J. of Ramanujan Society of Mathematics and Mathematical Sciences Vol. 9, No. 1 (2021), pp. 29-46

ISSN (Online): 2582-5461

ISSN (Print): 2319-1023

A STUDY ON GROWTH PROPERTIES OF GENERALISED ITERATED INTEGRAL FUNCTIONS

Dibyendu Banerjee and Sumanta Ghosh*

Department of Mathematics, Visva-Bharati, Santiniketan - 731235, West Bengal, INDIA

E-mail: dibyendu192@rediffmail.com

*Ranaghat P.C. High School, Ranaghat - 741201, Nadia, West Bengal, INDIA

E-mail: sumantarpc@gmail.com

(Received: Sep. 12, 2021 Accepted: Nov. 15, 2021 Published: Dec. 30, 2021)

Abstract: In the present paper we investigate some growth properties of generalised iterated integral functions.

Keywords and Phrases: Integral function, order, iteration.

2020 Mathematics Subject Classification: 30D05.

1. Introduction and Definitions

Let f(z) and g(z) be two integral functions. In [3], T(r, f), M(r, f), N(r, a, f), $\delta(a, f)$, $\delta(a(z).f)$, log^+x have their usual meanings in the Nevanlinna theory of meromorphic functions.

After that in [2], Clunie studied some comparative growths of T(r, fg) with T(r, f) and T(r, g) and showed that

$$\lim_{r \to \infty} \frac{T\left(r, fg\right)}{T\left(r, f\right)} = \infty \text{ and } \lim_{r \to \infty} \frac{T\left(r, fg\right)}{T\left(r, g\right)} = \infty,$$

where f(z) and g(z) are transcendental integral functions. In [7], Singh proved some comparative growths of $\log T(r, fg)$ and T(r, f). In [4] Lahiri proved some

theorems on the comparative growth of $\log T(r, fg)$ with T(r, f) and, as well as, with T(r, g).

Also the order and the lower order of the integral function f(z) are respectively denoted by ρ_f and λ_f and are defined by

$$\rho_f = \limsup_{r \to \infty} \frac{\log \log M(r, f)}{\log r}$$

and

$$\lambda_f = \liminf_{r \to \infty} \frac{\log \log M(r, f)}{\log r}.$$

Definition 1.1. The number $\overline{\lambda}_f$ is said to be the hyper lower order of f(z) if and only if

$$\overline{\lambda}_f = \liminf_{r \to \infty} \frac{\log \log \log M(r, f)}{\log r}.$$

It is clear that $\overline{\lambda}_f \leq \lambda_f$.

Definition 1.2. A function $\rho_f(r)$ is called a proximate order of f(z) relative to T(r, f) if and only if

- (i) $\rho_f(r)$ is real, continuous and piecewise differentiable for $r > r_0$
- $(ii) \lim_{r \to \infty} \rho_f(r) = \rho_f,$
- (iii) $\lim_{r\to\infty} r \log r \rho'_f(r) = 0$ and
- (iv) $\limsup_{r\to\infty} \frac{T(r,f)}{r^{\rho_f(r)}} = 1.$

Note 1.3. For $\delta > 0$ the function $r^{\rho_f + \delta - \rho_f(r)}$ is ultimately an increasing function of r.

Since $\frac{d}{dr}r^{\rho_f+\delta-\rho_f(r)} = \left\{ \rho_f + \delta - \rho_f(r) - r \log r \rho_f'(r) \right\} r^{\rho_f+\delta-1-\rho_f(r)} > 0$ for sufficiently large values of r.

In [8], Zhou proved the following theorem.

Theorem 1.4. Let f(z) and g(z) be two integral functions of finite orders such that g(0) = 0 and $\rho_g < \lambda_f \le \rho_f$. Then

$$\lim_{r\to\infty}\frac{\log T\left(r,fg\right)}{T\left(r,f\right)}=0.$$

In [4], Lahiri proved the following theorem.

Theorem 1.5. Let f(z) and g(z) be two non-constant integral functions such that

 $\lambda_q < \lambda_f \le \rho_f < \infty$. Then

$$\liminf_{r \to \infty} \frac{\log T(r, fg)}{T(r, f)} = 0.$$

If $\rho_g > \rho_f$, Singh [7] proved the following theorem.

Theorem 1.6. Let f(z) and g(z) be two integral functions of finite orders with $\rho_g > \rho_f$. Then

$$\lim\sup_{r\to\infty}\frac{\log T\left(r,fg\right)}{T\left(r,f\right)}=\infty.$$

In [4], Lahiri proved the following four theorems.

Theorem 1.7. Let f(z) and g(z) be two integral functions such that $0 < \lambda_f < \lambda_g < \infty$. Then

$$\limsup_{r \to \infty} \frac{\log T\left(r, fg\right)}{T\left(r, f\right)} = \infty.$$

Theorem 1.8. Let f(z) and g(z) be two non-constant integral functions such that ρ_f and ρ_g are finite. Then

$$\liminf_{r \to \infty} \frac{\log T(r, fg)}{T(r, g)} \le 3.\rho_f.2^{\rho_g}.$$

Theorem 1.9. Let f and g be non-constant integral functions such that ρ_f and λ_g are finite. Also suppose that there exist integral functions $a_i(z)$ $(i = 1, 2, ..., n; n \le \infty)$ such that (i) $T(r, a_i(z)) = o\{T(r, g)\}$ as $r \to \infty$ for i = 1, 2, ..., n and (ii) $\sum_{i=1}^{n} \delta(a_i(z), g) = 1$. Then

$$\limsup_{r \to \infty} \frac{\log T(r, fg)}{T(r, q)} < \pi . \rho_{f_k}.$$

Theorem 1.10. Let f and g be transcendental integral functions such that

- (i) $\rho_{g} < \infty$ and the hyper lower order of g(z), $\overline{\lambda}_{g}$ is positive
- (ii) $\lambda_f > 0$, and
- (iii) $\delta(0, f) < 1$.

Then

$$\lim\sup_{r\to\infty}\frac{\log T\left(r,fg\right)}{T\left(r,q\right)}=\infty.$$

A real valued function $\phi(r)$ is said to have the property P [1] if

- (i) $\phi(r)$ is non-negative and continuous for $r \geq r_0$, say;
- (ii) $\phi(r)$ is strictly increasing and $\phi(r) \to \infty$ as $r \to \infty$;

and

 $(iii)\,\log\phi\left(r\right)<\delta\phi\left(r/2\right),\,\text{for all}\,\,\delta>0\,\,\text{and for all sufficiently large values of}\,\,r.$

Therefore a function satisfying the property P also satisfies the following relation :

 $\log^{[p]}\phi\left(r\right)<\delta\log^{[q]}\phi\left(r/2\right)$ for all $\delta>0,\,p>q$ and for all sufficiently large values of r.

For two non-constant integral functions f(z) and g(z), the inequality

$$\log M(r, f(g)) \le \log M(M(r, g), f)$$
 is obvious.

In the present paper we consider k non-constant integral functions $f_1, f_2, ..., f_k$ and a constant α with $0 < \alpha \le 1$ and form the iteration as below:

$$F_{1}^{1}(z) = (1 - \alpha)z + \alpha f_{1}(z)$$

$$F_{2}^{1}(z) = (1 - \alpha)F_{1}^{2}(z) + \alpha f_{1}(F_{1}^{2}(z))$$

$$F_{3}^{1}(z) = (1 - \alpha)F_{2}^{2}(z) + \alpha f_{1}(F_{2}^{2}(z))$$

$$\vdots$$

$$F_{n}^{1}(z) = (1 - \alpha)F_{n-1}^{2}(z) + \alpha f_{1}(F_{n-1}^{2}(z)).$$

Similarly

$$F_{1}^{2}(z) = (1 - \alpha)z + \alpha f_{2}(z)$$

$$F_{2}^{2}(z) = (1 - \alpha)F_{1}^{3}(z) + \alpha f_{2}(F_{1}^{3}(z))$$

$$F_{3}^{2}(z) = (1 - \alpha)F_{2}^{3}(z) + \alpha f_{2}(F_{2}^{3}(z))$$

$$\vdots$$

$$F_{n}^{2}(z) = (1 - \alpha)F_{n-1}^{3}(z) + \alpha f_{2}(F_{n-1}^{3}(z))$$

and

$$F_{1}^{k}(z) = (1 - \alpha)z + \alpha f_{k}(z)$$

$$F_{2}^{k}(z) = (1 - \alpha)F_{1}^{1}(z) + \alpha f_{k}(F_{1}^{1}(z))$$

$$F_{3}^{k}(z) = (1 - \alpha)F_{2}^{1}(z) + \alpha f_{k}(F_{2}^{1}(z))$$

$$\vdots$$

$$F_{n}^{k}(z) = (1 - \alpha)F_{n-1}^{1}(z) + \alpha f_{k}(F_{n-1}^{1}(z)).$$

Clearly all F_n^1 , F_n^2 , ..., F_n^k are integral functions. Throughout this paper we assume that maximum modulus functions of f_1 , f_2 , ..., f_k and all their generalised iterated functions satisfy the property P.

The main purpose of this paper is to extend the results of Lahiri [4] for generalised iterated integral functions.

2. Lemmas

The following lemmas will be needed to prove our results.

Lemma 2.1. [3] Let f(z) be an integral function. For $0 \le r < R < \infty$, we have

$$T(r, f) \le \log^+ M(r, f) \le \frac{R+r}{R-r} T(R, f).$$

Putting R = 2r, for large values of r, we have

$$T(r, f) \le \log M(r, f) \le 3T(2r, f)$$
.

Lemma 2.2. [5] Let f be an integral function of finite lower order. If there exist integral functions a_i $(i = 1, 2, 3, \dots, n; n \leq \infty)$ satisfying $T(r, a_i) = o\{T(r, f)\}$ and

$$\sum_{i=1}^{n} \delta(a_i, f) = 1 \quad \text{then} \quad \lim_{r \to \infty} \frac{T(r, f)}{\log M(r, f)} = \frac{1}{\pi}.$$

Lemma 2.3. [2] Let f(z) and g(z) be two integral functions with g(0) = 0. Let β satisfies $0 < \beta < 1$ and $C(\beta) = \frac{(1-\beta)^2}{4\beta}$. Then for r > 0

$$M(r, f \circ g) \ge M(C(\beta) M(\beta r, g), f).$$

Further if g(z) is any integral function, then with $\beta = \frac{1}{2}$, for sufficiently large values of r

$$M\left(r,f\circ g\right)\geq M\left(\frac{1}{8}M\left(\frac{r}{2},g\right)-\left|g\left(0\right)\right|,f\right).$$

Clearly

$$M(r, f \circ g) \ge M\left(\frac{1}{16}M\left(\frac{r}{2}, g\right), f\right).$$
 (2.1)

On the other hand the opposite inequality

$$M\left(r,f\circ g\right)\leq M\left(M\left(r,g\right),f\right)\tag{2.2}$$

is obvious.

Lemma 2.4. [6] Let f(z) be transcendental integral function, g(z) a transcendental integral function of finite order, η a constant satisfying $0 < \eta < 1$, and α is a positive number. Then we have

$$T\left(r,fg\right) + O\left(1\right) \ge N\left(r,0,fg\right) \ge \log\frac{1}{\eta} \left[\frac{N\left\{M\left(\left(\eta r\right)^{\frac{1}{1+\alpha}},g\right),0,f\right\}}{\log M\left(\left(\eta r\right)^{\frac{1}{1+\alpha}},g\right) - O\left(1\right)} \right] - O\left(1\right)$$

as $r \to \infty$ through all values.

3. Main Results

As an extension of Theorem 1.5 we have the following theorem.

Theorem 3.1. Let $f_1, f_2, ..., f_k$ be non-constant integral functions such that $\lambda_{f_k} < \lambda_{f_1} \leq \rho_{f_1} < \infty$. Then for $n = km, m \in \mathbb{N}$

$$\liminf_{r \to \infty} \frac{\log^{[n-1]} T(r, F_n^1)}{T(r, f_1)} = 0.$$

Proof. Since $\lambda_{f_k} < \lambda_{f_1}$, we can choose $\varepsilon (> 0)$ such that $\lambda_{f_k} + \varepsilon < \lambda_{f_1} - \varepsilon$. Also for all large values of r, $r^{\lambda_{f_1} - \frac{\varepsilon}{2}} < T(r, f_1)$ and for a sequence of values of r tending to infinity $\log M(r, f_k) < r^{\lambda_{f_k} + \varepsilon}$.

Then we have

$$T(r, F_{n}^{1}) \leq \log M(r, F_{n}^{1})$$

$$= \log M\{r, (1 - \alpha) F_{n-1}^{2} + \alpha f_{1}(F_{n-1}^{2})\}$$

$$\leq \log M(r, F_{n-1}^{2}) + \log M(r, f_{1}(F_{n-1}^{2})) + O(1)$$

$$\leq \log M(r, F_{n-1}^{2}) + \log M(M(r, F_{n-1}^{2}), f_{1}) + O(1)$$

$$\leq \log M(r, F_{n-1}^{2}) + \{M(r, F_{n-1}^{2})\}^{\rho_{f_{1}} + \varepsilon} + O(1)$$

$$\leq M(r, F_{n-1}^{2}) + \{M(r, F_{n-1}^{2})\}^{\rho_{f_{1}} + \varepsilon} + O(1). \tag{3.1}$$

Therefore,

$$\log T(r, F_n^1) \leq \log M(r, F_{n-1}^2) + (\rho_{f_1} + \varepsilon) \log M(r, F_{n-1}^2) + O(1)$$

$$\leq (1 + \rho_{f_1} + \varepsilon) \log M(r, F_{n-1}^2) + O(1)$$

$$\leq (1 + \rho_{f_1} + \varepsilon) \left[M(r, F_{n-2}^3) + \left\{ M(r, F_{n-2}^3) \right\}^{\rho_{f_2} + \varepsilon} \right] + O(1) \text{ .using } (3.1)$$

So,

$$\log^{[2]} T(r, F_n^1) \le \log M(r, F_{n-2}^3) + (\rho_{f_2} + \varepsilon) \log M(r, F_{n-2}^3) + O(1)$$

$$\le (1 + \rho_{f_2} + \varepsilon) \log M(r, F_{n-2}^3) + O(1).$$

Therefore,

$$\log^{[km-1]} T(r, F_n^1) \le (1 + \rho_{f_{k-1}} + \varepsilon) \log M(r, F_{n-(km-1)}^k) + O(1).$$

So,

$$\log^{[n-1]} T(r, F_n^1)$$

$$\leq (1 + \rho_{f_{k-1}} + \varepsilon) \log M(r, F_1^k) + O(1)$$

$$= (1 + \rho_{f_{k-1}} + \varepsilon) \log M(r, (1 - \alpha) z + \alpha f_k) + O(1)$$

$$\leq (1 + \rho_{f_{k-1}} + \varepsilon) \{\log M(r, z) + \log M(r, f_k)\} + O(1)$$

$$= (1 + \rho_{f_{k-1}} + \varepsilon) \{\log r + \log M(r, f_k)\} + O(1)$$

$$\leq (1 + \rho_{f_{k-1}} + \varepsilon) \{\log r + r^{\lambda_{f_k} + \varepsilon}\} + O(1) \text{ for a sequence}$$
(3.3)

of values of $r = r_s \to \infty$.

So for a sequence of values of $r=r_s$ tending to infinity we obtain

$$\frac{\log^{[n-1]}T\left(r,F_{n}^{1}\right)}{T\left(r,f_{1}\right)} < \frac{\left(1+\rho_{f_{k-1}}+\varepsilon\right)\left\{\log r+r^{\lambda_{f_{k}}+\varepsilon}\right\}+O\left(1\right)}{r^{\lambda_{f_{1}}-\frac{\varepsilon}{2}}}$$

and hence

$$\liminf_{r \to \infty} \frac{\log^{[n-1]} T(r, F_n^1)}{T(r, f_1)} = 0.$$

This proves the theorem.

Note 3.2. The conditions of Theorem 3.1 are not strictly sharp, which follows from the following example.

Example 3.3. Let $f_1 = f_2 = \dots = f_k = z$. Then $F_n^1(z) = z$ for every n. In this case $\lambda_{f_1} = \lambda_{f_2} = \dots = \lambda_{f_k} = 0$. But

$$\lim_{r \to \infty} \inf \frac{\log^{[n-1]} T(r, F_n^1)}{T(r, f_1)} = \lim_{r \to \infty} \frac{\log^{[n-1]} T(r, z)}{T(r, z)}$$

$$= \lim_{r \to \infty} \inf \frac{\log^{[n-1]} \log r}{\log r}$$

$$= \lim_{r \to \infty} \frac{\log^{[n]} r}{\log r}$$

$$= 0$$

The following four theorems are extensions of Theorem 1.7, Theorem 1.8, Theorem 1.9 and Theorem 1.10 of Lahiri [4].

Theorem 3.4. Let $f_1, f_2, ..., f_k$ be non-constant integral functions such that $0 < \lambda_{f_1} < \lambda_{f_k} < \infty$. Then for $n = km, m \in \mathbb{N}$

$$\lim_{r \to \infty} \sup \frac{\log^{[n-1]} T(r, F_n^1)}{T(r, f_1)} = \infty.$$

Proof. Since $\lambda_{f_1} < \lambda_{f_k}$, we can choose $\varepsilon > 0$ such that $\lambda_{f_1} + \varepsilon < \lambda_{f_k} - \varepsilon$. Also for all large values of r, $r^{\lambda_{f_k} - \frac{\varepsilon}{2}} < T(r, f_k)$.

Using Lemma 2.1, we have $T(r, F_n^1)$

$$\geq \frac{1}{3} \log M \left(\frac{r}{2}, F_{n}^{1} \right)$$

$$= \frac{1}{3} \log M \left(\frac{r}{2}, (1 - \alpha) F_{n-1}^{2} + \alpha f_{1} \left(F_{n-1}^{2} \right) \right)$$

$$\geq \frac{1}{3} \log \left\{ \alpha M \left(\frac{r}{2}, f_{1} \left(F_{n-1}^{2} \right) \right) - (1 - \alpha) M \left(\frac{r}{2}, F_{n-1}^{2} \right) \right\}$$

$$\geq \frac{1}{3} \log \left\{ \alpha M \left(\frac{1}{16} M \left(\frac{r}{2^{2}}, F_{n-1}^{2} \right), f_{1} \right) - (1 - \alpha) M \left(\frac{r}{2}, F_{n-1}^{2} \right) \right\}, \text{ using } (2.1)$$

$$\geq \frac{1}{3} \left\{ \log M \left(\frac{1}{16} M \left(\frac{r}{2^{2}}, F_{n-1}^{2} \right), f_{1} \right) - \log M \left(\frac{r}{2}, F_{n-1}^{2} \right) \right\} + O(1).$$

So,

$$\log T\left(r,F_n^1\right)$$

$$\geq \log \log M \left(\frac{1}{16} M \left(\frac{r}{2^{2}}, F_{n-1}^{2}\right), f_{1}\right) - \log \log M \left(\frac{r}{2}, F_{n-1}^{2}\right) + O(1)$$

$$\geq (\lambda_{f_{1}} - \varepsilon) \log \left(\frac{1}{16} M \left(\frac{r}{2^{2}}, F_{n-1}^{2}\right)\right) - \log \log M \left(\frac{r}{2}, F_{n-1}^{2}\right) + O(1)$$

$$> (\lambda_{f_{1}} - \varepsilon) \log M \left(\frac{r}{2^{2}}, F_{n-1}^{2}\right) - \frac{1}{2} (\lambda_{f_{1}} - \varepsilon) \log M \left(\frac{r}{2^{2}}, F_{n-1}^{2}\right) + O(1),$$
by property P
$$= \frac{1}{2} (\lambda_{f_{1}} - \varepsilon) \log M \left(\frac{r}{2^{2}}, F_{n-1}^{2}\right) + O(1)$$

$$\geq \frac{1}{2} (\lambda_{f_{1}} - \varepsilon) T \left(\frac{r}{2^{2}}, F_{n-1}^{2}\right) + O(1). \tag{3.4}$$

Therefore,

$$\log^{[2]} T(r, F_n^1) > \log T(\frac{r}{2^2}, F_{n-1}^2) + O(1)$$

$$> \frac{1}{2} (\lambda_{f_2} - \varepsilon) T(\frac{r}{2^4}, F_{n-2}^3) + O(1), \text{ using } (3.4)$$

and

$$\log^{[3]} T(r, F_n^1)$$

$$> \log T\left(\frac{r}{2^4}, F_{n-2}^3\right) + O(1)$$

$$> \frac{1}{2} \left(\lambda_{f_3} - \varepsilon\right) T\left(\frac{r}{2^6}, F_{n-3}^4\right) + O(1).$$

So,
$$\log^{[km-1]} T(r, F_n^1)$$

$$> \frac{1}{2} \left(\lambda_{f_{k-1}} - \varepsilon \right) T \left(\frac{r}{2^{2(km-1)}}, F_{n-(km-1)}^{k} \right) + O\left(1\right).$$

Therefore,
$$\log^{[n-1]} T(r, F_n^1)$$

$$\geq \frac{1}{2} (\lambda_{f_{k-1}} - \varepsilon) T \left(\frac{r}{2^{2(n-1)}}, F_1^k \right) + O(1)$$

$$= \frac{1}{2} (\lambda_{f_{k-1}} - \varepsilon) T \left(\frac{r}{2^{2(n-1)}}, (1 - \alpha) z + \alpha f_k \right) + O(1)$$

$$\geq \frac{1}{2} (\lambda_{f_{k-1}} - \varepsilon) \left\{ T \left(\frac{r}{2^{2(n-1)}}, f_k \right) - T \left(\frac{r}{2^{2(n-1)}}, z \right) \right\} + O(1)$$

$$\geq \frac{1}{2} (\lambda_{f_{k-1}} - \varepsilon) \left\{ \left(\frac{r}{2^{2(n-1)}} \right)^{\lambda_{f_k} - \frac{\varepsilon}{2}} - \log \left(\frac{r}{2^{2(n-1)}} \right) \right\} + O(1).$$

Also for a sequence of values of r tending to infinity $T\left(r,f_{1}\right) < r^{\lambda_{f_{1}}+\varepsilon}$. So,

$$\frac{\log^{[n-1]} T(r, F_n^1)}{T(r, f_1)} > \frac{\frac{1}{2} \left(\lambda_{f_{k-1}} - \varepsilon\right) \left\{ \left(\frac{r}{2^{2(n-1)}}\right)^{\lambda_{f_k} - \frac{\varepsilon}{2}} - \log\left(\frac{r}{2^{2(n-1)}}\right) \right\} + O(1)}{r^{\lambda_{f_1} + \varepsilon}}.$$

Therefore,

$$\limsup_{r \to \infty} \frac{\log^{[n-1]} T(r, F_n^1)}{T(r, f_1)} = \infty.$$

Hence the proof.

Theorem 3.5. Let $f_1, f_2, ..., f_k$ be non-constant integral functions such that ρ_{f_1} , $\rho_{f_2},...,\rho_{f_k}$ are finite. Then for $n=km, m \in \mathbb{N}$

$$\liminf_{r \to \infty} \frac{\log^{[n-1]} T(r, F_n^1)}{T(r, f_k)} \le 3 \left(1 + \rho_{f_{k-1}}\right) 2^{\rho_{f_k}}.$$

Proof. Let ε (0 < ε < 1) be arbitrary. Also for all large values of r, $r^{\lambda_{f_k}-\frac{\varepsilon}{2}}$ < $T(r, f_k)$.

From (3.3) we have

$$\log^{[n-1]} T(r, F_n^1) \le (1 + \rho_{f_{k-1}} + \varepsilon) \{\log r + \log M(r, f_k)\} + O(1).$$

Hence

$$\liminf_{r \to \infty} \frac{\log^{[n-1]} T\left(r, F_n^1\right)}{T\left(r, f_k\right)} \le \liminf_{r \to \infty} \frac{\left(1 + \rho_{f_{k-1}} + \varepsilon\right) \left\{\log r + \log M(r, f_k)\right\} + O\left(1\right)}{T\left(r, f_k\right)}$$

Therefore
$$\liminf_{r \to \infty} \frac{\log^{[n-1]} T(r, F_n^1)}{T(r, f_k)}$$

$$\leq \limsup_{r \to \infty} \frac{\left(1 + \rho_{f_{k-1}} + \varepsilon\right) \log r + O\left(1\right)}{r^{\lambda_{f_k} - \frac{\varepsilon}{2}}} + \liminf_{r \to \infty} \frac{\left(1 + \rho_{f_{k-1}} + \varepsilon\right) \log M(r, f_k)}{T\left(r, f_k\right)}$$

$$= \left(1 + \rho_{f_{k-1}}\right) \liminf_{r \to \infty} \frac{\log M(r, f_k)}{T\left(r, f_k\right)}, \text{ since } \varepsilon \text{ is arbitrary.}$$
(3.5)

Let $\rho_{f_k}(r)$ be a proximate order of $f_k(z)$ relative to $T(r, f_k)$. Since

$$\limsup_{r \to \infty} \frac{T(r, f_k)}{r^{\rho_{f_k}(r)}} = 1,$$

it follows that for all large values of r and given ε (0 < ε < 1)

$$T(r, f_k) < (1 + \varepsilon) r^{\rho_{f_k}(r)}$$
.

Using Lemma 2.1 for all large values of r,

$$\log M(r, f_k) \le 3T(2r, f_k) < 3(1+\varepsilon)(2r)^{\rho_{f_k}(2r)}$$

and so for large values of r

$$\log M\left(r, f_k\right) < 3\left(1 + \varepsilon\right) \frac{(2r)^{\rho_{f_k} + \delta}}{(2r)^{\rho_{f_k} + \delta - \rho_{f_k}(2r)}},$$

where δ (> 0) is arbitrary.

Since $(r)^{\rho_{f_k}+\delta-\rho_{f_k}(r)}$ is an increasing function of r, it follows that for all large r

$$\log M(r, f_k) < 3(1+\varepsilon) 2^{\rho_{f_k} + \delta} r^{\rho_{f_k}(r)}. \tag{3.6}$$

Again for a sequence of values or r tending to infinity we have

$$T(r, f_k) > (1 - \varepsilon) r^{\rho_{f_k}(r)}. \tag{3.7}$$

From (3.6) and (3.7) we get for a sequence of values or r tending to infinity

$$\log M(r, f_k) < 3 \frac{(1+\varepsilon)}{(1-\varepsilon)} 2^{\rho_{f_k} + \delta} T(r, f_k).$$

Therefore

$$\liminf_{r \to \infty} \frac{\log M(r, f_k)}{T(r, f_k)} \le 3 \frac{(1+\varepsilon)}{(1-\varepsilon)} 2^{\rho_{f_k} + \delta}.$$

Since δ (> 0) and ε (0 < ε < 1) are arbitrary, it follows that

$$\liminf_{r \to \infty} \frac{\log M(r, f_k)}{T(r, f_k)} \le 3.2^{\rho_{f_k}}.$$
(3.8)

Hence from (3.5) and (3.8) we get

$$\liminf_{r \to \infty} \frac{\log^{[n-1]} T(r, F_n^1)}{T(r, f_k)} \le 3 \left(1 + \rho_{f_{k-1}}\right) 2^{\rho_{f_k}}.$$

This proves the theorem.

Theorem 3.6. Let $f_1, f_2, ..., f_k$ be non-constant integral functions such that $\rho_{f_{k-1}}$ and λ_{f_k} are finite. Also suppose that there exist integral functions $a_i(z)$ $(i = 1, 2, ..., n; n \leq \infty)$ such that (i) $T(r, a_i(z)) = o\{T(r, f_k)\}$ as $r \to \infty$ for i = 1, 2, ..., n; $n \leq \infty$

$$1, 2, ..., n$$
 and (ii) $\sum_{i=1}^{n} \delta(a_i(z), f_k) = 1$. Then for $n = km, m \in \mathbb{N}$

$$\limsup_{r \to \infty} \frac{\log^{[n-1]} T(r, F_n^1)}{T(r, f_k)} \le \pi \left(1 + \rho_{f_{k-1}}\right).$$

Proof. Let ε (0 < ε < 1) be arbitrary. Also for all large values of r, $r^{\lambda_{f_k} - \frac{\varepsilon}{2}} < T(r, f_k)$.

From (3.3) we have

$$\log^{[n-1]} T(r, F_n^1) \le (1 + \rho_{f_{k-1}} + \varepsilon) \{\log r + \log M(r, f_k)\} + O(1).$$

Hence

$$\limsup_{r \to \infty} \frac{\log^{[n-1]} T\left(r, F_n^1\right)}{T\left(r, f_k\right)} \le \limsup_{r \to \infty} \frac{\left(1 + \rho_{f_{k-1}} + \varepsilon\right) \left\{\log r + \log M(r, f_k)\right\} + O\left(1\right)}{T\left(r, f_k\right)}$$

Therefore

$$\lim_{r\to\infty} \sup \frac{\log^{[n-1]} T(r, F_n^1)}{T(r, f_k)}$$

$$\leq \limsup_{r \to \infty} \frac{\left(1 + \rho_{f_{k-1}} + \varepsilon\right) \log r + O\left(1\right)}{r^{\lambda_{f_k} - \frac{\varepsilon}{2}}} + \limsup_{r \to \infty} \frac{\left(1 + \rho_{f_{k-1}} + \varepsilon\right) \log M(r, f_k)}{T\left(r, f_k\right)}$$

$$\leq \left(1 + \rho_{f_{k-1}}\right) \limsup_{r \to \infty} \frac{\log M(r, f_k)}{T\left(r, f_k\right)}, \text{ since } \varepsilon \text{ is arbitrary.}$$
(3.9)

Therefore using Lemma 2.2 in (3.9) we have

$$\limsup_{r \to \infty} \frac{\log^{[n-1]} T(r, F_n^1)}{T(r, f_k)} \le \pi \left(1 + \rho_{f_{k-1}}\right).$$

This proves the theorem.

Theorem 3.7. Let $f_1, f_2, ..., f_k$ be transcendental integral functions such that

- (i) $\rho_{f_k} < \infty$ and the hyper lower order of $f_k(z)$, $\overline{\lambda}_{f_k}$ is positive
- (ii) $\lambda_{f_1} > 0$ and
- (*iii*) $\delta(0, f_1) < 1$.

Then for $n = km, m \in \mathbb{N}$

$$\limsup_{r\to\infty}\frac{\log^{\left[n-1\right]}T\left(r,F_{n}^{1}\right)}{T\left(r,f_{k}\right)}=\infty.$$

Proof. Proceeding as Theorem 3.4, we have

$$\log^{[km-2]} T\left(r, F_n^1\right) > \frac{1}{2} \left(\lambda_{f_{k-2}} - \varepsilon\right) T\left(\frac{r}{2^{2(km-2)}}, F_{n-(km-2)}^{k-1}\right) + O\left(1\right).$$

So,
$$\log^{[n-2]} T(r, F_n^1)$$

$$> \frac{1}{2} \left(\lambda_{f_{k-2}} - \varepsilon \right) T \left(\frac{r}{2^{2(n-2)}}, F_2^{k-1} \right) + O(1)$$

$$= \frac{1}{2} \left(\lambda_{f_{k-2}} - \varepsilon \right) T \left(\frac{r}{2^{2(n-2)}}, (1-\alpha) F_1^k + \alpha f_1 \left(F_1^k \right) \right) + O(1)$$

$$\geq \frac{1}{2} \left(\lambda_{f_{k-2}} - \varepsilon \right) \left\{ T \left(\frac{r}{2^{2(n-2)}}, f_1 \left(F_1^k \right) \right) - T \left(\frac{r}{2^{2(n-2)}}, F_1^k \right) \right\} + O(1) .$$

Using Lemma 2.4 we have

$$\log^{[n-2]} T\left(r, F_n^1\right)$$

$$\geq \frac{1}{2} \left(\lambda_{f_{k-2}} - \varepsilon \right) \left[\log \frac{1}{\eta} \right. \\ \times \frac{N \left\{ M \left(\left(\eta_{\frac{r}{2^{2(n-2)}}} \right)^{\frac{1}{1+\alpha}}, F_1^k \right), 0, f_1 \right\}}{\log M \left(\left(\eta_{\frac{r}{2^{2(n-2)}}} \right)^{\frac{1}{1+\alpha}}, F_1^k \right) - O\left(1 \right)} - O\left(1 \right) - T \left(\frac{r}{2^{2(n-2)}}, F_1^k \right) \right] + O\left(1 \right) \\ \geq \frac{1}{2} \left(\lambda_{f_{k-2}} - \varepsilon \right) \left[\log \frac{1}{\eta} \right. \\ \times \frac{N \left\{ M \left(\left(\eta_{\frac{r}{2^{2(n-2)}}} \right)^{\frac{1}{1+\alpha}}, F_1^k \right), 0, f_1 \right\}}{\log M \left(\left(\eta_{\frac{r}{2^{2(n-2)}}} \right)^{\frac{1}{1+\alpha}}, F_1^k \right) - O\left(1 \right)} - O\left(1 \right) - T \left(\frac{r}{2^{2(n-2)}}, z \right) - T \left(\frac{r}{2^{2(n-2)}}, f_k \right) \right] + O\left(1 \right).$$

Since $\delta\left(0,f_{1}\right)<1$, for given $\varepsilon>0$ there exists a sequence of values of r tending to infinity for which $\frac{N(r,0,f_{1})}{T(r,f_{1})}>1-\delta\left(0,f_{1}\right)-\varepsilon>0$.

So,
$$\log^{[n-2]} T(r, F_n^1)$$

$$\geq \frac{1}{2} \left(\lambda_{f_{k-2}} - \varepsilon \right) \left[\log \frac{1}{\eta} \right. \\ \times \frac{\left(1 - \delta \left(0, f_1 \right) - \varepsilon \right) T \left\{ M \left(\left(\eta_{\frac{r}{2^{2(n-2)}}} \right)^{\frac{1}{1+\alpha}}, F_1^k \right), f_1 \right\} - \log M \left(\left(\eta_{\frac{r}{2^{2(n-2)}}} \right)^{\frac{1}{1+\alpha}}, F_1^k \right) O \left(1 \right)}{\log M \left(\left(\eta_{\frac{r}{2^{2(n-2)}}} \right)^{\frac{1}{1+\alpha}}, F_1^k \right) - O \left(1 \right)} \\ + \frac{O \left(1 \right)}{\log M \left(\left(\eta_{\frac{r}{2^{2(n-2)}}} \right)^{\frac{1}{1+\alpha}}, F_1^k \right) - O \left(1 \right)} - \log \frac{r}{2^{2(n-2)}} - T \left(\frac{r}{2^{2(n-2)}}, f_k \right) \right] + O \left(1 \right)} \\ = \frac{1}{2} \left(\lambda_{f_{k-2}} - \varepsilon \right) \left[\log \frac{1}{\eta} \right. \\ \times \frac{\left(1 - \delta \left(0, f_1 \right) - \varepsilon \right) T \left\{ M \left(\left(\eta_{\frac{r}{2^{2(n-2)}}} \right)^{\frac{1}{1+\alpha}}, F_1^k \right), f_1 \right\} - \log M \left(\left(\eta_{\frac{r}{2^{2(n-2)}}} \right)^{\frac{1}{1+\alpha}}, F_1^k \right) O \left(1 \right)}{\log M \left(\left(\eta_{\frac{r}{2^{2(n-2)}}} \right)^{\frac{1}{1+\alpha}}, F_1^k \right) - O \left(1 \right)} \\ + o \left(1 \right) - \log \frac{r}{2^{2(n-2)}} - T \left(\frac{r}{2^{2(n-2)}}, f_k \right) \right] + O \left(1 \right) \\ = \frac{1}{2} \left(\lambda_{f_{k-2}} - \varepsilon \right) \left[\log \frac{1}{\eta} \right]$$

$$\times \frac{\left(1 - \delta\left(0, f_{1}\right) - \varepsilon\right) T\left\{M\left(\left(\eta \frac{r}{2^{2(n-2)}}\right)^{\frac{1}{1+\alpha}}, F_{1}^{k}\right), f_{1}\right\} - \log M\left(\left(\eta \frac{r}{2^{2(n-2)}}\right)^{\frac{1}{1+\alpha}}, F_{1}^{k}\right) O\left(1\right)}{\log M\left(\left(\eta \frac{r}{2^{2(n-2)}}\right)^{\frac{1}{1+\alpha}}, F_{1}^{k}\right) - O\left(1\right)} - \log \frac{r}{2^{2(n-2)}} - T\left(\frac{r}{2^{2(n-2)}}, f_{k}\right)] + O\left(1\right). \tag{3.10}$$

Again

$$\log M\left(\left(\eta \frac{r}{2^{2(n-2)}}\right)^{\frac{1}{1+\alpha}}, F_{1}^{k}\right) = \log M\left(\left(\eta \frac{r}{2^{2(n-2)}}\right)^{\frac{1}{1+\alpha}}, (1-\alpha)z + f_{k}\right)$$

$$\leq \log M\left(\left(\eta \frac{r}{2^{2(n-2)}}\right)^{\frac{1}{1+\alpha}}, z\right) + \log M\left(\left(\eta \frac{r}{2^{2(n-2)}}\right)^{\frac{1}{1+\alpha}}, f_{k}\right) + O(1)$$

$$\leq \log\left(\eta \frac{r}{2^{2(n-2)}}\right)^{\frac{1}{1+\alpha}} + \left(\eta \frac{r}{2^{2(n-2)}}\right)^{\frac{\rho_{f_{k}} + \varepsilon}{1+\alpha}} + O(1). \tag{3.11}$$

Using (3.11) in (3.10) we have $\log^{[n-2]} T(r, F_n^1)$

$$\geq \frac{1}{2} \left(\lambda_{f_{k-2}} - \varepsilon \right) \left[\log \frac{1}{\eta} \right. \\ \times \frac{\left(1 - \delta\left(0, f_1 \right) - \varepsilon \right) T \left\{ M \left(\left(\eta \frac{r}{2^{2(n-2)}} \right)^{\frac{1}{1+\alpha}}, F_1^k \right), f_1 \right\} - \log M \left(\left(\eta \frac{r}{2^{2(n-2)}} \right)^{\frac{1}{1+\alpha}}, F_1^k \right) O \left(1 \right)}{\left\{ \log \left(\eta \frac{r}{2^{2(n-2)}} \right)^{\frac{1}{1+\alpha}} + \left(\eta \frac{r}{2^{2(n-2)}} \right)^{\frac{\rho f_k + \varepsilon}{1+\alpha}} \right\} \left\{ 1 - o \left(1 \right) \right\}} \\ - \log \frac{r}{2^{2(n-2)}} - T \left(\frac{r}{2^{2(n-2)}}, f_k \right) \right] + O \left(1 \right).$$

So for a sequence of values of r tending to infinity $\log^{[n-1]} T(r, F_n^1)$

$$\geq \log^{[2]} \frac{1}{\eta} \\ + \log[\frac{(1 - \delta(0, f_1) - \varepsilon) T \left\{ M \left(\left(\eta \frac{r}{2^{2(n-2)}} \right)^{\frac{1}{1+\alpha}}, F_1^k \right), f_1 \right\} - \log M \left(\left(\eta \frac{r}{2^{2(n-2)}} \right)^{\frac{1}{1+\alpha}}, F_1^k \right) O (1)}{\left\{ \log \left(\eta \frac{r}{2^{2(n-2)}} \right)^{\frac{1}{1+\alpha}} + \left(\eta \frac{r}{2^{2(n-2)}} \right)^{\frac{\rho_{f_k} + \varepsilon}{1+\alpha}} \right\} \left\{ 1 - o (1) \right\}} \\ - \log^{[2]} \frac{r}{2^{2(n-2)}} - \log T \left(\frac{r}{2^{2(n-2)}}, f_k \right) \right] + O (1) . \\ = \log^{[2]} \frac{1}{\eta} + \log[\frac{(1 - \delta(0, f_1) - \varepsilon) T \left\{ M \left(\left(\eta \frac{r}{2^{2(n-2)}} \right)^{\frac{1}{1+\alpha}}, F_1^k \right), f_1 \right\}}{\left\{ \log \left(\eta \frac{r}{2^{2(n-2)}} \right)^{\frac{1}{1+\alpha}} + \left(\eta \frac{r}{2^{2(n-2)}} \right)^{\frac{\rho_{f_k} + \varepsilon}{1+\alpha}} \right\}} \left\{ 1 \right\}$$

$$-\frac{\log M\left(\left(\eta \frac{r}{2^{2(n-2)}}\right)^{\frac{1}{1+\alpha}}, F_{1}^{k}\right) O\left(1\right)}{\left(1-\delta\left(0, f_{1}\right)-\varepsilon\right) T\left\{M\left(\left(\eta \frac{r}{2^{2(n-2)}}\right)^{\frac{1}{1+\alpha}}, F_{1}^{k}\right), f_{1}\right\}}\}\right] - \log^{[2]} \frac{r}{2^{2(n-2)}}$$

$$-\log T\left(\frac{r}{2^{2(n-2)}}, f_{k}\right) + O\left(1\right)$$

$$=\log^{[2]} \frac{1}{\eta} + \log\left(1-\delta\left(0, f_{1}\right)-\varepsilon\right) + \log T\left\{M\left(\left(\eta \frac{r}{2^{2(n-2)}}\right)^{\frac{1}{1+\alpha}}, F_{1}^{k}\right), f_{1}\right\}$$

$$-\log \left\{\log\left(\eta \frac{r}{2^{2(n-2)}}\right)^{\frac{1}{1+\alpha}} + \left(\eta \frac{r}{2^{2(n-2)}}\right)^{\frac{r}{1+\alpha}}\right\} + \log[1-\log M\left(\left(\eta \frac{r}{2^{2(n-2)}}\right)^{\frac{1}{1+\alpha}}, F_{1}^{k}\right) O\left(1\right)$$

$$\left(1-\delta\left(0, f_{1}\right)-\varepsilon\right) N_{1}\log M\left(\left(\eta \frac{r}{2^{2(n-2)}}\right)^{\frac{1}{1+\alpha}}, F_{1}^{k}\right)$$

$$-\log^{[2]} \frac{r}{2^{2(n-2)}} - \log T\left(\frac{r}{2^{2(n-2)}}, f_{k}\right) + O\left(1\right)$$

$$\geq O\left(\log r\right) + \log T\left\{M\left(\left(\eta \frac{r}{2^{2(n-2)}}\right)^{\frac{1}{1+\alpha}}, F_{1}^{k}\right), f_{1}\right\} + \log[1-\log M\left(\left(\eta \frac{r}{2^{2(n-2)}}\right)^{\frac{1}{1+\alpha}}, F_{1}^{k}\right), f_{1}\right\}$$

$$-\log T\left(\frac{r}{2^{2(n-2)}}, f_{k}\right) + O\left(1\right)$$

$$\geq O\left(\log r\right) + \log T\left\{M\left(\left(\eta \frac{r}{2^{2(n-2)}}\right)^{\frac{1}{1+\alpha}}, F_{1}^{k}\right), f_{1}\right\} + \log[1-\log M\left(\left(\eta \frac{r}{2^{2(n-2)}}\right)^{\frac{1}{1+\alpha}}, F_{1}^{k}\right), f_{1}\right\} + \log[1-\log M\left(\left(\eta \frac{r}{2^{2(n-2)}}\right)^{\frac{1}{1+\alpha}}, F_{1}^{k}\right), f_{1}\right\} + \log[1-\log M\left(\left(\eta \frac{r}{2^{2(n-2)}}\right)^{\frac{1}{1+\alpha}}, F_{1}^{k}\right), f_{1}\right\} - \log \frac{r}{2^{2(n-2)}}$$

$$-T\left(\frac{r}{2^{2(n-2)}}, f_{k}\right) + O\left(1\right)$$

$$(1-\delta\left(0, f_{1}\right) - \varepsilon\right) T\left\{M\left(\left(\eta \frac{r}{2^{2(n-2)}}\right)^{\frac{1}{1+\alpha}}, F_{1}^{k}\right), f_{1}\right\} - \log \frac{r}{2^{2(n-2)}}$$

$$-T\left(\frac{r}{2^{2(n-2)}}, f_{k}\right) + O\left(1\right)$$

$$(3.12)$$

Since f_1 is transcendental, $\lim_{r\to\infty} \frac{T(r,f_1)}{\log r} = \infty$, and so for given positive number N_1 , however large, and for all large values of r, $T(r,f_1) > N_1 \log r$. Therefore from (3.12) for a sequence of values of r tending to infinity we have

$$\begin{split} & \log^{[n-1]} T\left(r, F_{n}^{1}\right) \\ & \geq O\left(1\right) + O\left(\log r\right) + \log T \left\{ M\left(\left(\eta \frac{r}{2^{2(n-2)}}\right)^{\frac{1}{1+\alpha}}, F_{1}^{k}\right), f_{1}\right\} + \log[1 - \frac{\log M\left(\left(\eta \frac{r}{2^{2(n-2)}}\right)^{\frac{1}{1+\alpha}}, F_{1}^{k}\right) O\left(1\right)}{\left(1 - \delta\left(0, f_{1}\right) - \varepsilon\right) N_{1} \log M\left(\left(\eta \frac{r}{2^{2(n-2)}}\right)^{\frac{1}{1+\alpha}}, F_{1}^{k}\right)\right] - \log \frac{r}{2^{2(n-2)}} \\ & - T\left(\frac{r}{2^{2(n-2)}}, f_{k}\right) \\ & \geq O\left(1\right) + O\left(\log r\right) + \log T\left\{ M\left(\left(\eta \frac{r}{2^{2(n-2)}}\right)^{\frac{1}{1+\alpha}}, F_{1}^{k}\right), f_{1}\right\} + \log[1 - \frac{O\left(1\right)}{\left(1 - \delta\left(0, f_{1}\right) - \varepsilon\right) N_{1}}\right] - \log \frac{r}{2^{2(n-2)}} - T\left(\frac{r}{2^{2(n-2)}}, f_{k}\right) \end{split}$$

where N_1 is so large that

$$1 - \frac{O(1)}{(1 - \delta(0, f_1) - \varepsilon) N_1} > 0.$$

Therefore, for a sequence of values of r tending to infinity we have $\log^{[n-1]} T(r, F_n^1)$

$$\geq O(1) + O(\log r) + \log T \left\{ M \left(\left(\eta \frac{r}{2^{2(n-2)}} \right)^{\frac{1}{1+\alpha}}, F_1^k \right), f_1 \right\}$$

$$-\log \frac{r}{2^{2(n-2)}} - T \left(\frac{r}{2^{2(n-2)}}, f_k \right).$$
(3.13)

Again since $f_1(z)$ is of positive lower order λ_{f_1} , we get for all large values of r and for $0 < M_1 < \lambda_{f_1}$,

$$\log T(r, f_{1}) > M_{1} \log r.$$
Hence $\log T\left\{M\left(\left(\eta \frac{r}{2^{2(n-2)}}\right)^{\frac{1}{1+\alpha}}, F_{1}^{k}\right), f_{1}\right\}$

$$> M_{1} \log M\left(\left(\eta \frac{r}{2^{2(n-2)}}\right)^{\frac{1}{1+\alpha}}, F_{1}^{k}\right)$$

$$= M_{1} \log M\left(\left(\eta \frac{r}{2^{2(n-2)}}\right)^{\frac{1}{1+\alpha}}, (1-\alpha)z + \alpha f_{k}\right)$$

$$\geq M_{1} \left\{\log M\left(\left(\eta \frac{r}{2^{2(n-2)}}\right)^{\frac{1}{1+\alpha}}, f_{k}\right) - \log M\left(\left(\eta \frac{r}{2^{2(n-2)}}\right)^{\frac{1}{1+\alpha}}, z\right)\right\} + O(1)$$

$$= M_{1} \left\{\log M\left(\left(\eta \frac{r}{2^{2(n-2)}}\right)^{\frac{1}{1+\alpha}}, f_{k}\right) - \log\left(\eta \frac{r}{2^{2(n-2)}}\right)^{\frac{1}{1+\alpha}}\right\} + O(1). \tag{3.14}$$

Since f_k is of finite positive hyper lower order $\overline{\lambda}_{f_k}$, it follows for all large values of r that

$$\frac{\log \log \log M\left(r, f_{k}\right)}{\log r} > \frac{1}{2} \overline{\lambda}_{f_{k}}$$
i.e., $\log M\left(r, f_{k}\right) > e^{r\frac{\overline{\lambda}_{f_{k}}}{2}}$.

Hence from (3.14) we have

$$\log T \left\{ M \left(\left(\eta_{\frac{r}{2^{2(n-2)}}} \right)^{\frac{1}{1+\alpha}}, F_1^k \right), f_1 \right\}$$

$$> M_1 \left\{ e^{\left(\eta_{\frac{r}{2^{2(n-2)}}} \right)^{\frac{\overline{\lambda}_{f_k}}{2(1+\alpha)}}} - \log \left(\eta_{\frac{r}{2^{2(n-2)}}} \right)^{\frac{1}{1+\alpha}} \right\} + O(1).$$

Therefore from (3.13) we have for a sequence of values of r tending to infinity $\log^{[n-1]} T(r, F_n^1)$

$$\geq O(1) + O(\log r) + M_1 e^{\left(\eta \frac{r}{2^{2(n-2)}}\right)^{\frac{\overline{\lambda}_{f_k}}{2(1+\alpha)}}} - M_1 \log\left(\eta \frac{r}{2^{2(n-2)}}\right)^{\frac{1}{1+\alpha}} - \log\frac{r}{2^{2(n-2)}} - T\left(\frac{r}{2^{2(n-2)}}, f_k\right).$$

Also for all large values of r, $T(r, f_k) < r^{\rho_{f_k} + \varepsilon}$.

Therefore for a sequence of values of r tending to infinity we have $\frac{\log^{[n-1]}T(r,F_n^1)}{T(r,f_n)}$

$$\geq O(1) + \frac{O(\log r)}{T(r, f_k)} + M_1 \frac{e^{\left(\eta \frac{r}{2^{2(n-2)}}\right)^{\frac{\overline{\lambda}_{f_k}}{2(1+\alpha)}}}}{T(r, f_k)} - M_1 \frac{\log\left(\eta \frac{r}{2^{2(n-2)}}\right)^{\frac{1}{1+\alpha}}}{T(r, f_k)} - \frac{\log\frac{r}{2^{2(n-2)}}}{T(r, f_k)}.$$

$$\geq O(1) + M_1 \frac{e^{\left(\eta \frac{r}{2^{2(n-2)}}\right)^{\frac{\overline{\lambda}_{f_k}}{2(1+\alpha)}}}}{r^{\rho_{f_k} + \varepsilon}} - 1.$$

Hence

$$\limsup_{r \to \infty} \frac{\log^{[n-1]} T(r, F_n^1)}{T(r, f_k)} = \infty.$$

This completes the proof.

References

- [1] Banerjee D. and Mondal N., Growth of generalized iterated entire functions, Bulletin of the Allahabad Mathematical Society, 27(2) (2012), 239-254.
- [2] Clunie J., The composition of entire and meromorphic functions, Mathematical Essays dedicated to Macintyre, Ohio Univ. Press, (1970), 75-92.
- [3] Hayman W. K., Meromorphic Functions, The Clarendon Press, Oxford, (1964).
- [4] Lahiri I., Growth of composite integral functions, Indian J. Pure Appl. Math., 20(9) (1989), 899-907.
- [5] Lin Q. and Dai C., On a conjecture of Shah concerning small functions, Kexue Tong (English Ed.), 31(4) (1986), 220-224.
- [6] Ninno K. and Suita N., Growth of a composite function of entire functions, Kodai Math. J., 3 (1980), 374-379.
- [7] Singh A. P., Growth of composite entire functions, Kodai Math. J., 8 (1985), 99-102.
- [8] Zhou Z. Z., Kodai Math. J., 9 (1986), 419-20.