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Abstract: We extend to several variables an earlier result of ours, according to
which an entire function of one variable of sufficiently small exponential type, hav-
ing all derivatives of even order taking integer values at two points, is a polynomial.
The proof in the one dimensional case relies on Lidstone expansion of the function.
For n variables, we need n + 1 points, having the property that the differences of
n of them with the remaining one give a basis of Cn. The proof is by reduction to
the one variable situation.
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1. The Main Result
We denote by N the set {0, 1, 2, . . . }. For z = (z1, . . . , zn) ∈ Cn and t =

(t1, . . . , tn) ∈ Nn, write

zt = zt11 · · · ztnn , |z| = max
1≤i≤n

|zi|, ‖t‖ = t1 + · · ·+ tn, t! = t1! · · · tn!

and

Dt =

(
∂

∂z1

)t1
· · ·
(

∂

∂zn

)tn
.
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For z = (z1, . . . , zn) and w = (w1, . . . , wn) in Cn, let wz = w1z1 + · · · + wnzn. For
r > 0 and for f an analytic function in a domain containing {z ∈ Cn | |z| ≤ r},
set

|f |r = sup
|z|=r
|f(z)|.

The order of an entire function f is

%(f) = lim sup
r→∞

log log |f |r
log r

and its exponential type

τ(f) = lim sup
r→∞

log |f |r
r
·

Given τ > 0, w ∈ Cn \ {0} and an entire function f in Cn, we say that f has
exponential type ≤ τ in the direction w if the function of a single variable z 7→ f(wz)
has order ≤ 1 and exponential type ≤ τ , namely

lim sup
r→∞

1

r
log sup

|z|≤r
|f(wz)| ≤ τ.

It depends not only on w/|w| but also on |w|.
Let s0, s1, . . . , sn be n+ 1 elements in Cn, such that {s1 − s0, . . . , sn − s0} is a

basis of Cn over C.
Finally, let T be the set of (t, i) ∈ Nn × {0, . . . , , n} satisfying

‖t‖ even for all i = 0, 1, . . . , n and t1, . . . , ti even for i = 1, . . . , n.

The main result of this paper is the following.

Theorem 1. Let f be an entire function of n variables having exponential type
≤ τ in each of the directions si − s0 (i = 1, . . . , n) satisfying

lim sup
r→∞

e−r
√
r|f |r <

1√
2π

e−max{|s0|,...,|sn|}. (1)

Assume
(Dtf)(si) ∈ Z for all (t, i) ∈ T . (2)

Then the set of (t, i) ∈ T with (Dtf)(si) 6= 0 is finite. Further, if

τ < π, (3)



On Entire Functions of Several Variables ... 3

then f is a polynomial in C[z].
The case n = 1 of Theorem 1 is Corollary 1.2 of [3].
We will see (Corollary 2) that when K is a subfield of C such that si ∈ Kn for

all i = 0, 1, . . . , n, then the conclusion of Theorem 1 is f ∈ K[z].
Assumption (1) implies that f has exponential type ≤ 1. Hence, when

max
1≤i≤n

|si − s0| < π,

the hypothesis (3) is a consequence of (1). An example is when s0 = (0, . . . , 0) and
(s1, . . . , sn) is the canonical basis of Cn.

Theorem 1 cannot be improved in general. Here are some examples. Assume

s0 = (a1, a2, . . . , an), si = s0 + (bi − ai)ei (i = 1, . . . , n),

where ai and bi are complex numbers with ai 6= bi for 1 ≤ i ≤ n, while e1, . . . , en is
the canonical basis of Cn. Our first example is the function

sin

(
π
z1 − a1
b1 − a1

+ · · ·+ π
zn − an
bn − an

)
,

which has exponential type ≤ π in each of the directions si − s0 (i = 1, . . . , n) and
satisfies (Dtf)(si) = 0 for i = 0, 1, . . . , n and for any t ∈ Nn with ‖t‖ even.

For our second example, we define θ : Cn → Cn as follows

θ(z) =

(
z1 − a1
b1 − a1

, . . . ,
zn − an
bn − an

)
.

For 1 ≤ i ≤ n−1, let gi be a polynomial in n−i variables with complex coefficients,
and let gn be a polynomial in a single variable with complex coefficients. Consider
the entire function of n variables w = (w1, . . . , wn):

ϕ(w) =
n−1∑
i=1

sin(πwi)gi(w
2
i+1, . . . , w

2
n) + sin(πwn)gn(w2

n−1).

Then the function

f(z) = ϕ ◦ θ(z)

has exponential type ≤ π in each of the directions si−s0 (i = 1, . . . , n) and satisfies
(Dtf)(si) = 0 for all (t, i) ∈ T .
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For our third example, we keep the same notation for si and θ, we assume that
ai − bi 6∈ πiZ for 1 ≤ i ≤ n, we also assume that the polynomials gi have integer
coefficients and we set

ψ(w) =
n−1∑
i=1

sinh(wi − bi)
sinh(ai − bi)

gi(w
2
i+1, . . . , w

2
n) +

sinh(wn − bn)

sinh(an − bn)
gn(w2

n−1).

Then the function

f(z) = ψ ◦ θ(z)

has exponential type ≤ 1 in each of the directions si−s0 (i = 1, . . . , n) and satisfies
(Dtf)(si) ∈ Z for all (t, i) ∈ T .

Another reason for which Theorem 1 is optimal is the following. If we relax the
assumption (2) by requiring that it holds outside a finite subset of T , the conclusion
that f is a polynomial is still valid - this follows easily from Theorem 1. But if we
impose the conditions (2) only outside an infinite subset of T , then the conclusion
is no more valid. We come back to this issue in the remark at the end of § 3.

2. An Extension of a Result Due to Pólya
The proof of the first part of Theorem 1 rests on Proposition 1, which is an

extension to several variables of Proposition 2.2 of [3].
We will use Cauchy’s inequalities for an analytic function of several variables

([1, Theorem 2.2.7 p. 27]). Let r > 0, let t ∈ Nn with ‖t‖ = T and let f be analytic
in a domain containing {z ∈ Cn | |z| ≤ r}. Then

|(Dtf)(0)|
t!

rT ≤ |f |r.

We deduce that for z0 ∈ Cn and for f analytic in a domain containing

{z ∈ Cn | |z| ≤ r + |z0|},

we have
|(Dtf)(z0)|

t!
rT ≤ |f |r+|z0|. (4)

We will also use Stirling’s Formula:

NNe−N
√

2πN < N ! < NNe−N
√

2πNe1/(12N), (5)

which is valid for all N ≥ 1.
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Proposition 1. Let f be an entire function in Cn and let A ≥ 0. Assume

lim sup
r→∞

e−r
√
r|f |r <

e−A√
2π
· (6)

Then there exists T0 > 0 such that, for t ∈ Nn with ‖t‖ ≥ T0, we have

|Dtf |A < 1.

Proof. From assumption (6), it follows that there exists η > 0 such that, for T
sufficiently large, we have

|f |T < (1− η)
eT−A√

2πT
·

Let t ∈ Nn with ‖t‖ = T . We use Cauchy’s inequalities (4) with r = T − A: since
t! ≤ T !, for |z| ≤ A we have

|(Dtf)(z)| ≤ T !

(T − A)T
|f |T .

Hence the upper bound for T ! given by the right hand side of (5) yields

sup
|z|≤A
|(Dtf)(z)| ≤ (1− η)e−A+1/(12T )

(
1− A

T

)−T
.

For T sufficiently large, the right hand side is < 1.
We deduce the following extension to several variables of Corollary 2.4 of [3].

Corollary 1. Let f be a transcendental entire function in Cn. Let A ≥ 0. Assume
(6). Then the set{

(t, z0) ∈ Nn × Cn | |z0| ≤ A, (Dtf)(z0) ∈ Z \ {0}
}

is finite.

3. A Special Case: (s0, s1, . . . , sn) = (e0, e1, . . . , en)
Set e0 = (0, . . . , 0) ∈ Cn and denote, as before, by {e1, . . . , en} the canonical

basis of Cn:
eij = δij (1 ≤ i, j ≤ n).

We will say that an entire function f in Cn has exponential type ≤ τ in each of
the variables if it has exponential type ≤ τ in each of the directions e1, . . . , en: in
other words, for any i = 1, . . . , n and any (z1, . . . , zi−1, zi+1, . . . , zn) ∈ Cn−1,

lim sup
r→∞

1

r
log sup

|zi|≤r
|f(z1, . . . , zn)| ≤ τ.
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The main result of this section is the following.

Proposition 2. Let f be an entire function in Cn of exponential type < π in each
of the variables. Assume

(Dtf)(ei) = 0 for all (t, i) ∈ T . (7)

Then f = 0.
The case n = 1 of Proposition 2 is a result due to Poritsky (cf. [2] and [3,

§ 3.1]). We will prove Proposition 2 by induction on n, starting with and including
the case n = 1. The proof in the one dimensional case will use the following two
well known lemmas dealing with univariate functions.

Lemma 1. Let f be an entire function in C. The two following conditions are
equivalent:
(i) The function f is periodic of period ω 6= 0 ;
(ii) There exists a function g analytic in C× such that f(z) = g(e2πiz/ω).
Proof. Clearly (ii) implies (i). Assume (i). The map z 7→ eπiz is analytic and
surjective. The condition eπiz1 = eπiz2 implies f(z1) = f(z2). Hence there exists a
unique map g : C× → C such that g(e2πiz) = f(z).

C
e2πiz

��

f // C

C×
g

>>

Let w ∈ C× and let z ∈ C be such that w = e2πiz. From g(w) = f(z) it follows
that g is holomorphic, hence analytic, in C×.

This proves lemma 1.

Lemma 2. If g is an analytic function in C×, if ω is a nonzero complex number
and if the entire function g(e2πiz/ω) has an exponential type < 2(N + 1)π/|ω| for
some nonnegative integer N , then wNg(w) is a polynomial of degree ≤ 2N .

As a consequence, if g(e2πiz/ω) has a type < 2π/|ω|, then g is constant.
Proof. Assume that the function f(z) = g(e2πiz/ω) has an exponential type τ with
τ < 2(N + 1)π/|ω|. Let w ∈ C×. Write w = |w|eiθ with |θ| ≤ π. Set

z =
ω

2πi
(log |w|+ iθ),

so that w = e2πiz/ω. For any ε1 > 0, we have

|z| ≤
( ω

2π
+ ε1

)
| log |w||
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for sufficiently large |w| and also for sufficiently small |w|. We deduce

log |g(w)| = log |f(z)| ≤ (τ + ε2)|z| ≤
(ωτ

2π
+ ε3

)
| log |w||.

Hence if α satisfy τ |ω|
2π

< α < N + 1, then |g|r ≤ rα for sufficiently large r and
|g|r ≤ r−α for sufficiently small r > 0 . Consider the Laurent expansion of g at the
origin:

g(w) =
∑
n∈Z

bnw
n.

From

bn =
1

2πi

∫
|w|=r

g(w)
dw

wn+1

we deduce Cauchy’s inequalities

|bn|rn ≤
1

2π
|g|r.

For n > N , we use these inequalities with r →∞ while for n < −N , we use these
inequalities with r → 0. We deduce bn = 0 for |n| ≥ N + 1. Hence

g(w) =
1

wN
A(w) +B(w)

where A and B are polynomials of degree ≤ N .

Proof of Proposition 2. We start by proving the case n = 1 of Proposition 2,
due to Poritsky. So let f be an entire function of a single variable of exponential
type < π satisfying f (t)(0) = f (t)(1) = 0 for all even t ≥ 0. We claim that this
implies f = 0.

Indeed, from the assumptions it follows that the functions f(z) and f(1−z) are
odd, hence f(z) is periodic of period 2. Lemma 1 gives the existence of an entire
function g such that f(z) = g(eπiz). Since f(z) has exponential type < π, Lemma
2 implies that g is a constant, hence f also. From f(0) = 0 we conclude f = 0.

We now prove Proposition 2 by induction on the number n of variables. Let
n ≥ 2 and let

f(z) =
∑
k∈Nn

akz
k

be an entire function of n variables of exponential type < π in each of the variables
satisfying

(Dtf)(ei) = 0 for all (t, i) ∈ T .
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For kn ≥ 0, define an entire function fkn of n−1 variables, having exponential type
< π in each of the n− 1 variables, by setting

fkn(z1, . . . , zn−1) =
∑

(k1,...,kn−1)∈Nn−1

akz
k1
1 · · · z

kn−1

n−1 = kn!

(
∂

∂zn

)kn
f(z1, . . . , zn−1, 0),

so that
f(z) =

∑
kn≥0

fkn(z1, . . . , zn−1)z
kn
n .

Let kn ≥ 0 be even. For each (t1, . . . , tn−1) ∈ Nn−1, we have(
∂

∂z1

)t1
· · ·
(

∂

∂zn−1

)tn−1

fkn(z1, . . . , zn−1) = kn!(Dt1,...,tn−1,knf)(z1, . . . , zn−1, 0).

If ((t1, . . . , tn−1), i) ∈ Nn−1×{0, 1, . . . , n−1} is such that t1 + · · ·+ tn−1 is even and
t1, . . . , ti are even, then ((t1, . . . , tn−1, kn), i) ∈ T . From the assumption we deduce

(Dt1,...,tn−1,knf)(ei) = 0.

Using the induction hypothesis for n−1 variables, we deduce fkn = 0 for all k ∈ Nn

with kn even, hence ak = 0 for all k ∈ Nn with kn even.
Since en−1 and en play the same role, we also have ak = 0 for all k ∈ Nn with

kn−1 even. Therefore the condition ak 6= 0 implies that kn−1 and kn are both odd,
and this implies that kn−1 + kn is even.

We now complete the proof of Proposition 2 in the case n = 2: the hypothesis

(Dk1,k2f)(0, 0) = 0 for all (k1, k2) ∈ N2 with k1 + k2 even

implies ak1,k2 = 0 for all (k1, k2) ∈ N2 with k1 and k2 both odd, hence, using what
we already proved, ak1,k2 = 0 for all (k1, k2) ∈ N2, and therefore f = 0.

Finally, assume n ≥ 3. Let us fix kn−1 and kn, both odd, and consider the entire
function of n− 2 variables

fkn−1,kn(z1, . . . , zn−2) =
∑

(k1,...,kn−2)∈Nn−2

akz
k1
1 · · · z

kn−2

n−2

= kn−1!kn!

((
∂

∂zn−1

)kn−1
(

∂

∂zn

)kn
f

)
(z1, . . . , zn−2, 0, 0).

If t1 + · · ·+ tn−2 is even, if i satisfies 0 ≤ i ≤ n− 2 and if t1, . . . , ti are even, then
((t1, . . . , tn−2, kn−1, kn), i) ∈ T . From the induction hypothesis with n−2 variables,
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we deduce that this function fkn−1,kn is 0. Hence ak = 0 for all k ∈ Nn, and finally
f = 0.

Remark. Using Proposition 2, one can prove that there exists a unique family of
polynomials Λt,i ∈ C[z] ((t, i) ∈ T ) which satisfy, for all (τ , j) ∈ T and (t, i) ∈ T ,

(DτΛt,i)(ej) = δt,τδij.

These polynomials generalize Lidstone polynomials to several variables. In a forth-
coming paper [4], we study these polynomials and we prove that any entire function
f in Cn of exponential type < π in each variable is the sum of a series

f(z) =
∑

(t,i)∈T

(Dtf)(ei)Λt,i(z).

This generalizes a result of Poritsky (cf. [2] and [3, § 3.1]) for univariate entire
functions.

In [4], we also show that if T ′ is a subset of T such that T \ T ′ is infinite, then
there exists an uncountable set of transcendental entire functions f of exponential
type 0 such that (Dtf)(ei) = 0 for all (t, i) ∈ T ′.
4. Change of Coordinates

We deduce from Proposition 2 the following result

Proposition 3. An entire function f in Cn of exponential type < π in each of the
directions si − s0 (i = 1, . . . , n) which satisfies

(Dtf)(si) = 0 (8)

for all (t, i) ∈ T is the zero function.
Proof. Set

f̃(z1, . . . , zn) = f
(
s0 + (s1 − s0)z1 + · · ·+ (sn − s0)zn

)
.

Since {s1 − s0, . . . , sn − s0} is a basis of Cn, the condition f = 0 is equivalent to
f̃ = 0 and the conditions (8) for f are equivalent to the conditions (7) for f̃ . From
the assumption on the exponential type of f we deduce that the function f̃ has
exponential type < π in each of the variables. Hence Proposition 3 follows from
Proposition 2.
Corollary 2. Let K be a field containing all coordinates of s0, s1, . . . , sn. A poly-
nomial f ∈ C[z] which satisfies (2) for (t, i) ∈ T belongs to K[z].
Proof. For (t, i) ∈ T , set at,i = (Dtf)(si). Since f is a polynomial, the set of
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(t, i) ∈ T such that at,i 6= 0 is finite. By assumption, at,i ∈ Z. Proposition 2 shows
that f is the unique polynomial satisfying (Dtf)(si) = at,i for all (t, i) ∈ T . Hence
the coefficients of the polynomial f are the unique solution to a system of linear
equations with coefficients in K. Therefore these coefficients are in K.
5. Proof of Theorem 1

The proof of Theorem 1 will use the following easy Lemma:
Lemma 3. Let f be an analytic function at 0 in Cn and let D be a positive integer.
Assume that for all t ∈ (2N)n with ‖t‖ = D, we have

Dtf = 0.

Then f is a polynomial of total degree < D + n;
Proof. Assume f satisfies the assumptions of Lemma 3. For ν = (ν1, . . . , νn) ∈
{0, 1}n, we have Dt+νf = 0. Hence Dτf = 0 for all τ ∈ Nn satisfying ‖τ‖ = D+n.
This implies (Dkf)(0) = 0 for all k ∈ Nn with ‖k‖ ≥ D+n. The conclusion follows.
Proof of Theorem 1. Assume that f satisfies the assumptions of Theorem 1.
Given the growth assumption (1), Proposition 1 shows that the set of (t, i) with
t ∈ Nn, i = 0, 1, . . . , n and ∣∣(Dtf)(si)

∣∣ < 1

is finite. Therefore there exists an even integer T0 such that, for ‖t‖ ≥ T0 and
0 ≤ i ≤ n with (t, i) ∈ T , we have (Dtf)(si) = 0.

Let τ1, . . . , τn be even integers with ‖τ‖ ≥ T0. Denote by f̂ the function Dτf .
For (t, i) ∈ T , we have (t + τ , i) ∈ T and ‖t + τ‖ ≥ T0, hence (Dtf̂)(si) =
(Dt+τf)(si) = 0. Assuming that the exponential type of f is < π in each direction
si − s0, we deduce the same for f̂ , and then Proposition 3 implies f̂ = 0. Hence
Dτf = 0 for all τ1, . . . , τn even integers with ‖τ‖ ≥ T0. It follows from Lemma 3
that f is a polynomial of total degree < T0 + n.
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