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Abstract: In this paper, we discuss the notions of G-attractor and G-expansive.
It is found that if < (X, fn) > is a sequence of dynamical systems converging G-
uniformly to f and if the sequence < (X, fn) > has a G-uniform attractor Y ⊂ X,
then Y is also a G-attractor of f . We also show that if < (X, fn) > is a sequence
of G-expansive dynamical systems with same expansivity time and expansivity
constant and converging G-uniformly to f , then (X, f) is also G-expansive. We
investigate the G-mixing, G-sensitive and G-shadowing property of the orbital limit
f .
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1. Introduction
In modern mathematical sciences, study of dynamical systems has been an

interesting field drawing attention to many mathematicians due to its interesting
applications in various fields such as Physics, Biology and Economics. Let fn :
X → X be a sequence of continuous self maps on a compact metric space X.
Many researchers have studied the inheritance of various dynamical notions from
the sequence to the uniform limit as well as the orbital limit ([1, 5, 7, 10, 11,
13, 14, 16, 17, 22, 24]). Recently, many researchers have extended the idea to
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G-uniform convergence and G-orbital convergence. In [5], it is shown that if (X, d)
is a compact metric G-space with no isolated points and fn : X → X is a sequence
of G-transitive onto maps converging G-uniformly to a continuous self map f on
X, then f is G-transitive if and only if there exist x0 ∈ D = ∩{trG(fn) : n ∈ N}
and x1 ∈ X such that {g.fknn (x0) : n ∈ N, g ∈ G ∩ {g.fn(x1) : n ∈ N, g ∈ G} 6= ∅,
for every sequence < kn > of non-negative integers. In [11], the author proved that
if (X, d) is a compact metric G-space with no isolated points and fn : X → X is
a sequence of G-minimal onto maps converging G-uniformly to a continuous self
map f on X, then f is G-minimal if and only if for each x ∈ X and for each y ∈ X,
{g.fknn (x) : n ∈ N, g ∈ G}∩OG(y, f) 6= ∅, for every sequence < kn > of non-negative
integers. In this paper, we are interested in investigating the inheritance of notions
such as G-expansiveness, G-mixing e.t.c. from the sequence to the G-uniform limit
and G-orbital limit.

First, we shall define some important notions of a standard dynamical system
as well as group action. A dynamical system is an ordered pair (X, f), where X is a
compact metric space with metric d, and f a continuous self map on X. For n > 0,
fn denotes the n-fold compositions of f . The set Of (x) = {fn(x) : n ∈ N0} is called

orbit of the point x ∈ X under f , where N0 = N ∪ 0. If Of (x) = X, the point x is
called a transitive point. By a G-space, we mean a triplet (X,G, θ), where X is a
Hausdorff space, G a topological group and θ : G×X → X, a continuous function
(action) such that θ(e, x) = x,∀ x ∈ X and θ(g, θ(h, x)) = θ(g ∗ h, x), where ∗ is
the operation of the group G. We say that θ is a continuous action of G on X.
Usually the action θ(g, x) is denoted by g.x. Henceforth θ(g, x) will be denoted
by g.x. Let (X,G, θ) be a metric G-space and f : X → X a continuous function.
The function f together with (X,G, θ) is called a dynamical system on a metric
G-space. Consider X = R, G = Z, the set of integers. The action θ : Z×R→ R is
defined by θ(n, x) = x+n. It is well known that θ is a continuous action. Consider
the function f : R → R defined by f(x) = x2. Now, f is a dynamical system
on the metric G- space (R,Z, θ). The G-orbit of a point x ∈ X is defined by
OG(x) = {g.fn(x) : n ≥ 0, g ∈ G}. A finite or infinite sequence < xn >n≥0 in X is
said to be a G-δ chain, if ∀ n there exists gn ∈ G such that d(gn.f(xn), xn+1) < δ.
In [5], the authors proved that if < fn > is a sequence of G-chain transitive maps
on a metric G-space X converging uniformly to the limit f , then f is also G-chain
transitive. In [3], the authors showed that G-shadowing depends on the action of G
and G-shadowing does not implies shadowing nor shadowing implies G-shadowing.
In [19], the authors study the dynamical properties like shadowing and transitivity
of map f on G-spaces. In [6], the authors define the notion of topologically G-
conjugacy and they further study G-periodic points under topological G-conjugacy
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(For more details on standard notions of shadowing, transitive and chain transitive,
one can see ([8, 9, 12, 15])).

In recent years chaos theory has been studied and defined for group actions
([2, 18, 23, 20]). A continuous function f : X → X, where X is a metric G-
space with metric d is called G-Minimal if OG(x, f) = X, for every x ∈ X [10].
Minimality implies G-Minimality but the converse may not be true [19]. We know
that minimality implies transitivity, so we can also say that G-minimality implies
G-transitivity. Let X be a metric G-space and f : X → X a continuous map.
Then a point x ∈ X is said to be a G-periodic point of f if there exists an integer
n > 0 such that fn(x) = gx, for some g ∈ G. The set of all G-periodic points of
f is denoted by PerG(f) [21]. It is obvious that if x is a periodic point of f then
point x is also a G-periodic point. But the converse is not true.

A sequence of functions < fn > from X to X is said to converge G-uniformly to
a self map f if for every ε > 0 there exists n0 ∈ N such that d(g.fn(x), k.f(x)) < ε,
for all g, k ∈ G, for all x ∈ X and for all n ≥ n0 [5].

A continuous self map f defined on a metric G-space X with metric d is called
G-transitive if for each pair of non-empty open subsets U and V of X, there exist
n ∈ N and g ∈ G such that g.fn(U) ∩ V 6= ∅. If f is a continuous self map defined
on a compact metric G-space X, then a point x ∈ X is said to be G-transitive
point if OG(x, f) = X. The set of all G-transitive points is denoted by trG(f).

A function f : X → X is said to be G-chain transitive, if for each pair of
points x, y ∈ X and for every δ > 0 there is a finite G-δ chain x0, . . . , xn such that
x0 = x and xn = y. A point x ∈ X G-ε shadows a finite sequence x0, . . . , xn if
d(g.f i(x), xi) < ε, for every i ≤ n.

In this paper, we find that if a sequence of dynamical systems < (X, fn) >
converging G-uniformly to f has a common G-attractor Y , then Y is also a G-
attractor of (X, f). If a sequence of G-expansive dynamical systems < (X, fn) >
converges G-uniformly to f , then (X, f) is also G-expansive. We prove that if a
sequence of dynamical systems < (X, fn) > is G-mixing and converges G-orbitally
to a map f , then (X, f) is also G-mixing. We also show that if < (X, fn) >
is a sequence G-sensitive dynamical systems converging G-orbitally to a map f ,
then f is also G-sensitive. If each member of dynamical systems < (X, fn) > has
common G-nonwandering point, say x, then x is also a G-nonwandering point of
f . We also prove that if < (X, fn) > is a sequence of dynamical systems having
G-shadowing property and converging G-orbitally to a map f : X → X, then f
also has G-shadowing property.

A dynamical system (X, f) is said to be G-equicontinuous if for every ε > 0
there exists δ > 0 such that d(g.fn(x), h.fn(y)) < ε, ∀ x ∈ X, for all y ∈ Bδ(x),
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for all n ∈ N and for all g, h ∈ G [10].
In [10], the author proved that if a sequence of continuous self map < fn > on a
metric G-space converges G-orbitally to a map f , then f is also G-equicontinuous.
If X is a metric G-space and f : X → X is a continuous map, then a map f
is said to have G-sensitive dependence on initial conditions if there is a constant
δ > 0, such that for every x ∈ X; and for every neighbourhood U of x, there exists
a point y ∈ U with G(x) 6= G(y) satisfying d(fn(u), fn(v)) > δ, for n > 0 and
for all u ∈ G(x) and for all v ∈ G(y). Here δ is called G-sensitive constant. If f
has G-sensitive dependence on initial conditions, then we say f is G-sensitive and
G-sensitivity of a function f depends on the action of G [20].

2. Definitions and Results

Definition 2.1. Let X be a metric G-space with metric d, then a function f :
X → X is said to be G-continuous function if for ε > 0 there exists δ > 0 such
that d(g.x, h.y) < δ ⇒ d(g.f(x), h.f(y)) < ε, for all g, h ∈ G.

Example 2.2. Let S1 be the unit circle. S1 is a compact metric space with metric
defined by

d(α, β) =

{
|α− β| if |α− β| ≤ π,

|α− β| − π if |α− β| > π.

G =

{
0, π,

π

2
,
3π

2

}
and ∗ is defined by

∗ 0 π π/2 3π/2
0 0 π π/2 3π/2
π π 0 3π/2 π/2
π/2 π/2 3π/2 π 0
3π/2 3π/2 π/2 0 π

then G has subspace topology of R. The action φ : G × S1 → S1 is defined by
φ(g, θ) = gθ = g + θ(mod 2π) = nπ

2
+ θ(mod 2π), where n = 0, 1, 2, 3.

fλ : S1 → S1 is defined by fλ(θ) = θ + 2πλ( mod2π). Let ε > 0 be given.
Suppose d(gθ1, hθ2) < δ, where δ = ε.
Then ∣∣∣n1π

2
+ θ1 −

n2π

2
− θ2

∣∣∣ < δ

=

∣∣∣∣(n1 − n2)π

2
+ θ1 − θ2

∣∣∣∣ < δ
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Now

d(gfλ(θ1), hfλ(θ2)) =
∣∣∣n1π

2
+ θ1 + 2πλ− n2π

2
− θ2 − 2πλ

∣∣∣
=

∣∣∣∣(n1 − n2)π

2
+ θ1 − θ2

∣∣∣∣ < δ.

Thus d(gfλ(θ1), hfλ(θ2)) < ε, whenever d(gθ1, hθ2) < δ.
Hence fλ : S1 → S1 is G-continuous.

Definition 2.3. Let (X, d) be a metric G-space. A sequence < xn > is said to
G-converges to a point x if for each ε > 0, there exists N such that d(g.xn, x) < ε,
∀ n ≥ N and for all g ∈ G.

Example 2.4. Take X = R. Let Z2 = {0, 1}, be the additive group of integer
modulo 2. The action is defined by 0.x = x, 1.x = −x,∀ x ∈ R. Consider the
sequence xn = 1

n
, n ≥ 1. Take ε = 1

N−1 , then |g.xn − 0| < ε, ∀ n ≥ N and for
g ∈ Z2. Therefore < xn > G-converges to 0.

Definition 2.5. [10] A sequence of continuous self maps < fn > defined on a
metric G-space (X, d) is said to converge G-orbitally to a map f : X → X if for
every ε > 0, there exists p ∈ N such that d(g.fmn (x), k.fm(x)) < ε, for all m ∈ N,
for all g, k ∈ G, for all n ≥ p, and for all x ∈ X.

Example 2.6. Take X = [−1, 1]. Let Z2 = {0, 1} be the additive group of
integer modulo 2, acting on X by 0.x = x, 1.x = −x,∀x ∈ X. Consider the

sequence of continuous functions fn : X → X defined by fn(x) =
x

n+ 1
, n ∈ N

and the constant function f(x) = 0. For ε > 0, there exists a positive integer

p 6= 0 such that
1

1 + p
< ε. Then for n > p,

1

(1 + n)m
< ε,∀ m > 1. Therefore,

d(g.fmn (x), k.fm(x)) =

∣∣∣∣g. x

(n+ 1)m
− k.0

∣∣∣∣ < ε, for all m > 1, for all g, k ∈ G, for

all n > p, and for all x ∈ X. Hence < fn > converges G-orbitally to f .

Definition 2.7. Let (X, d) be a G-metric space. A set Y ⊂ X is said to be a
G-attractor, if it is non-empty, closed, g.f(Y ) = Y , ∀ g ∈ G and for each ε > 0,
there exists δ > 0, such that for any x ∈ X, d(x, Y ) < δ implies d(g.fn(x), Y ) < ε,
for all n ≥ 0 and g ∈ G and lim

n→∞
d(g.fn(x), Y ) = 0, ∀ g ∈ G.

Example 2.8. Put X = [−1, 1] and Y = {0}. G = {−1, 1} is the multiplicative
group of order 2 acting on X by 1.x = x,−1.x = −x. It is obvious, for the function
f : X → X defined by f(x) = x3, Y = {0} is a G-attractor.
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Definition 2.9. A dynamical system (X, f) is called G-expansive if there is ε > 0
such that for each pair of distinct points x, y ∈ X, there exists a positive integer n
with d(g.fn(x), h.fn(y)) ≥ ε, for g, h ∈ G.
Here, ε is called G-expansive constant for f .

Example 2.10. Consider S1 = {z ∈ C : |z| = 1}. Take G = {−1, 1}, the
multiplicative group of order 2 acting on S1 by 1.z = z,−1.z = z. The function
f : S1 → S1 defined by f(z) = zn is G-expansive.

Example 2.11. Suppose the group G = {−1, 1} acts on X = [−1, 1] by 0.x = x,
1.x = −x, then the function f : X → X defined by f(x) = x2 is G-expansive.

Definition 2.12. Let (X, d) be a metric G-space. A continuous self map f defined
on X is said to be G-mixing if for each pair of non-empty open subsets U and V
of X, there exist m ∈ N, g ∈ G, such that g.fn(U) ∩ V 6= ∅,∀ n ≥ m.

Example 2.13. Consider the tent map T : X → X defined by

T (x) =

{
2x, if 0 ≤ x ≤ 1

2
,

2(1− x), if 1
2
≤ x ≤ 1.

where X = [0, 1]

If the multiplicative group of order 2 G = {−1, 1} acts on X by 1.x = x, −1.x =
1− x, then the map T is G-mixing.

Definition 2.14. A continuous self map f defined on a metric G-space X with
metric d is said to be G-sensitive, if there exists ε > 0 such that for all x ∈ X and
for all δ > 0 there exists y ∈ Bδ(x) such that d(g.fn(y), h.fn(x)) ≥ ε,∀ g, h ∈ G
and for some n ≥ 0.
The number ε is called G-sensitive constant of f .

Example 2.15. As in example 2.11, if the group G = {−1, 1} acts on X = S1

by 1.z = z and −1.z = z. Then the function f : X → X defined by f(z) = zn is
G-sensitive, where n is a positive integer.

Definition 2.16. A dynamical system (X, f) is said to have G-shadowing prop-
erty, if for any ε > 0 there exists δ > 0 such that any G-δ chain is G-ε shadowed
by some point.

Definition 2.17. [19] Let X be a metric G-space with metric d and f is a continu-
ous self map on X. Then a point x ∈ X is said to be G-non-wandering point, if for
every neighbourhood U of x, there exists k ∈ N and g ∈ G such that g.fk(U)∩U 6= ∅.

In [13], the authors proved that if a sequence of dynamical systems converges
uniformly to f and each member of the sequence < (X, fn) > has a common at-
tractor Y ⊂ X, then Y is also an attractor for (X, f). In the following theorem we
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are extending this result when a group G acts on the space X.

Theorem 2.18. Let < (X, fn) > be a sequence of dynamical systems converging
G-uniformly to f . If the sequence < (X, fn) > has a common G-uniform attractor
Y ⊂ X. Then Y is also a G-attractor of f
Proof. Since Y is a common G-uniform attractor of the sequence < (X, fn) >.
Therefore, by definition, for each ε > 0, there exists δ > 0, such that for any
x ∈ X, with d(x, Y ) < δ, implies that d(g.fmn (x), Y ) < ε

2
, ∀ m ≥ 0, and

lim
m→∞

d(g.fmn (x), Y ) = 0, ∀ g ∈ G.

Since fn
G−uniformly−−−−−−−−→ f , we have fmn

G−uniformly−−−−−−−−→ fm, therefore, for each x ∈ X and
for ε > 0, there exists m ∈ N such that

d(g.fmn (x), h.fm(x)) <
ε

2
, ∀ m ≥ 0 and for all g, h ∈ G.

By triangle inequality,

d(h.fm(x), Y ) ≤ d(h.fm(x), g.fmn (x)) + d(g.fmn (x), Y ),

< ε, whenever d(x, Y ) < δ.

Therefore, d(h.fm(x), Y ) < ε, ∀ m ≥ 0.
Now, lim

m→∞
d(g.fmn (x), Y ) = 0,∀ m ≥ 1, ∀ n ∈ N and ∀ h ∈ G.

Therefore, lim
m→∞

d(g.fm(x), Y ) = 0.

Hence Y is a G-attractor for (X, f).
In [4], authors showed that G-expansivity depends on the action of G and G-

expansivity does not implies expansivity nor expansivity implies G-expansivity. In
the following theorem we investigate the inheritance of G-expansiveness by the
uniform limit f .

Theorem 2.19. If < (X, fn) > is a sequence of G-expansive dynamical systems
with same expansivity time and expansivity constant and converging G-uniformly
to f . Then (X, f) is also G-expansive.
Proof. Suppose < (X, fn) > is a sequence of G-expansive dynamical system.
For ε > 0 and x, y ∈ X, x 6= y, there exists a positive integer m such that
d(g.fmn (x), h.fmn (y)) ≥ 3ε

2
, for g, h ∈ G.

We know that fn
G−uniformly−−−−−−−−→ f, then fmn

G−uniformly−−−−−−−−→ fm. Then there exists a
positive integer N , such that d(g.fmn (x), h.fm(x)) < ε

4
, for all x ∈ X and for all

g, h ∈ G and n ≥ N .
Similarly for y ∈ X, d(g.fmn (y), h.fm(y)) < ε

4
.
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By triangle inequality,

d(g.fmn (x), h.fmn (y)) ≤ d(g.fmn (x), h.fm(x)) + d(h.fm(x), g.fm(y)) + d(g.fm(y), h.fmn (y))

⇒ 3ε

2
≤ ε

4
+ d(g.fm(x), h.fm(y)) +

ε

4
⇒ ε ≤ d(g.fm(x), h.fm(y)).

Hence (X, f) is G-expansive.
Similar to the Theorem 2.1 in [11], we establish the following result in group

action.

Theorem 2.20. Let (X, d) be a metric G-space and f a continuous self map on
X. A dynamical system (X, f) is G-mixing if and only if for each pair of non-
empty open sets U and V , there exists a sequence < xi > of points in U such that
g.fm+i(xi) ∈ V, ∀ i ≥ 1, for some m > 0 and for some g ∈ G.
Proof. Suppose X is G-mixing. Let U and V be a non-empty open subsets of
X. Then there exists a positive integer m and g ∈ G such that g.fn(U) ∩ V 6=
∅, ∀ n ≥ m. Then for each i ≥ 1, we have g.f i+m(U) ∩ V 6= ∅. Therefore there
exists a point xi ∈ U such that g.f i+m(xi) ∈ V .
Conversely,
Suppose there exists a sequence < xi > of points in a non-empty open subset U of
X such that g.fm+i(xi) ∈ V, ∀ i ≥ 0, for some g ∈ G and for some m > 0.
This implies that g.f i+m(U) ∩ V 6= ∅, ∀ i ≥ 0 and for some g ∈ G.
Therefore g.fn(U) ∩ V 6= ∅, ∀ n ≥ m.
Hence X is G-mixing.

The following theorem shows that G-mixing is inherited by the G−orbital limit
f .

Theorem 2.21. If < fn > is a sequence of G-mixing functions converging G-
orbitally to a map f . Then f is also G-mixing.
Proof. Let u and v be two arbitrary points.

Since fn
G−orbitally−−−−−−→ f , by definition, for ε > 0, there exists a positive integer N1

such that

d(g.fmn (x), k.fm(x)) <
ε1
2
, ∀ m ∈ N,∀ g, k ∈ G,∀ n ≥ N1, and ∀ x ∈ X. (1)

Since fN1 is G- mixing, for ε2 > 0 there exist a sequence x(i, N1) in B(u, ε2) and
m(N1) such that, for some g ∈ G,

g.f
i+m(N1)
N1

(x(i, N1)) ∈ B(v,
ε1
2

), for all i ≥ 1.
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In (1), if we take x = x(i, N1) and m = i+m(N1) then

d(g.f
i+m(N1)
N1

(x(i, N1)), k.f
i+m(N1)(x(i, N1))) <

ε1
2
, for all i ≥ 1.

By triangle inequality,

d(g.f i+m(N1)(x(i, N1)), v) ≤ d(g.f i+m(N1)(x(i, N1)), k.f
i+m(N1)
N1

(x(i, N1)))

+ d(k.f
i+m(N1)
N1

(x(i, N1), v)

<
ε1
2

+
ε1
2

= ε1.

Therefore (X, f) is G-mixing.
In the following, we want show that G-sensitivity is preserved by the G-orbital

limit.

Theorem 2.22. If a sequence of dynamical systems < (X, fn) > is G-sensitive
and converges G- orbitally to a map f : X → X, then (X, f) is also G-sensitive.
Proof. Since < fn > converges G-orbitally to f . Therefore for all x ∈ X and for
ε > 0, there exists p ≥ 0 such that

d(g.fmn (x), h.fm(x)) <
ε

2
, for all n ≥ p for all m ≥ 0 and for all g, h ∈ G.

In particular, we have

d(g.fm(x), h.fmn (x)) <
ε

4
, for all m ≥ 0 and for all g.h ∈ G

d(g.fmn (y), h.fm(y)) <
ε

4
, for all m ≥ 0 and for all g, h ∈ G

Since fn is G-sensitive, with sensitive constant ε > 0, there exists δ > 0 such that

d(g.fmn (y), h.fmn (x)) ≥ 3ε

2
, for some y ∈ Bδ(x) for all m ≥ 0 for all g, h ∈ G.

By triangle inequality,

d(g.fmn (y), h.fmn (x)) ≤ d(g.fmn (y), h.fm(y)) + d(h.fm(y), g.fm(x)) + d(g.fm(x), h.fmn (x))

⇒ 3ε

2
≤ ε

4
+ d(g.fm(x), h.fm(y)) +

ε

4
⇒ ε ≤ d(g.fm(x), h.fm(y)).

Hence (X, f) is G-sensitive.
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Theorem 2.23. Let < (X, fn) > be a sequence of dynamical systems having G-
shadowing property and converging G-orbitally to a limit f . Further, assume that
for each ε > 0, there exists δ > 0 such that every G-δ chain is G-ε shadowed by
some point zn w.r.t fn for each n ≥ 1. Then (X, f) also has G-shadowing property.
Proof. Each fn has G-shadowing property. Therefore, for ε > 0, there exists δ > 0
such that every G-δ chain is G-ε shadowed by some point.
Consider a finite G-δ chain {x0, . . . , xp}, i.e. ∀ m ≤ p− 1 there exists gm ∈ G such
that d(gm.fn(xm), xm+1) < δ.
G-δ chain (xp)p≥0 is G-ε shadowed by some point say zn, i.e. ∀ m ≤ p there exists
hm ∈ G such that d(hm.f

m
n (zn), xm) < ε

4
.

We know that fn converges G-orbitally to f , therefore, for ε > 0 there exists a
n0 ∈ N such that d(gm.f

m
n (x), hm.f

m(x)) < ε
4
, for all m ∈ N , for all gm, hm ∈ G,

for all n ≥ n0 and for all x ∈ X.
By triangle inequality,
d(gm.f

m(zn), xm) ≤ d(gm.f
m(zn), hm.f

m
n (zn)) + d(hm.f

m
n (zn), xm) < ε

4
+ ε

4
= ε

2
.

Since X is a compact metric space, the sequence < zn > G-converges to a point
z ∈ X. Therefore, by G-continuity of fm, there exists N1, such that
d(gm.f

m(zn), gm.f
m(z)) < ε

2
,∀ n ≥ N1 and gm, hm ∈ G.

By triangle inequality,
d(gmf

m(z), xm) ≤ d(gm.f
m(z), gm.f

m(zn)) + d(gm.f
m(zn), xm) < ε

2
+ ε

2
= ε.

The following result shows that G-nonwandering is inherited by the G-orbital
limit f .

Theorem 2.24. If a sequence of dynamical systems < fn > converges G-orbitally
and each member of the sequence has a common G-nonwandering point, say x ∈ X
with same returning times, then x is also a G-nonwandering point of f .
Proof. Consider a nonempty open subset U of X, such that U is a neighbourhood
of x ∈ X. Since the point x ∈ X is a common G-nonwandering point of <
(X, fn) >, there exists m ∈ N and g ∈ G such that g.fmn (U) ∩ U 6= φ.
That is for ε > 0, there exists y ∈ B(x, ε

2
), such that d(g.fmn (y), x) < ε

2
.

As fn converges G-orbitally to f , there exists p ∈ N such that

d(g.fmn (x), k.fm(x)) <
ε

2
, for all m ∈ N, for all g, k ∈ G and for all n ≥ p.

By triangle inequality, we have

d(g.fm(y), x) ≤ d(g.fm(y), g.fmn (y)) + d(g.fmn (y), x)

<
ε

2
+
ε

2
= ε.

Hence x is a G-nonwandering point of f .



G-Attractor and G-Expansivity of the G-Uniform Limit of a sequence ... 413

References

[1] Bhaumik, I. and Choudhury, B., Uniform convergence and sequence of maps
on a compact metric space with some chaotic properties, Anal. Theory Appl.,
26(1) (2010), 53.

[2] Cairns, G., Topological transitivity and mixing notion for group actions,
Rocky Mountain J. Math., 37(2) (2007), 371-397.

[3] Choi, T. and Kim, J., Decomposition theorem on G-spaces, Osaka J. Math.,
46 (2009), 87-104.

[4] Das, R., Expansive self-homeomorphisms on G-spaces, Period. Math. Hun-
gar., 31(2) (1995), 123-130.

[5] Das, R. and Das, T., Topological transitivity of uniform limit functions on
G-spaces, Int. Journal Math. Analysis, 6 (2012), 1491-1499.

[6] Das, R. and Das, T., On properties of G-expansive homeomorphisms, Math-
ematica Slovaca, 62(3) (2012), 531-538.

[7] Fedeli, A. and Donne, A. L., A note on the uniform limit of transitive dy-
namical systems, Bull, Belg. Math. Soc. Simen Stevin, 16 (2009), 59-66.

[8] Li, R., A note on shadowing with chain transitivity, Commun Nonlinear Sci
Numer Simulat, 17 (2012), 2815-2823.

[9] Li, R., A note on chaos and the shadowing property, International Journal
Of General systems, 45(6) (2016), 675-688.

[10] Mangang, K. B., Equicontinuity of the limit function of a sequence of equicon-
tinuous functions, Journal of Indian Math. Soc., 81(1-2) (2014), 115-121.

[11] Mangang, K. B., Topological mixing of the limit function of a sequence of
dynamical systems, Bull, Cal. Math. Soc., 109(1) (2017), 45-54.

[12] Moothathu, T. K. S., Implication of pseudo-orbit tracing property for con-
tinuous maps on compacta, Top. and its App., 158 (2011), 2232-2239.

[13] Phinao, R. and Mangang, K. B., On Attractor and Pseudo Orbit Tracing
of Uniform Limit, Journal of Dynamical Systems and Geometric Theories,
17(1) (2019), 83-90.



414 South East Asian J. of Mathematics and Mathematical Sciences

[14] Phinao, R. and Mangang, K.B., On Sensitivity and Shadowing property of
the Uniform limit of a sequence of dynamical systems, Bull. Cal. Math. Soc.,
111(1) (2019), 43-52.

[15] Pilyugin, S. Yu., Shadowing in Dynamical systems, Lect. Notes in Math.,
Springer Verlag, Berlin, 1706 (1999).

[16] Raghib, A. S. and Khifah, A. H., Uniform convergence and chaotic behaviour,
Nonlinear Analysis, 65 (2006), 993.

[17] Roman-Flores, H., Uniform convergence and transivity, Chaos, Solitons and
fractal, 38 (2008), 148-153.

[18] Sankaran, P., Chaotic group actions on the rationals, Indian J. Pure Appl.
Math., 40(3) (2009), 221-228.

[19] Shah, E. and Das, T., Consequence of Shadowing Property of G-spaces, Int.
Journal of Math. Analysis, 7(12) (2013), 579-588.

[20] Shah, E., Devaney’s Chaos for Maps onG-spaces, Taiwanese Journal of Math-
ematics, 22(2) (2018), 339-348.

[21] Shah, E., Dynamical Properties of maps on Topological spaces and G-spaces,
Ph.D. Thesis, (2005).

[22] Sharma, P., Uniform convergence and Dynamical behaviour of a Discrete
Dynamical System, Journal of Applied Mathematics and Physics, 3 (2015),
766.

[23] Wang, Z. and Zhang, G., Chaotic behaviour of group actions, in dynamics
and numbers, 299-315, Contemp. Math., 669 Amer. Math. Soc., Province,
RI. 2016

[24] Yang, K., Zeng, F. and Zhang, G., Devaney’s Chaos on uniform limit maps,
Chaos, Solitons, Fractals, 44 (2011), 522.


