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Abstract: We extend to several variables an earlier result of ours, according to
which an entire function of one variable of sufficiently small exponential type, hav-
ing all derivatives of even order taking integer values at two points, is a polynomial.
The proof in the one dimensional case relies on Lidstone expansion of the function.
For n variables, we need n + 1 points, having the property that the differences of
n of them with the remaining one give a basis of C". The proof is by reduction to
the one variable situation.
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1. The Main Result

We denote by N the set {0,1,2,...}. For z = (21,...,2,) € C*" and t =

(t1,...,t,) € N write
tn

db=aftal 2l = max fal, [t =ttt

a t1 a tn
e (2 (2

— 3]t

and
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For z = (z1,...,2,) and w = (wy, ..., w,) in C", let wz = wyz; + -+ + wyz,. For
r > 0 and for f an analytic function in a domain containing {z € C"* | |z| < r},
set
| flr = sup | f(2)].
|z|=r

The order of an entire function f is

log 1
o(f) = limsup 08 08 |/ Ir |-
r—00 logr

and its exponential type
lo .
7(f) = limsup log |/l
r—00 r
Given 7 > 0, w € C"\ {0} and an entire function f in C", we say that f has
exponential type < T in the direction w if the function of a single variable z — f(wz)

has order < 1 and exponential type < 7, namely

1
lim sup — log sup | f(wz)| < 7.

r—00 r ‘§|§r

It depends not only on w/|w| but also on |w|.

Let sy, $;,.-.,8, be n+ 1 elements in C", such that {s; — sy,...,8, — Sy} is a
basis of C" over C.
Finally, let 7 be the set of (¢,7) € N™ x {0,...,,n} satisfying
|lt]| even for all i =0,1,...,n and ty,...,t; even for i = 1,... n.

The main result of this paper is the following.

Theorem 1. Let f be an entire function of n variables having exponential type

< 7 in each of the directions s; — s, (i = 1,...,n) satisfying
1
limsupe "v/r , < _e—maX{\sol,...anl}‘ 1
msupeVrlfle < 7= (1)
Assume
(DUf)(s;) € Z for all (t,1) € T (2)

Then the set of (t,i) € T with (DXf)(s;) # 0 is finite. Further, if

T <, (3)
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then f is a polynomial in C|z].

The case n = 1 of Theorem 1 is Corollary 1.2 of [3].

We will see (Corollary 2) that when K is a subfield of C such that s; € K™ for
alli=0,1,...,n, then the conclusion of Theorem 1 is f € K|[z].

Assumption (1) implies that f has exponential type < 1. Hence, when

max |s; — so| <7,

the hypothesis (3) is a consequence of (1). An example is when s, = (0,...,0) and
(84,...,8,) is the canonical basis of C".

r=n

Theorem 1 cannot be improved in general. Here are some examples. Assume
So = (a1,as,...,a,), 8, =8y + (bi —ai)e; (i=1,...,n),

where a; and b; are complex numbers with a; # b; for 1 <i < n, whilee,,... e, is
the canonical basis of C". Our first example is the function

. 21 — Zp — An
Sln(ﬂ'b +---+7 ),

1— bn_an

which has exponential type < 7 in each of the directions s, — s, (i = 1,...,n) and
satisfies (Dtf)(s;) =0 for i = 0,1,...,n and for any ¢t € N with [|£|| even.
For our second example, we define § : C* — C" as follows

Z1 — ap Zn — Qp
0(z) = e )
_(_> (bl —a bn - an)
For 1 <i <n—1, let g; be a polynomial in n—1 variables with complex coefficients,

and let g, be a polynomial in a single variable with complex coefficients. Consider
the entire function of n variables w = (wy, ..., w,):

n—1
pw) =Y sin(mw;)gi(wiy, ..., w)) +sin(rw,)gn(w)_,).
i=1

Then the function
f(z) =pol(z)

has exponential type < 7 in each of the directions s, —s, (i = 1,...,n) and satisfies
(Dtf)(s;) =0 for all (¢,i) € T.
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For our third example, we keep the same notation for s; and #, we assume that
a; — b; & w7z for 1 < i < n, we also assume that the polynomials g; have integer
coefficients and we set

< sinh(w; — b;) 9 o  sinh(w, — by) 9
¢<w) - ZZI sinh(ai _ bz) g’L(wH—l? cee 7wn> + sinh(an _ bn) gn<w )

Then the function
f(z) =v00(z2)

has exponential type < 1 in each of the directions s; —s, (i = 1,...,n) and satisfies
(Dtf)(s;) € Z for all (t,i) € T.

Another reason for which Theorem 1 is optimal is the following. If we relax the
assumption (2) by requiring that it holds outside a finite subset of T, the conclusion
that f is a polynomial is still valid - this follows easily from Theorem 1. But if we
impose the conditions (2) only outside an infinite subset of 7, then the conclusion
is no more valid. We come back to this issue in the remark at the end of § 3.

2. An Extension of a Result Due to Pdlya

The proof of the first part of Theorem 1 rests on Proposition 1, which is an
extension to several variables of Proposition 2.2 of [3].

We will use Cauchy’s inequalities for an analytic function of several variables
([1, Theorem 2.2.7 p. 27]). Let r > 0, let t € N™ with ||| = T and let f be analytic
in a domain containing {z € C" | |z| <r}. Then

We deduce that for z, € C" and for f analytic in a domain containing

{z€C" | |z] <7+ |z},

we have (D))
D f)(z
LT < 1l 0
We will also use Stirling’s Formula:
NYe ™ MVorN < N! < NVNe ™ Ny/2rNel/(12N), (5)

which is valid for all N > 1.
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Proposition 1. Let f be an entire function in C" and let A > 0. Assume

—A
e
limsupe "rl|fl, < —-
rﬁoop \/—’f| vV 2
Then there exists Ty > 0 such that, for t € N™ with ||t|| > Ty, we have
’Déf’A < 1.

Proof. From assumption (6), it follows that there exists n > 0 such that, for T

sufficiently large, we have
T—A

[l < (1= ) ——

Let t € N* with ||t|| = T. We use Cauchy’s inequalities (4) with r = 7" — A: since
t! < T for |z| < A we have

(D)) < Il

(T - A)
Hence the upper bound for 7! given by the right hand side of (5) yields

A _T
sup (D)) < (1= e 020 (1 2)
z|[<A T
For T sufficiently large, the right hand side is < 1.

We deduce the following extension to several variables of Corollary 2.4 of [3].

Corollary 1. Let f be a transcendental entire function in C*. Let A > 0. Assume
(6). Then the set

{(t.20) e N" x C" | |zo] < A, (Df)(z0) € Z\ {0}}
s finite.

3. A Special Case: (sy,5;,---,8,) = (€y,€1,---,€,)
Set ¢, = (0,...,0) € C" and denote, as before, by {e,,...,e¢,} the canonical
basis of C™:

e; =0y (1<i,j<n).

We will say that an entire function f in C" has ezponential type < T in each of
the variables if it has exponential type < 7 in each of the directions e, ..., e,: in

1
other words, for any i = 1,...,n and any (z1,..., 21, Zit1, .- -, 2n) € C" 1,

lim sup — log sup |f(z1,.--520)] < T

r—oo I |zi| <7 o
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The main result of this section is the following.

Proposition 2. Let f be an entire function in C" of exponential type < w in each
of the variables. Assume

(Df)(e)) = 0 for all (t,i) € T. (7)

Then f = 0.

The case n = 1 of Proposition 2 is a result due to Poritsky (cf. [2] and [3,
§ 3.1]). We will prove Proposition 2 by induction on n, starting with and including
the case n = 1. The proof in the one dimensional case will use the following two
well known lemmas dealing with univariate functions.

Lemma 1. Let f be an entire function in C. The two following conditions are
equivalent:

(i) The function f is periodic of period w # 0 ;

(ii) There exists a function g analytic in C* such that f(z) = g(e
Proof. Clearly (ii) implies (i). Assume (i). The map z + e™ is analytic and
surjective. The condition €™* = e™#2 implies f(z1) = f(22). Hence there exists a
unique map g : C* — C such that g(e*™#) = f(z).

Qﬂiz/w) ]

c—.c

e2miz.
9

CX

Let w € C* and let z € C be such that w = e*™*. From g(w) = f(z) it follows
that ¢ is holomorphic, hence analytic, in C*.
This proves lemma 1.

Lemma 2. If g is an analytic function in C*, if w is a nonzero complexr number
and if the entire function g(e*™*/“) has an exponential type < 2(N + 1)7/|w| for
some nonnegative integer N, then w™ g(w) is a polynomial of degree < 2N.

As a consequence, if g(e*™#/%) has a type < 27/|w|, then g is constant.
Proof. Assume that the function f(z) = g(e?*"#/*) has an exponential type 7 with
7 < 2(N + 1)7/|w|. Let w € C*. Write w = |w|e? with |§] < . Set

w .
z= %(log lw| + i),

2miz/w

so that w =e . For any €; > 0, we have

w
21 < (5 +e) [ogul]
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for sufficiently large |w| and also for sufficiently small |w|. We deduce
WwT
loglg(u)| = log | (2)] < (7 + @)zl < (5= + ¢ ) [log o]

Hence if o satisfy % < a < N +1, then |g|, < r® for sufficiently large r and
lg|. < r~@ for sufficiently small > 0 . Consider the Laurent expansion of g at the

origin:
g(w) = Z byw™.
nez
From
b 1 dw
" 2 lw|=r w”“

we deduce Cauchy’s inequalities

n 1

For n > N, we use these inequalities with » — oo while for n < —N, we use these
inequalities with » — 0. We deduce b, = 0 for |n| > N + 1. Hence

g(w) = — Alw) + Bw)

where A and B are polynomials of degree < N.

Proof of Proposition 2. We start by proving the case n = 1 of Proposition 2,
due to Poritsky. So let f be an entire function of a single variable of exponential
type < 7 satisfying f®(0) = f®(1) = 0 for all even ¢t > 0. We claim that this
implies f = 0.

Indeed, from the assumptions it follows that the functions f(z) and f(1—z) are
odd, hence f(z) is periodic of period 2. Lemma 1 gives the existence of an entire
function g such that f(z) = g(e™*). Since f(z) has exponential type < 7, Lemma
2 implies that g is a constant, hence f also. From f(0) = 0 we conclude f = 0.

We now prove Proposition 2 by induction on the number n of variables. Let

n > 2 and let
fl2) =) azt

keNr
be an entire function of n variables of exponential type < 7 in each of the variables
satisfying
(D f)(e;) = 0 for all (¢,i) € T.
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For k,, > 0, define an entire function fj,, of n—1 variables, having exponential type
< 7 in each of the n — 1 variables, by setting

o\
frn (21, ooy 2no1) = Z aszl--- ko =k '(8,2 ) f(z1,. 0y 20-1,0),

so that

Z Jrn (21,0 2 1)zk

kn>0

Let k, > 0 be even. For each (t1,...,t, 1) € N~ we have

a t1 6 tn—1
(a_z> ( ) fkn(zl7-"7zn—1) = kn!(Dtl’“'vt’ﬂ*hk”f)(Zly'~‘7Zn—170)’
1

aZn—l

If ((t1,..-,tn1),1) € N1 x{0,1,...,n—1} is such that ¢; +- - - +¢,_; is even and
t1,...,t; are even, then ((¢1,...,t,_1,ky),7) € T. From the assumption we deduce

(Df et ) ) = 0

Using the induction hypothesis for n—1 variables, we deduce fi, = 0 for all £ € N"
with k,, even, hence a; = 0 for all £ € N" with k,, even.

Since e,,_; and e, play the same role, we also have a; = 0 for all £ € N" with
k,—1 even. Therefore the condition a; # 0 implies that k,_; and k, are both odd,
and this implies that k,_1 + k,, is even.

We now complete the proof of Proposition 2 in the case n = 2: the hypothesis

(D**2£)(0,0) = 0 for all (ki, ko) € N® with k; + ks even

implies ay, r, = 0 for all (ki, k2) € N? with k; and ks both odd, hence, using what
we already proved, ax, k, = 0 for all (k1, k2) € N2, and therefore f = 0.

Finally, assume n > 3. Let us fix k,_; and k,,, both odd, and consider the entire
function of n — 2 variables

k kn—

9 kn-1 /g \ kn
= kp_1'ky! <(8z 1) (87) f) (21,5 2n-2,0,0).

Ift;y +--- 4+ t,_9 is even, if 7 satisfies 0 < i <n — 2 and if ¢1,...,%; are even, then
((t1, ... tu—2,kn_1,kn),i) € T. From the induction hypothesis with n— 2 variables,
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we deduce that this function fy, , %, is 0. Hence a; = 0 for all £ € N", and finally
f=0.

Remark. Using Proposition 2, one can prove that there exists a unique family of
polynomials A;; € Clz] ((¢,7) € T) which satisty, for all (z,75) € T and (£,7) € T,

(D™Ayi)(e;) = 61.70i;.

These polynomials generalize Lidstone polynomials to several variables. In a forth-
coming paper [4], we study these polynomials and we prove that any entire function
f in C" of exponential type < 7 in each variable is the sum of a series

f2)= D (D'f)(e)Ai(2).

() eT

This generalizes a result of Poritsky (cf. [2] and [3, § 3.1]) for univariate entire
functions.

In [4], we also show that if 7" is a subset of 7 such that 7 \ 77 is infinite, then
there exists an uncountable set of transcendental entire functions f of exponential
type 0 such that (Dtf)(e;) = 0 for all (¢,7) € T.

4. Change of Coordinates
We deduce from Proposition 2 the following result

Proposition 3. An entire function f in C" of exponential type < w in each of the

directions s; — sy (i = 1,...,n) which satisfies

(D*f)(s:) =0 (8)
for all (t,i) € T is the zero function.
Proof. Set

Flz1, o zn) = f(sg + (81— 80)z1 4+ + (8, — 50)Zn)-

Since {s; — Sg,---,8, — Sp} 1S a basis of C", the condition f = 0 is equivalent to
f = 0 and the conditions (8) for f are equivalent to the conditions (7) for f. From
the assumption on the exponential type of f we deduce that the function f has
exponential type < 7 in each of the variables. Hence Proposition 3 follows from
Proposition 2.

Corollary 2. Let K be a field containing all coordinates of sy, 84, ...,s,. A poly-
nomial f € Clz] which satisfies (2) for (t,i) € T belongs to K|z].

Proof. For (t,i) € T, set a;; = (D:f)(s;). Since f is a polynomial, the set of
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(t,7) € T such that a;; # 0 is finite. By assumption, a;; € Z. Proposition 2 shows
that f is the unique polynomial satisfying (D!f)(s;) = as; for all (¢,7) € T. Hence
the coefficients of the polynomial f are the unique solution to a system of linear
equations with coefficients in K. Therefore these coefficients are in K.
5. Proof of Theorem 1

The proof of Theorem 1 will use the following easy Lemma:
Lemma 3. Let [ be an analytic function at 0 in C" and let D be a positive integer.
Assume that for all t € (2N)™ with ||t|| = D, we have

DLf = 0.

Then f is a polynomial of total degree < D + n;
Proof. Assume f satisfies the assumptions of Lemma 3. For v = (v4,...,1,) €
{0,1}", we have D2 f = 0. Hence DTf = 0 for all 7 € N” satisfying ||z|| = D +n.
This implies (DXf)(0) = 0 for all k € N™ with ||k|| > D+n. The conclusion follows.
Proof of Theorem 1. Assume that f satisfies the assumptions of Theorem 1.
Given the growth assumption (1), Proposition 1 shows that the set of (¢,7) with
teN" +=0,1,...,n and

[(DHf)(s;)] <1
is finite. Therefore there exists an even integer T such that, for ||f]] > T, and
0 <i<n with (t,7) € T, we have (Dtf)(s;) = 0.

Let 71,...,7, be even integers with ||7|| > Ty. Denote by f the function DZf.
For (t,i) € T, we have (t + 7,i) € T and ||t + 7| > Tp, hence (DiLf)(s;) =
(DYZf)(s;) = 0. Assuming that the exponential type of f is < 7 in each direction
s; — Sy, we deduce the same for f , and then Proposition 3 implies f = 0. Hence
Drf =0 for all 7, ..., 7, even integers with ||z|| > 7p. It follows from Lemma 3
that f is a polynomial of total degree < Ty + n.

References

[1] Hormander, L., An introduction to complex analysis in several variables, D.
Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, (1966).

[2] Poritsky, H., On certain polynomial and other approximations to analytic
functions, Trans. Amer. Math. Soc., 34:2 (1932), 274-331.

[3] Waldschmidt, M., On transcendental entire functions with infinitely many
derivatives taking integer values at two points, Southeast Asian Bulletin of
Mathematics, 45(3) (2021), 379-408.

[4] Waldschmidt, M., Lidstone interpolation, I, II, ITI. Submitted.



