,β1)[f ]h < +∞ and %(α2,β2)[g] < +∞. Also let γ be a positive continuous func-
tion on [0,+∞) increasing to +∞ and A ≥ 0 be any number.

(i) If β1(α
−1
2 (log r)) ≤ r and lim

r→+∞
log γ(r)
log r

= +∞, then

lim
r→+∞

{α1(M
−1
h (Mf(g)(β

−1
2 (log r))))}1+A

α1(M
−1
h (Mf (β

−1
1 (γ(r)))))

= 0 and (3.9)

(ii) if either β1(r) = Bα2(r) where B is any positive constant and lim
r→+∞

log γ(r)
log r

= +∞ or β1(α
−1
2 (r)) ∈ L0 and lim

r→+∞
log γ(r)

β1(α
−1
2 (log r))

= +∞, then

lim
r→+∞

{exp(α1(M
−1
h (Mf(g)(β

−1
2 (log r)))))}1+A

α1(M
−1
h (Mf (β

−1
1 (γ(r)))))

= 0. (3.10)

Proof. From the definition of λ(α1,β1)[f ]h, we get for all sufficiently large values of
r that

α1(M
−1
h (Mf (β

−1
1 (γ(r))))) ≥ (λ(α1,β1)[f ]h − ε)γ(r). (3.11)

Since M−1
h (r) is an increasing function of r, it follows from Lemma 1 for all suffi-

ciently large values of r that

α1(M
−1
h (Mf(g)(β

−1
2 (log r)))) 6

(%(α1,β1)[f ]h + ε)β1(Mg(β
−1
2 (log r))). (3.12)

If β1(α
−1
2 (log r)) ≤ r, then we get from (3.12) for all sufficiently large values of r

that

α1(M
−1
h (Mf(g)(β

−1
2 (log r)))) 6

(%(α1,β1)[f ]h + ε)β1(α
−1
2 (α2(Mg(β

−1
2 (log r))))) (3.13)

i.e., α1(M
−1
h (Mf(g)(β

−1
2 (log r)))) 6

(%(α1,β1)[f ]h + ε)β1(α
−1
2 (log r(%(α2,β2)[g]+ε))). (3.14)
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Since β1(α
−1
2 (log r)) ≤ r and lim

r→+∞
log γ(r)
log r

= +∞, so we obtain from (3.11) and

(3.12) for all sufficiently large values of r that

{α1(M
−1
h (Mf(g)(β

−1
2 (log r))))}1+A

α1(M
−1
h (Mf (β

−1
1 (γ(r)))))

6

(%(α1,β1)[f ]h + ε)1+A[β1(α
−1
2 (log r(%(α2,β2)[g]+ε)))]1+A

(λ(α1,β1)[f ]h − ε)γ(r)

i.e., lim sup
r→+∞

{α1(M
−1
h (Mf(g)(β

−1
2 (log r))))}1+A

α1(M
−1
h (Mf (β

−1
1 (γ(r)))))

= 0,

i.e., (3.9) is proved.
If β1(r) = Bα2(r) where B is any positive constant, then get from (3.12) for all

sufficiently large values of r that

α1(M
−1
h (Mf(g)(β

−1
2 (log r)))) 6 B(%(α1,β1)[f ]h + ε)α2(Mg(β

−1
2 (log r)))

i.e., α1(M
−1
h (Mf(g)(β

−1
2 (log r)))) 6 B(%(α1,β1)[f ]h + ε)(%(α2,β2)[g] + ε) log r

i.e., exp(α1(M
−1
h (Mf(g)(β

−1
2 (log r))))) 6 rB(%(α1,β1)[f ]h+ε)(%(α2,β2)[g]+ε). (3.15)

So combining (3.11) and (3.15), we obtain for all sufficiently large values of r that

{exp(α1(M
−1
h (Mf(g)(β

−1
2 (log r)))))}1+A

α1(M
−1
h (Mf (β

−1
1 (γ(r)))))

6
rB(%(α1,β1)[f ]h+ε)(%(α2,β2)[g]+ε)(1+A)

(λ(α1,β1)[f ]h − ε)γ(r)
.

As lim
r→+∞

log γ(r)
log r

= +∞, so r
B(%(α1,β1)

[f ]h+ε)(%(α2,β2)
[g]+ε)(1+A)

γ(r)
→ 0 as r → +∞. Thus it

follows from above that

lim
r→+∞

{exp(α1(M
−1
h (Mf(g)(β

−1
2 (log r)))))}1+A

α1(M
−1
h (Mf (β

−1
1 (γ(r)))))

= 0,

i.e., (3.10) is proved.

Finally if β1(α
−1
2 (r)) ∈ L0 and lim

r→+∞
log γ(r)

β1(α
−1
2 (log r))

= +∞, then we have from

(3.13) for all sufficiently large values of r that

α1(M
−1
h (Mf(g)(β

−1
2 (log r)))) 6 (1 + o(1))(%(α1,β1)[f ]h + ε)β1(α

−1
2 (log r))
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i.e., exp(α1(M
−1
h (Mf(g)(β

−1
2 (log r)))))

6 exp((1 + o(1))(%(α1,β1)[f ]h + ε)β1(α
−1
2 (log r))), (3.16)

whence in view of (3.11) and the condition lim
r→+∞

log γ(r)

β1(α
−1
2 (log r))

= +∞ we get from

above that

{exp(α1(M
−1
h (Mf(g)(β

−1
2 (log r)))))}1+A

α1(M
−1
h (Mf (β

−1
1 (γ(r)))))

6
[exp((1 + o(1))(%(α1,β1)[f ]h + ε)β1(α

−1
2 (log r)))]1+A

(λ(α1,β1)[f ]h − ε)γ(r)
→ 0 as r → +∞,

i.e., (3.10) is proved again. Thus the theorem follows.

Remark 3. In Theorem . if we take the condition “%(α1,β1)[f ]h > 0” instead
of “0 < λ(α1,β1)[f ]h ≤ %(α1,β1)[f ]h < +∞”, the theorem remains true with “limit
inferior” in place of “limit”.

Theorem 4. Let f , g, h and k be any four entire functions such that %(α1,β1)[f ]h
< +∞, λ(α3,β3)[g]k > 0 and %(α2,β2)[g] < +∞. Also let γ be a positive continuous
function on [0,+∞) increasing to +∞ and A ≥ 0 be any number.

(i) If β1(α
−1
2 (log r)) ≤ r and lim

r→+∞
log γ(r)
log r

= +∞, then

lim
r→+∞

{α1(M
−1
h (Mf(g)(β

−1
2 (log r))))}1+A

α2(M
−1
k (Mg(β

−1
2 (γ(r)))))

= 0 and

(ii) if either β1(r) = Bα2(r) where B is any positive constant and lim
r→+∞

log γ(r)
log r

= +∞ or β1(α
−1
2 (r)) ∈ L0 and lim

r→+∞
log γ(r)

β1(α
−1
2 (log r))

= +∞, then

lim
r→+∞

{exp(α1(M
−1
h (Mf(g)(β

−1
2 (log r)))))}1+A

α2(M
−1
k (Mg(β

−1
2 (γ(r)))))

= 0.

The proof of Theorem 4 would run parallel to that of Theorem 3. We omit the
details.

Remark 4. In Theorem 4, if we take the condition “%(α3,β3)[g]k > 0” instead
of “λ(α3,β3)[g]k > 0”, the theorem remains true with “limit” replaced by “limit
inferior”.
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Remark 5. In view of Definition 2 and with the help of Lemma 2 and Lemma 3,
the same results of above theorems and remarks can also be deduced with maximum
terms of entire functions.
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