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Abstract: The Sigma coloring of a graph G is an assignment of natural numbers
to the vertices of G such that the color sums (the sum of the colors of the adjacent
vertices) of any two adjacent vertices are different. The Sigma Chromatic number
of a graph G, σ(G), is the least number of colors used in a sigma coloring of G. In
this paper, we investigate the sigma coloring and Sigma Chromatic number of some
graph operations such as Tensor product of graphs, Ring sum of graphs and Joint-
sum of graphs. We also obtain the sigma coloring and Sigma Chromatic number of
some special graphs such as the graphs obtained by duplicating an arbitrary vertex
and an arbitrary edge in cycle graphs, Cn, fusion of two vertices in cycle graphs,
Cn, two copies of cycle graphs sharing a common edge.
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1. Introduction
By a graph, we mean a finite undirected graph without loops or parallel edges.

For the terms and notations not defined explicitly here, reader may refer Harary
[3]. Graph coloring take a major part in Graph Theory since the rise of the famous
four color conjecture. A coloring of a graph G is an assignment of colors to the
vertices of G such that adjacent vertices have distinct colors. We represent the
colors by natural numbers so that the function c : V (G)→ N is a vertex coloring
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of a graph G, and c(v) denote the color of a vertex v. If any two adjacent vertices
u and v have c(u) 6= c(v) then c is called a proper vertex coloring of G.

Consider a vertex coloring of G which is not-proper. For any v ∈ V (G), let
σ(v) denotes the sum of colors of the vertices adjacent to v, if for any two adjacent
vertices u, v ∈ V (G), σ(v) 6= σ(u). Then the coloring is called a Sigma coloring
(σ-coloring ) of G. The minimum number of colors used in a sigma coloring of G
is called the sigma chromatic number of G and is denoted by σ(G). The Sigma
Coloring Problem is to determine the Sigma Chromatic number of a graph G.

Several types of graph coloring were investigated [1, 4] and new variations of
coloring are still available recently [2, 7]. The σ- coloring was introduced by Gary
Chartrand et.al. [1] in 2008 as a study project. In 2010, Gary Chartrand et.al.
presented the first paper with the result to this problem [2], determining the sigma
chromatic number for complete graphs, cycles and complete r-partite graph with
r ≥ 2. In the same work, it is proved that for any graph G, σ(G) ≤ X(G) where
X(G) is the least number of colors to a proper vertex coloring of G. To the best
of our knowledge, there are few other works on the sigma coloring problem [5].
For circulant graphs, Luzon et al. [6] determined the sigma chromatic number for
Cn(1, 2) ,Cn(1, 3), and C2n(1, n).

We begin by recalling some basic definitions used in this paper.

Definition 1.1. Tensor Product of two graphs G1 and G2 is denoted by G1(Tp)G2

with vertex set, V (G1)×V (G2) and edge set, {(u1, v1)(u2, v2) : u1u2 ∈ E(G1), v1v2 ∈
E(G2)}.
Definition 1.2. Ring Sum of two graphs G1 = (V1, E1) and G2 = (V2, E2) is the
graph denoted by G1

⊕
G2 with the vertex set, V1 ∪ V2 and the edge set, E1 ∪E2 −

(E1 ∩ E2).

Definition 1.3. Joint Sum of a graph G is a graph obtained from two copies of G
by connecting a vertex of the first copy with a vertex of the second copy by an edge.

Definition 1.4. Duplication of a vertex vk of a graph G produces a new graph G1

from G by adding a new vertex v′k in such a way that N(vk) = N(v′k), where N(v)
denote the set of all vertices of G that are adjacent to v. In other words, a vertex
v′k is said to be duplication of vk if all the vertices which are adjacent to vk are now
adjacent to v′k also.

Definition 1.5. Duplication of an edge vivi+1 of a graph G produces a new graph
G1 by adding a new edge v′iv

′
i+1 in such a way that N(v′i) = N(vi)∪{v′i+1}−{vi+1}

and N(v′i+1) = N(vi+1) ∪ {v′i} − {vi}.
Definition 1.6. Fusion (Identification) of two distinct vertices u, v of a graph
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G produces a new graph G1 constructed by replacing the vertices u, v by a single
vertex w such that every edge which is incident with either u or v in G is now
incident with w in G1.

Definition 1.7. Duplication (Subdivision) of an edge e = uv by a new vertex w in
a graph G produces a new graph G′ such that NG′(w) = {u, v}.
Definition 1.8. Duplication of a vertex vk by a new edge e = v′kv

′′
k in a graph G

produces a new graph G′′ such that NG(v′k) = {vk, v′′k} and NG(v′′k) = {vk, v′k}.
Definition 1.9. The Floor function of a real number x is the largest integer less
than or equal to x and it is denoted by bxc. The Ceil function of a real number x
is the smallest integer greater than or equal to x and it is denoted by dxe.
Definition 1.10. Let G be a simple connected graph and c : V (G)→ N, where N
is the set of positive integers, be a coloring of the vertices in G. We call c(v) as the
color of the vertex, v. For any v ∈ V (G), let σ(v) denotes the sum of colors of the
vertices adjacent to v then c is called a Sigma coloring (σ-coloring ) of G if for any
two adjacent vertices u, v ∈ V (G), σ(v) 6= σ(u). The least number of colors used
in a sigma coloring of G is called the sigma chromatic number of G and is denoted
by σ(G).

In this paper, we investigate the σ-coloring and the Sigma Chromatic number of
some graph operations such as ring sum of graphs, joint sum of graphs and tensor
product of graphs. We also prove that the graphs obtained by duplicating arbitrary
vertex as well as arbitrary edge in cycle Cn, fusion of two vertices in cycle Cn, two
copies of cycle sharing a common edge admits sigma coloring. For the terms and
definitions not explicitly defined here, reader may refer Harary [3].

2. Main Results

Theorem 3.1. Tensor product of Pm and Pn, m > n, is σ-colorable and its Sigma
chromatic number is

σ(Pm(Tp)Pn) =

{
1 if m = 3 and n = 2
2 if m ≥ 4, n ≥ 2.

Proof. Let Pm and Pn be two paths of length m − 1 and n − 1 respectively. Let
G = Pm(Tp)Pn. Then |V (G)| = mn, |E(G)| = 2(m− 1)(n− 1). Let the vertices of
G as uivj 1 ≤ i ≤ m, 1 ≤ j ≤ n.
Case 1. Let m = 3 and n = 2.
Define a coloring c : V (G) → {1} as follows: c(uivj) = 1 if 1 ≤ i ≤ m, 1 ≤ j ≤ n.
Clearly, this coloring satisfies the conditions of σ−coloring. Since the graph is non-
empty, at least one color is needed so that σ(P3(Tp)P2) = 1.
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Case 2. Let m ≥ 4 and n = 2.
Define a coloring function, c : V (G)→ {1, 2} as follows:

c(u4i−2vj) = 1 for all 1 ≤ i ≤
⌊
m+ 2

4

⌋
, j = 1, 2

c(ui, vj) = 2 if i 6= 4i− 2, 1 ≤ i ≤ m, 1 ≤ j ≤ 2.

Here, c induces a σ−coloring so that σ(P3(Tp)P2) ≤ 2. If possible, assume
σ(P3(Tp)P2) = 1. Then the vertices uivj, 2 ≤ i ≤ m − 1, 1 ≤ j ≤ 2 are of same
degree. If we color all the vertices with the same color, 1 then the adjacent vertices,
ui−1v2, uiv1, ui+1v2 where i =

⌈
m
2

⌉
will receive the same color sum, which violates

the condition of σ−coloring so that σ(P3(Tp)P2) = 2.
Case 3. m ≥ 4 and n ≥ 3.
Define c : V (G)→ {1, 2} as follows:

c(u1vj) = 1 if 1 ≤ j ≤ n

c(u2i+1, vj) = 1 if j is odd, 1 ≤ i ≤
⌊
m− 2

2

⌋
, 1 ≤ j ≤ n

= 2 if j is even, 1 ≤ i ≤
⌊
m− 2

2

⌋
, 1 ≤ j ≤ n

c(u2i, vj) = 2 if j is odd, 1 ≤ i ≤
⌊m

2

⌋
, 1 ≤ j ≤ n

= 1 if j is even, 1 ≤ i ≤
⌊m

2

⌋
, 1 ≤ j ≤ n

c(umvj) can be as follows:
a) If both m and n are odd c(umvj) = 1, 1 ≤ j ≤ n.
b) If m is odd and n is even c(umvj) = 2, 1 ≤ j ≤ n
c) If m is even and n is odd c(umvj) = 2, 1 ≤ j ≤ n

d) If both m and n are even c(umvj) =

{
1 if j is odd
2 if j is even

Here, c is a σ−coloring with σ(Pm(Tp)Pn) ≤ 2. If possible, assume σ(Pm(Tp)Pn)
= 1. Since the vertices u2v1 and u1v2 are of the same degree and we color all the
vertices with the same color, 1, these adjacent vertices u2v1 and u1v2 receive the
same color sum, which violates the condition of σ−coloring. Hence, σ(P3(Tp)P2) =
2.

Theorem 2.2. Tensor product of Cycle graphs and Path graphs, Cm(Tp)Pn, m > n,
is σ−colorable and its Sigma chromatic number is σCm(Tp)Pn = 2 if m ≥ 3 and
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n 6= 3 and σCm(Tp)P3 = 1 if m ≥ 4.
Proof. Let the vertices of Cm(Tp)Pn be denoted as uivj 1 ≤ i ≤ m, 1 ≤ j ≤ n. We
note that |V (Cm(Tp)Pn)| = mn, |E(Cm(Tp)Pn)| = 2m(n− 1).
Case 1. Let m ≥ 3 and n = 3.
Define a coloring function c : V (G)→ {1, 2} as follows.

c(uivj) = 1 if 1 ≤ i ≤ m, 1 ≤ j ≤ 3.

Then, each vertex has a color sum equal to its degree and hence it satisfies the
conditions of a σ−coloring. Since the graph is non-empty at least one color is
needed to color G, so that σ(Cm(Tp)P3) = 1.
Case 2. Let m ≥ 3 and n 6= 3.
Define c : V (G)→ {1, 2} as follows.

c(uivj) = 2 if j is odd 1 ≤ i ≤ m, 1 ≤ j ≤ n− 1,

= 1 if j is even 1 ≤ i ≤ m, 1 ≤ j ≤ n− 1,

c(uivn) = 2 if 1 ≤ i ≤ m.

c induces a σ−coloring so that σ(Cm(Tp)Pn) ≤ 2. If possible, assume σ(Cm(Tp)Pn)
= 1. The vertices u1v2 and umvn−1 are of same degree and are adjacent. If we
color all the vertices with the same color, 1, then these adjacent vertices receives
the same color sum, which will contradict the condition of σ−coloring so that
σ(Cm(Tp)Pn) = 2.

Theorem 2.3. Tensor product of two star graphs, K1,n(Tp)K1,n is σ−colorable
and its Sigma chromatic number is σ(K1,n(Tp)K1,n) = 2 for all n ≥ 1.
Proof. Let {u1, u2, u3, ...un, un+1}, {v1, v2, v3, ...vn, vn+1} be vertices of first star,
K1,n and the second star, K1,n respectively; u1, v1 are the roots of the stars. Let
G = K1,n(Tp)K1,n. Denote the vertices of G as uivj; 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ n+ 1.
We note that |V (G)| = (n+ 1)2, |E(G)| = 2n2.

Define a coloring function c : V (G)→ 1, 2 as follows:

c(uivj) = 1 if j is odd 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ n+ 1,

c(uivj) = 2 if j is even 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ n+ 1

c induces a σ−coloring so that σ(K1,n(Tp)K1,n) ≤ 2. If σ(K1,n(Tp)K1,n) = 1, we
color all the vertices with the same color, 1 then the two adjacent vertices u2v1
and u1v3 with the same degree will receive the same color sum, which violates the
condition of σ−coloring so that σ(K1,n(Tp)K1,n) = 2.

Theorem 2.4. Tensor product of two star graphs, K1,m(Tp)K1,n is σ−colorable
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and its Sigma chromatic number is σ(K1,m(Tp)K1,n) = 1 for all m > n.
Proof. Let {u1, u2, u3, ...un, un+1}, {v1, v2, v3, ...vn, vn+1} be vertices of first star,
K1,n and the second star, K1,n respectively; u1, v1 are the roots of the stars. Let
G = K1,m(Tp)K1,n. Denote the vertices of G as uivj; 1 ≤ i ≤ m+ 1, 1 ≤ j ≤ n+ 1.
Then, |V (G)| = (m+ 1)(n+ 1), |E(G)| = 2mn.
Define a coloring function c : V (G) → {1} as follows: c(uivj) = 1, 1 ≤ i ≤ m + 1,
1 ≤ j ≤ n+1. Since the graph is non-empty, at least one color is needed to color G.
Clearly, c satisfies the conditions of σ−coloring for the graph G so that σ(G) = 1.

Theorem 2.5. Ring sum of Cycle graphs and Star graphs, Cn

⊕
K1,n is σ−colorable

and its Sigma chromatic number is σ(Cn

⊕
K1,n) = 2.

Proof. V1 = {u1, u2, u3, ...un} be the vertex set of Cn and V2 = {v, v1, v2, v3, ...vn}
be the vertex set of K1,n and let V = V1 ∪ V2, where v1, v2, v3, ...vn are pendent
vertices.

Define a coloring function, c : V (G)→ {1, 2} as follows: c(v) = 1, c(u1) = 1,

c(vj) = 1 if 1 ≤ j ≤ n; c(u2i−1) = 1 if 1 ≤ i ≤
⌈n

2

⌉
; c(u2i) = 2 if 1 ≤ i ≤

⌊n
2

⌋
.

c induces a σ−coloring so that σ(Cn

⊕
K1,n) ≤ 2. If σ(Cn

⊕
K1,n) = 1, then the

vertices u2, u3 are of same degree and are adjacent so that they receive the same
color sum, which violates the condition of σ−coloring so that σ(Cn

⊕
K1,n) = 2.

Theorem 2.6. The Joint sum of two copies of Cn is σ−colorable and σ(G) = 2.
Proof. Let us denote the vertices of the first copy of Cn as v1, v2, ...vn and the
vertices of second copy as vn+1, vn+2, vn+3, ..., vn+n. Let G be the resulted graph by
joining an arbitrary vertex of the first copy of Cn to an arbitrary vertex of the
second copy of Cn by a new edge. Without loss of generality we may assume that
the new edge be vnvn+1.
Case 1. n is even.
Define c : V (G)→ {1, 2} as follows:

c(v2i) = 2 if 1 ≤ i ≤ n

2
, c(v2i−1) = 1 if 1 ≤ i ≤ n

2

c(v2i) = 1 if
n

2
+ 1 ≤ i ≤ n, c(v2i−1) = 2 if

n

2
+ 1 ≤ i ≤ n.

Case 2. n is odd.
Define c : V (G)→ {1, 2} as follows:

c(v2i) = 2 if 1 ≤ i ≤ n− 1

2
, c(v2i−1) = 1 if 1 ≤ i ≤ n+ 1

2
, c(vn+1) = 1.

c(v2i) = 1 if
n

2
+ 1 ≤ i ≤ n− 1, c(v2i+1) = 2 if

n

2
+ 1 ≤ i ≤ n− 1, c(v2n) = 2.
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In both cases, c induces a σ−coloring so that σ(G) ≤ 2. If σ(G) = 1, then the
vertices vn and vn+1 are of the same degree and are adjacent. Sine we color all the
vertices with the same color, 1, these two adjacent vertices receives the same color
sum, which violates the condition of σ−coloring so that σ(G) = 2.

Theorem 2.7. The Sigma chromatic number of a graph obtained by duplication
of an arbitrary vertex of cycle Cn is 2.
Proof. Let vertices of cycle Cn be v1, v2, v3, ...vn. Let G be graph resulted by
duplication of an arbitrary vertex. Without loss of generality let it be v1 and
duplicated vertex be v′1.

Let us define the coloring c : V (G)→ {1, 2}. We have to consider the following
three cases:
Case 1. When n is even.

c(v1) = 1, c(v′1) = 1, c(v2i−1) = 1 if 1 ≤ i ≤ n

2
, c(v2i) = 2 if 1 ≤ i ≤ n

2

Case 2. When n is odd and the duplicate vertex is in the odd position

c(v′1) = 1, c(v2i−1 = 2 if 1 ≤ i ≤ n− 1

2
, c(v2i) = 1 if 1 ≤ i ≤ n− 1

2
, c(vn) = 1.

Case 3. When n is odd and the duplicate vertex is in the even position

c(v′i) = 1, c(v2i−1 = 1 if 1 ≤ i ≤ n+ 1

2
, c(v2i) = 2 if 1 ≤ i ≤ n− 1

2
, c(vn) = 1.

c induces a σ−coloring so that is σ(G) ≤ 2. If σ(G) = 1, then there exist adjacent
vertices, v3 and v4, such that these adjacent vertices receive the same color sum,
which violates the condition of σ−coloring. Hence, σ(G) = 2.

Theorem 2.8. Fusion of two vertices vi and vj with d(vi, vj) ≥ 3 in cycle Cn

admits σ−coloring, where d(u, v) is the shortest distance between two vertices u, v.
Proof. Let v1, v2, v3, ...vn be the vertices of cycle the Cn. Without loss of generality,
assume that the fused vertices are v1, vk so that d(v1, vk) ≥ 3. Let the resulting
graph be G. Define a coloring function c : V (G)→ {1, 2} as follows:

c(v2i) = 1 if 1 ≤ i ≤
⌊n

2

⌋
, c(v2i−1) = 2 if 1 ≤ i ≤

⌊
n+ 1

2

⌋
, c(vi) = 1 = c(vk).

Then c induces a σ−coloring so that is σ(G) ≤ 2. If possible, assume σ(G) = 1.
In the graph, G, the vertices of cycle Cn except v1 and vk are of the same degree
and there exist two adjacent vertices vk+1 and vk+2 which will have the same color
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sum, which violates the condition of σ−coloring so that σ(G) = 2.

Theorem 2.9. The Sigma chromatic number of a graph obtained from two copies
of cycles Cn sharing a common edge admits σ−coloring and σ(G) = 2.
Proof. Let {v1, v2, v3...vn} be the vertices of the cycle, Cn. Let G be the resulting
graph obtained when two copies of cycle, Cn share a common edge. Without loss
of generality we can assume that the common edge of these cycles is {v1vn}. Let
{vn, vn+1, vn+2, vn+3...v2n−2, v1} be the vertices of the second copy of Cn.
Case 1. When n = 3.
Define c : V (G)→ {1, 2} as follows:
Let {v1, v2, v3} be the vertices of cycle C3. Let {v1, v3, v4} be the vertices of second
copy of cycle C3. Let the common edge be e = v1v3

c(v1) = 1, c(v2) = 2, c(v3) = 2, c(v4) = 1.

Case 2. n ≥ 5 and n is odd.

c(v2i) = 2 if 1 ≤ i ≤ n− 1, c(v2i−1) = 1 if 1 ≤ i ≤ n− 1, i 6= n+ 1

2
, c(vn) = 2.

Case 3. n ≥ 4 and n is even.

c(v2i) = 2 if 1 ≤ i ≤ n− 1, c(v2i−1) = 1 if 1 ≤ i ≤ n− 1.

In all cases, c induces a σ−coloring so that is σ(G) ≤ 2. If σ(G) = 1, then the
two adjacent vertices v1 and vk are of same degree and receive the same color sum,
which violates the condition of σ−coloring so that σ(G) = 2.

Theorem 2.10. The Sigma chromatic number of a graph resulted by duplication

of every vertex by an edge in cycle Cn, n ≥ 3, is σ(G) =

{
2 if n is even
3 if n is odd

.

Proof. Let v1, v2, v3, ...vn be the consecutive vertices of cycle Cn. Let G be the
resulted graph obtained by duplication of each of the vertices vi in cycle Cn by new
edge uiwi for i = 1, 2, 3, ...n.
Case 1. n ≥ 3 and n is even.
Define c : V (G)→ {1, 2} as follows:

c(v2i) = 2, if 1 ≤ i ≤ n

2
; c(v2i−1) = 1 if 1 ≤ i ≤ n

2
.

c(ui) = 1 if 1 ≤ i ≤ n c(wi) = 2 if 1 ≤ i < n.

Then, c induces a σ-coloring so that is σ(G) ≤ 2. If possible, assume σ(G) = 1.
The vertices ui and wi are of same degree and are adjacent 1 ≤ i ≤ n. If we color
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all the vertices with the same color 1 then these two adjacent vertices will receive
the same color sum, which violates the condition of σ-coloring so that σ(G) = 2.
Case 2. n is odd.
Define c : V (G)→ {1, 2, 3} as follows:

c(v2i) = 2, if 1 ≤ i ≤ n− 1

2
; c(v2i−1) = 1 if 1 ≤ i ≤ n+ 1

2
.

c(ui) = 1 if 1 ≤ i ≤ n c(wi) = 2 if 1 ≤ i ≤ n− 1, c(wn) = 3.

Here c induces a σ-coloring so that is σ(G) ≤ 3. If σ(G) = 1, then the vertices ui
and wi are of same degree and are adjacent 1 ≤ i ≤ n and thus will receive the
same color sum, which violates the condition of σ-coloring so that is σ(G) 6= 1. If
σ(G) = 2, then the vertex wn must have the color 1 or 2. If wn has the color 1,
then σ(wn) = σ(un) which violates the condition of σ-coloring. If wn has the color
2, then σ(vn) = σ(v1) which violates the condition of σ-coloring, So, σ(G) 6= 2.
Hence σ(G) = 3.
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