SIGMA COLORING AND GRAPH OPERATIONS

J. Suresh Kumar and Preethi K. Pillai
Post Graduate and Research Department of Mathematics, N.S.S. Hindu College, Changanacherry, Kerala - 686102, INDIA
E-mail : jsuresh.maths@gmail.com

(Received: Oct. 05, 2020 Accepted: Aug. 17, 2021 Published: Dec. 30, 2021)

Abstract

The Sigma coloring of a graph G is an assignment of natural numbers to the vertices of G such that the color sums (the sum of the colors of the adjacent vertices) of any two adjacent vertices are different. The Sigma Chromatic number of a graph $G, \sigma(G)$, is the least number of colors used in a sigma coloring of G. In this paper, we investigate the sigma coloring and Sigma Chromatic number of some graph operations such as Tensor product of graphs, Ring sum of graphs and Jointsum of graphs. We also obtain the sigma coloring and Sigma Chromatic number of some special graphs such as the graphs obtained by duplicating an arbitrary vertex and an arbitrary edge in cycle graphs, C_{n}, fusion of two vertices in cycle graphs, C_{n}, two copies of cycle graphs sharing a common edge.

Keywords and Phrases: σ-coloring, Sigma Chromatic number, Tensor-Product, Ring-Sum, Joint-Sum.
2020 Mathematics Subject Classification: 05C15.

1. Introduction

By a graph, we mean a finite undirected graph without loops or parallel edges. For the terms and notations not defined explicitly here, reader may refer Harary [3]. Graph coloring take a major part in Graph Theory since the rise of the famous four color conjecture. A coloring of a graph G is an assignment of colors to the vertices of G such that adjacent vertices have distinct colors. We represent the colors by natural numbers so that the function $c: V(G) \rightarrow N$ is a vertex coloring
of a graph G, and $c(v)$ denote the color of a vertex v. If any two adjacent vertices u and v have $c(u) \neq c(v)$ then c is called a proper vertex coloring of G.

Consider a vertex coloring of G which is not-proper. For any $v \in V(G)$, let $\sigma(v)$ denotes the sum of colors of the vertices adjacent to v, if for any two adjacent vertices $u, v \in V(G), \sigma(v) \neq \sigma(u)$. Then the coloring is called a Sigma coloring (σ-coloring) of G. The minimum number of colors used in a sigma coloring of G is called the sigma chromatic number of G and is denoted by $\sigma(G)$. The Sigma Coloring Problem is to determine the Sigma Chromatic number of a graph G.

Several types of graph coloring were investigated $[1,4]$ and new variations of coloring are still available recently [2, 7]. The σ - coloring was introduced by Gary Chartrand et.al. [1] in 2008 as a study project. In 2010, Gary Chartrand et.al. presented the first paper with the result to this problem [2], determining the sigma chromatic number for complete graphs, cycles and complete r-partite graph with $r \geq 2$. In the same work, it is proved that for any graph $G, \sigma(G) \leq X(G)$ where $X(G)$ is the least number of colors to a proper vertex coloring of G. To the best of our knowledge, there are few other works on the sigma coloring problem [5]. For circulant graphs, Luzon et al. [6] determined the sigma chromatic number for $C_{n}(1,2), C_{n}(1,3)$, and $C_{2 n}(1, n)$.

We begin by recalling some basic definitions used in this paper.
Definition 1.1. Tensor Product of two graphs G_{1} and G_{2} is denoted by $G_{1}\left(T_{p}\right) G_{2}$ with vertex set, $V\left(G_{1}\right) \times V\left(G_{2}\right)$ and edge set, $\left\{\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right): u_{1} u_{2} \in E\left(G_{1}\right), v_{1} v_{2} \in\right.$ $\left.E\left(G_{2}\right)\right\}$.
Definition 1.2. Ring Sum of two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is the graph denoted by $G_{1} \bigoplus G_{2}$ with the vertex set, $V_{1} \cup V_{2}$ and the edge set, $E_{1} \cup E_{2}-$ $\left(E_{1} \cap E_{2}\right)$.
Definition 1.3. Joint Sum of a graph G is a graph obtained from two copies of G by connecting a vertex of the first copy with a vertex of the second copy by an edge.
Definition 1.4. Duplication of a vertex v_{k} of a graph G produces a new graph G_{1} from G by adding a new vertex v_{k}^{\prime} in such a way that $N\left(v_{k}\right)=N\left(v_{k}^{\prime}\right)$, where $N(v)$ denote the set of all vertices of G that are adjacent to v. In other words, a vertex v_{k}^{\prime} is said to be duplication of v_{k} if all the vertices which are adjacent to v_{k} are now adjacent to v_{k}^{\prime} also.
Definition 1.5. Duplication of an edge $v_{i} v_{i+1}$ of a graph G produces a new graph G_{1} by adding a new edge $v_{i}^{\prime} v_{i+1}^{\prime}$ in such a way that $N\left(v_{i}^{\prime}\right)=N\left(v_{i}\right) \cup\left\{v_{i+1}^{\prime}\right\}-\left\{v_{i+1}\right\}$ and $N\left(v_{i+1}^{\prime}\right)=N\left(v_{i+1}\right) \cup\left\{v_{i}^{\prime}\right\}-\left\{v_{i}\right\}$.
Definition 1.6. Fusion (Identification) of two distinct vertices u, v of a graph
G produces a new graph G_{1} constructed by replacing the vertices u, v by a single vertex w such that every edge which is incident with either u or v in G is now incident with w in G_{1}.

Definition 1.7. Duplication (Subdivision) of an edge $e=u v$ by a new vertex w in a graph G produces a new graph G^{\prime} such that $N_{G^{\prime}}(w)=\{u, v\}$.
Definition 1.8. Duplication of a vertex v_{k} by a new edge $e=v_{k}^{\prime} v_{k}^{\prime \prime}$ in a graph G produces a new graph $G^{\prime \prime}$ such that $N_{G}\left(v_{k}^{\prime}\right)=\left\{v_{k}, v_{k}^{\prime \prime}\right\}$ and $N_{G}\left(v_{k}^{\prime \prime}\right)=\left\{v_{k}, v_{k}^{\prime}\right\}$.
Definition 1.9. The Floor function of a real number x is the largest integer less than or equal to x and it is denoted by $\lfloor x\rfloor$. The Ceil function of a real number x is the smallest integer greater than or equal to x and it is denoted by $\lceil x\rceil$.
Definition 1.10. Let G be a simple connected graph and $c: V(G) \rightarrow \mathbb{N}$, where \mathbb{N} is the set of positive integers, be a coloring of the vertices in G. We call $c(v)$ as the color of the vertex, v. For any $v \in V(G)$, let $\sigma(v)$ denotes the sum of colors of the vertices adjacent to v then c is called a Sigma coloring (σ-coloring) of G if for any two adjacent vertices $u, v \in V(G), \sigma(v) \neq \sigma(u)$. The least number of colors used in a sigma coloring of G is called the sigma chromatic number of G and is denoted by $\sigma(G)$.

In this paper, we investigate the σ-coloring and the Sigma Chromatic number of some graph operations such as ring sum of graphs, joint sum of graphs and tensor product of graphs. We also prove that the graphs obtained by duplicating arbitrary vertex as well as arbitrary edge in cycle C_{n}, fusion of two vertices in cycle C_{n}, two copies of cycle sharing a common edge admits sigma coloring. For the terms and definitions not explicitly defined here, reader may refer Harary [3].

2. Main Results

Theorem 3.1. Tensor product of P_{m} and $P_{n}, m>n$, is σ-colorable and its Sigma chromatic number is

$$
\sigma\left(P_{m}\left(T_{p}\right) P_{n}\right)= \begin{cases}1 & \text { if } m=3 \text { and } n=2 \\ 2 & \text { if } m \geq 4, n \geq 2 .\end{cases}
$$

Proof. Let P_{m} and P_{n} be two paths of length $m-1$ and $n-1$ respectively. Let $G=P_{m}\left(T_{p}\right) P_{n}$. Then $|V(G)|=m n,|E(G)|=2(m-1)(n-1)$. Let the vertices of G as $u_{i} v_{j} 1 \leq i \leq m, 1 \leq j \leq n$.
Case 1. Let $m=3$ and $n=2$.
Define a coloring $c: V(G) \rightarrow\{1\}$ as follows: $c\left(u_{i} v_{j}\right)=1$ if $1 \leq i \leq m, 1 \leq j \leq n$. Clearly, this coloring satisfies the conditions of $\sigma-$ coloring. Since the graph is nonempty, at least one color is needed so that $\sigma\left(P_{3}\left(T_{p}\right) P_{2}\right)=1$.

Case 2. Let $m \geq 4$ and $n=2$.
Define a coloring function, $c: V(G) \rightarrow\{1,2\}$ as follows:

$$
\begin{gathered}
c\left(u_{4 i-2} v_{j}\right)=1 \text { for all } 1 \leq i \leq\left\lfloor\frac{m+2}{4}\right\rfloor, \quad j=1,2 \\
c\left(u_{i}, v_{j}\right)=2 \text { if } i \neq 4 i-2, \quad 1 \leq i \leq m, 1 \leq j \leq 2
\end{gathered}
$$

Here, c induces a σ-coloring so that $\sigma\left(P_{3}\left(T_{p}\right) P_{2}\right) \leq 2$. If possible, assume $\sigma\left(P_{3}\left(T_{p}\right) P_{2}\right)=1$. Then the vertices $u_{i} v_{j}, 2 \leq i \leq m-1,1 \leq j \leq 2$ are of same degree. If we color all the vertices with the same color, 1 then the adjacent vertices, $u_{i-1} v_{2}, u_{i} v_{1}, u_{i+1} v_{2}$ where $i=\left\lceil\frac{m}{2}\right\rceil$ will receive the same color sum, which violates the condition of σ-coloring so that $\sigma\left(P_{3}\left(T_{p}\right) P_{2}\right)=2$.
Case 3. $m \geq 4$ and $n \geq 3$.
Define $c: V(G) \rightarrow\{1,2\}$ as follows:

$$
\begin{aligned}
c\left(u_{1} v_{j}\right)=1 & \text { if } 1 \leq j \leq n \\
c\left(u_{2 i+1}, v_{j}\right)=1 & \text { if } j \text { is odd, } \quad 1 \leq i \leq\left\lfloor\frac{m-2}{2}\right\rfloor, \quad 1 \leq j \leq n \\
=2 & \text { if } j \text { is even, } \quad 1 \leq i \leq\left\lfloor\frac{m-2}{2}\right\rfloor, \quad 1 \leq j \leq n \\
c\left(u_{2 i}, v_{j}\right)=2 & \text { if } j \text { is odd, } \quad 1 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor, \quad 1 \leq j \leq n \\
=1 & \text { if } j \text { is even, } \quad 1 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor, \quad 1 \leq j \leq n
\end{aligned}
$$

$c\left(u_{m} v_{j}\right)$ can be as follows:
a) If both m and n are odd $c\left(u_{m} v_{j}\right)=1,1 \leq j \leq n$.
b) If m is odd and n is even $c\left(u_{m} v_{j}\right)=2,1 \leq j \leq n$
c) If m is even and n is odd $c\left(u_{m} v_{j}\right)=2,1 \leq j \leq n$
d) If both m and n are even $c\left(u_{m} v_{j}\right)= \begin{cases}1 & \text { if } j \text { is odd } \\ 2 & \text { if } j \text { is even }\end{cases}$

Here, c is a σ-coloring with $\sigma\left(P_{m}\left(T_{p}\right) P_{n}\right) \leq 2$. If possible, assume $\sigma\left(P_{m}\left(T_{p}\right) P_{n}\right)$ $=1$. Since the vertices $u_{2} v_{1}$ and $u_{1} v_{2}$ are of the same degree and we color all the vertices with the same color, 1 , these adjacent vertices $u_{2} v_{1}$ and $u_{1} v_{2}$ receive the same color sum, which violates the condition of σ-coloring. Hence, $\sigma\left(P_{3}\left(T_{p}\right) P_{2}\right)=$ 2.

Theorem 2.2. Tensor product of Cycle graphs and Path graphs, $C_{m}\left(T_{p}\right) P_{n}, m>n$, is σ-colorable and its Sigma chromatic number is $\sigma C_{m}\left(T_{p}\right) P_{n}=2$ if $m \geq 3$ and
$n \neq 3$ and $\sigma C_{m}\left(T_{p}\right) P_{3}=1$ if $m \geq 4$.
Proof. Let the vertices of $C_{m}\left(T_{p}\right) P_{n}$ be denoted as $u_{i} v_{j} 1 \leq i \leq m, 1 \leq j \leq n$. We note that $\left|V\left(C_{m}\left(T_{p}\right) P_{n}\right)\right|=m n,\left|E\left(C_{m}\left(T_{p}\right) P_{n}\right)\right|=2 m(n-1)$.
Case 1. Let $m \geq 3$ and $n=3$.
Define a coloring function $c: V(G) \rightarrow\{1,2\}$ as follows.

$$
c\left(u_{i} v_{j}\right)=1 \quad \text { if } 1 \leq i \leq m, 1 \leq j \leq 3
$$

Then, each vertex has a color sum equal to its degree and hence it satisfies the conditions of a σ-coloring. Since the graph is non-empty at least one color is needed to color G, so that $\sigma\left(C_{m}\left(T_{p}\right) P_{3}\right)=1$.
Case 2. Let $m \geq 3$ and $n \neq 3$.
Define $c: V(G) \rightarrow\{1,2\}$ as follows.

$$
\begin{aligned}
& c\left(u_{i} v_{j}\right)=2 \text { if } j \text { is odd } 1 \leq i \leq m, 1 \leq j \leq n-1, \\
& =1 \text { if } j \text { is even } 1 \leq i \leq m, 1 \leq j \leq n-1, \\
& c\left(u_{i} v_{n}\right)=2 \quad \text { if } \quad 1 \leq i \leq m .
\end{aligned}
$$

c induces a σ-coloring so that $\sigma\left(C_{m}\left(T_{p}\right) P_{n}\right) \leq 2$. If possible, assume $\sigma\left(C_{m}\left(T_{p}\right) P_{n}\right)$ $=1$. The vertices $u_{1} v_{2}$ and $u_{m} v_{n-1}$ are of same degree and are adjacent. If we color all the vertices with the same color, 1 , then these adjacent vertices receives the same color sum, which will contradict the condition of σ-coloring so that $\sigma\left(C_{m}\left(T_{p}\right) P_{n}\right)=2$.
Theorem 2.3. Tensor product of two star graphs, $K_{1, n}\left(T_{p}\right) K_{1, n}$ is σ-colorable and its Sigma chromatic number is $\sigma\left(K_{1, n}\left(T_{p}\right) K_{1, n}\right)=2$ for all $n \geq 1$.
Proof. Let $\left\{u_{1}, u_{2}, u_{3}, \ldots u_{n}, u_{n+1}\right\},\left\{v_{1}, v_{2}, v_{3}, \ldots v_{n}, v_{n+1}\right\}$ be vertices of first star, $K_{1, n}$ and the second star, $K_{1, n}$ respectively; u_{1}, v_{1} are the roots of the stars. Let $G=K_{1, n}\left(T_{p}\right) K_{1, n}$. Denote the vertices of G as $u_{i} v_{j} ; 1 \leq i \leq n+1,1 \leq j \leq n+1$. We note that $|V(G)|=(n+1)^{2},|E(G)|=2 n^{2}$.

Define a coloring function $c: V(G) \rightarrow 1,2$ as follows:

$$
\begin{array}{ll}
c\left(u_{i} v_{j}\right)=1 & \text { if } j \text { is odd } 1 \leq i \leq n+1,1 \leq j \leq n+1, \\
c\left(u_{i} v_{j}\right)=2 & \text { if } j \text { is even } 1 \leq i \leq n+1,1 \leq j \leq n+1
\end{array}
$$

c induces a $\sigma-$ coloring so that $\sigma\left(K_{1, n}\left(T_{p}\right) K_{1, n}\right) \leq 2$. If $\sigma\left(K_{1, n}\left(T_{p}\right) K_{1, n}\right)=1$, we color all the vertices with the same color, 1 then the two adjacent vertices $u_{2} v_{1}$ and $u_{1} v_{3}$ with the same degree will receive the same color sum, which violates the condition of σ-coloring so that $\sigma\left(K_{1, n}\left(T_{p}\right) K_{1, n}\right)=2$.

Theorem 2.4. Tensor product of two star graphs, $K_{1, m}\left(T_{p}\right) K_{1, n}$ is σ-colorable
and its Sigma chromatic number is $\sigma\left(K_{1, m}\left(T_{p}\right) K_{1, n}\right)=1$ for all $m>n$.
Proof. Let $\left\{u_{1}, u_{2}, u_{3}, \ldots u_{n}, u_{n+1}\right\},\left\{v_{1}, v_{2}, v_{3}, \ldots v_{n}, v_{n+1}\right\}$ be vertices of first star, $K_{1, n}$ and the second star, $K_{1, n}$ respectively; u_{1}, v_{1} are the roots of the stars. Let $G=K_{1, m}\left(T_{p}\right) K_{1, n}$. Denote the vertices of G as $u_{i} v_{j} ; 1 \leq i \leq m+1,1 \leq j \leq n+1$. Then, $|V(G)|=(m+1)(n+1),|E(G)|=2 m n$.
Define a coloring function $c: V(G) \rightarrow\{1\}$ as follows: $c\left(u_{i} v_{j}\right)=1,1 \leq i \leq m+1$, $1 \leq j \leq n+1$. Since the graph is non-empty, at least one color is needed to color G. Clearly, c satisfies the conditions of σ-coloring for the graph G so that $\sigma(G)=1$.
Theorem 2.5. Ring sum of Cycle graphs and Star graphs, $C_{n} \bigoplus K_{1, n}$ is σ-colorable and its Sigma chromatic number is $\sigma\left(C_{n} \bigoplus K_{1, n}\right)=2$.
Proof. $V_{1}=\left\{u_{1}, u_{2}, u_{3}, \ldots u_{n}\right\}$ be the vertex set of C_{n} and $V_{2}=\left\{v, v_{1}, v_{2}, v_{3}, \ldots v_{n}\right\}$ be the vertex set of $K_{1, n}$ and let $V=V_{1} \cup V_{2}$, where $v_{1}, v_{2}, v_{3}, \ldots v_{n}$ are pendent vertices.

Define a coloring function, $c: V(G) \rightarrow\{1,2\}$ as follows: $c(v)=1, c\left(u_{1}\right)=1$, $c\left(v_{j}\right)=1 \quad$ if $1 \leq j \leq n ; c\left(u_{2 i-1}\right)=1 \quad$ if $1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil ; c\left(u_{2 i}\right)=2$ if $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$. c induces a σ-coloring so that $\sigma\left(C_{n} \bigoplus K_{1, n}\right) \leq 2$. If $\sigma\left(C_{n} \bigoplus K_{1, n}\right)=1$, then the vertices u_{2}, u_{3} are of same degree and are adjacent so that they receive the same color sum, which violates the condition of σ-coloring so that $\sigma\left(C_{n} \bigoplus K_{1, n}\right)=2$.

Theorem 2.6. The Joint sum of two copies of C_{n} is σ-colorable and $\sigma(G)=2$.
Proof. Let us denote the vertices of the first copy of C_{n} as $v_{1}, v_{2}, \ldots v_{n}$ and the vertices of second copy as $v_{n+1}, v_{n+2}, v_{n+3}, \ldots, v_{n+n}$. Let G be the resulted graph by joining an arbitrary vertex of the first copy of C_{n} to an arbitrary vertex of the second copy of C_{n} by a new edge. Without loss of generality we may assume that the new edge be $v_{n} v_{n+1}$.
Case 1. n is even.
Define $c: V(G) \rightarrow\{1,2\}$ as follows:

$$
\begin{aligned}
& c\left(v_{2 i}\right)=2 \text { if } 1 \leq i \leq \frac{n}{2}, \quad c\left(v_{2 i-1}\right)=1 \text { if } 1 \leq i \leq \frac{n}{2} \\
& c\left(v_{2 i}\right)=1 \text { if } \frac{n}{2}+1 \leq i \leq n, \quad c\left(v_{2 i-1}\right)=2 \text { if } \frac{n}{2}+1 \leq i \leq n
\end{aligned}
$$

Case 2. n is odd.
Define $c: V(G) \rightarrow\{1,2\}$ as follows:

$$
\begin{aligned}
& c\left(v_{2 i}\right)=2 \text { if } 1 \leq i \leq \frac{n-1}{2}, \quad c\left(v_{2 i-1}\right)=1 \quad \text { if } 1 \leq i \leq \frac{n+1}{2}, c\left(v_{n+1}\right)=1 \\
& c\left(v_{2 i}\right)=1 \text { if } \frac{n}{2}+1 \leq i \leq n-1, \quad c\left(v_{2 i+1}\right)=2 \text { if } \frac{n}{2}+1 \leq i \leq n-1, \quad c\left(v_{2 n}\right)=2
\end{aligned}
$$

In both cases, c induces a σ-coloring so that $\sigma(G) \leq 2$. If $\sigma(G)=1$, then the vertices v_{n} and v_{n+1} are of the same degree and are adjacent. Sine we color all the vertices with the same color, 1 , these two adjacent vertices receives the same color sum, which violates the condition of σ-coloring so that $\sigma(G)=2$.

Theorem 2.7. The Sigma chromatic number of a graph obtained by duplication of an arbitrary vertex of cycle C_{n} is 2.
Proof. Let vertices of cycle C_{n} be $v_{1}, v_{2}, v_{3}, \ldots v_{n}$. Let G be graph resulted by duplication of an arbitrary vertex. Without loss of generality let it be v_{1} and duplicated vertex be v_{1}^{\prime}.

Let us define the coloring $c: V(G) \rightarrow\{1,2\}$. We have to consider the following three cases:
Case 1. When n is even.

$$
c\left(v_{1}\right)=1, c\left(v_{1}^{\prime}\right)=1, c\left(v_{2 i-1}\right)=1 \text { if } 1 \leq i \leq \frac{n}{2}, c\left(v_{2 i}\right)=2 \text { if } 1 \leq i \leq \frac{n}{2}
$$

Case 2. When n is odd and the duplicate vertex is in the odd position

$$
c\left(v_{1}^{\prime}\right)=1, c\left(v_{2 i-1}=2 \text { if } 1 \leq i \leq \frac{n-1}{2}, c\left(v_{2 i}\right)=1 \text { if } 1 \leq i \leq \frac{n-1}{2}, c\left(v_{n}\right)=1\right.
$$

Case 3. When n is odd and the duplicate vertex is in the even position

$$
c\left(v_{i}^{\prime}\right)=1, c\left(v_{2 i-1}=1 \text { if } 1 \leq i \leq \frac{n+1}{2}, c\left(v_{2 i}\right)=2 \text { if } 1 \leq i \leq \frac{n-1}{2}, c\left(v_{n}\right)=1\right.
$$

c induces a σ-coloring so that is $\sigma(G) \leq 2$. If $\sigma(G)=1$, then there exist adjacent vertices, v_{3} and v_{4}, such that these adjacent vertices receive the same color sum, which violates the condition of σ-coloring. Hence, $\sigma(G)=2$.
Theorem 2.8. Fusion of two vertices v_{i} and v_{j} with $d\left(v_{i}, v_{j}\right) \geq 3$ in cycle C_{n} admits σ-coloring, where $d(u, v)$ is the shortest distance between two vertices u, v. Proof. Let $v_{1}, v_{2}, v_{3}, \ldots v_{n}$ be the vertices of cycle the C_{n}. Without loss of generality, assume that the fused vertices are v_{1}, v_{k} so that $d\left(v_{1}, v_{k}\right) \geq 3$. Let the resulting graph be G. Define a coloring function $c: V(G) \rightarrow\{1,2\}$ as follows:

$$
c\left(v_{2 i}\right)=1 \text { if } 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor, c\left(v_{2 i-1}\right)=2 \text { if } 1 \leq i \leq\left\lfloor\frac{n+1}{2}\right\rfloor, c\left(v_{i}\right)=1=c\left(v_{k}\right)
$$

Then c induces a σ-coloring so that is $\sigma(G) \leq 2$. If possible, assume $\sigma(G)=1$. In the graph, G, the vertices of cycle C_{n} except v_{1} and v_{k} are of the same degree and there exist two adjacent vertices v_{k+1} and v_{k+2} which will have the same color
sum, which violates the condition of σ-coloring so that $\sigma(G)=2$.
Theorem 2.9. The Sigma chromatic number of a graph obtained from two copies of cycles C_{n} sharing a common edge admits σ-coloring and $\sigma(G)=2$.
Proof. Let $\left\{v_{1}, v_{2}, v_{3} \ldots v_{n}\right\}$ be the vertices of the cycle, C_{n}. Let G be the resulting graph obtained when two copies of cycle, C_{n} share a common edge. Without loss of generality we can assume that the common edge of these cycles is $\left\{v_{1} v_{n}\right\}$. Let $\left\{v_{n}, v_{n+1}, v_{n+2}, v_{n+3 \ldots} v_{2 n-2}, v_{1}\right\}$ be the vertices of the second copy of C_{n}.
Case 1. When $n=3$.
Define $c: V(G) \rightarrow\{1,2\}$ as follows:
Let $\left\{v_{1}, v_{2}, v_{3}\right\}$ be the vertices of cycle C_{3}. Let $\left\{v_{1}, v_{3}, v_{4}\right\}$ be the vertices of second copy of cycle C_{3}. Let the common edge be $e=v_{1} v_{3}$

$$
c\left(v_{1}\right)=1, c\left(v_{2}\right)=2, c\left(v_{3}\right)=2, c\left(v_{4}\right)=1
$$

Case 2. $n \geq 5$ and n is odd.

$$
c\left(v_{2 i}\right)=2 \text { if } 1 \leq i \leq n-1, c\left(v_{2 i-1}\right)=1 \text { if } 1 \leq i \leq n-1, i \neq \frac{n+1}{2}, c\left(v_{n}\right)=2
$$

Case 3. $n \geq 4$ and n is even.

$$
c\left(v_{2 i}\right)=2 \text { if } 1 \leq i \leq n-1, c\left(v_{2 i-1}\right)=1 \text { if } 1 \leq i \leq n-1
$$

In all cases, c induces a σ-coloring so that is $\sigma(G) \leq 2$. If $\sigma(G)=1$, then the two adjacent vertices v_{1} and v_{k} are of same degree and receive the same color sum, which violates the condition of σ-coloring so that $\sigma(G)=2$.

Theorem 2.10. The Sigma chromatic number of a graph resulted by duplication of every vertex by an edge in cycle $C_{n}, n \geq 3$, is $\sigma(G)=\left\{\begin{array}{ll}2 & \text { if } n \text { is even } \\ 3 & \text { if } n \text { is odd }\end{array}\right.$.
Proof. Let $v_{1}, v_{2}, v_{3}, \ldots v_{n}$ be the consecutive vertices of cycle C_{n}. Let G be the resulted graph obtained by duplication of each of the vertices v_{i} in cycle C_{n} by new edge $u_{i} w_{i}$ for $i=1,2,3, \ldots n$.
Case 1. $n \geq 3$ and n is even.
Define $c: V(G) \rightarrow\{1,2\}$ as follows:

$$
\begin{array}{ll}
c\left(v_{2 i}\right)=2, & \text { if } 1 \leq i \leq \frac{n}{2} ;
\end{array} \quad c\left(v_{2 i-1}\right)=1 \text { if } 1 \leq i \leq \frac{n}{2} . ~\left[\begin{array}{ll}
c\left(u_{i}\right)=2 \text { if } 1 \leq i<n
\end{array}\right.
$$

Then, c induces a σ-coloring so that is $\sigma(G) \leq 2$. If possible, assume $\sigma(G)=1$. The vertices u_{i} and w_{i} are of same degree and are adjacent $1 \leq i \leq n$. If we color
all the vertices with the same color 1 then these two adjacent vertices will receive the same color sum, which violates the condition of σ-coloring so that $\sigma(G)=2$.
Case 2. n is odd.
Define $c: V(G) \rightarrow\{1,2,3\}$ as follows:

$$
\begin{aligned}
& c\left(v_{2 i}\right)=2, \quad \text { if } 1 \leq i \leq \frac{n-1}{2} ; \quad c\left(v_{2 i-1}\right)=1 \text { if } 1 \leq i \leq \frac{n+1}{2} . \\
& c\left(u_{i}\right)=1 \quad \text { if } 1 \leq i \leq n \quad c\left(w_{i}\right)=2 \text { if } 1 \leq i \leq n-1, c\left(w_{n}\right)=3 .
\end{aligned}
$$

Here c induces a σ-coloring so that is $\sigma(G) \leq 3$. If $\sigma(G)=1$, then the vertices u_{i} and w_{i} are of same degree and are adjacent $1 \leq i \leq n$ and thus will receive the same color sum, which violates the condition of σ-coloring so that is $\sigma(G) \neq 1$. If $\sigma(G)=2$, then the vertex w_{n} must have the color 1 or 2 . If w_{n} has the color 1 , then $\sigma\left(w_{n}\right)=\sigma\left(u_{n}\right)$ which violates the condition of σ-coloring. If w_{n} has the color 2 , then $\sigma\left(v_{n}\right)=\sigma\left(v_{1}\right)$ which violates the condition of σ-coloring, So, $\sigma(G) \neq 2$. Hence $\sigma(G)=3$.

References

[1] Chartrand G. and Zhang P., Chromatic Graph Theory, Boca Raton,Chapman \& Hall Press, (2008).
[2] Chartrand G., Okamoto F., Zhang P., The Sigma Chromatic Number of a Graph, Graphs and Combinatorics, 26 (2010), 755-773.
[3] Frank H., Graph Theory, Addison Wesley, Reading Mass, (1969).
[4] Gallian J. A., Dynamic Survey of Graph labelling, The Electronic Journal of Combinatorics, (2012).
[5] Gustavo L. da Soledade G., Sheila M. de Almeida, Sigma coloring on Powers of Paths and Some families of Snarks, Elsevier Science Direct Electronic Notes in Theoretical Computer Science, 346, (2019) 485-496.
[6] Luzon P. A. D., Ruiz M. J. P. and Tolentino M. A. C., The Sigma chromatic number of the Circulant Graphs $C_{n}(1,2), C_{n}(1,3), C_{2 n}(1, n)$, Japanese Conference on Discrete and Computational Geometry and Graphs, (2015), 216-227.
[7] Suresh Kumar J., Graph Coloring Parameters-A survey, International Journal for Research in Applied Science and Engineering Technology, Vol. 7 (IV), (2019).

