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Abstract: A vertex u in a graph G = (V,E) is said to ve-dominate an edge e = vw
if u ∈ {v, w} or uv ∈ E(G) or uw ∈ E(G). An edge coloring is said to be a ve -
dominating coloring if no two edges ve - dominated by a single vertex receive the
same color. The minimum number of colors required for a ve - dominating coloring
of a graph G is called ve - chromatic number of G and is denoted by χve(G). In
this paper we initiate the study of this parameter.
Keywords and Phrases: ve-Domination, ve-chromatic number.
2020 Mathematics Subject Classification: 05C15, 05C69.
1. Introduction

Let G = (V,E) be a graph. Let p and q denote the number of vertices and the
number of edges respectively. Let d(v) denote the degree of vertex v. The minimum
and maximum degree of a graph are denoted by δ(G) and ∆(G) respectively. The
neighbourhood of a vertex v ∈ V (G) is the set of all vertices adjacent to v in G
and is denoted by N(v).

Let d(u, v) denote the length of a shortest path between two vertices u and v in
G. The length of the longest path is called the diameter and is denoted by diam(G).
Let S1, S2 ⊆ V (G). The distance between S1 and S2 is given by d(S1, S2) =
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min{d(u, v) : u ∈ S1 and v ∈ S2}. For two edges e1 = u1v1 and e2 = u2v2, the
distance between the two edges e1, e2 is defined as d(e1, e2) = d({u1, v1}, {u2, v2}).
The open 2 - neighbourhood set N2(v) of vertex v ∈ V (G) is defined as N2(v) =
{u ∈ V (G) | 0 < d(u, v) ≤ 2}. The closed 2-neighbourhood set N2[v] of v is defined
as N2[v] = N2(v) ∪ {v}.

For any subset S of vertices of V(G), the induced subgraph ⟨S⟩ is the maximal
subgraph of G with vertex set S. The length of a shortest cycle in the graph is
called the girth of a graph G and is denoted by g(G). Graphs considered here are
finite, undirected, connected, without loops and multiple edges. For definitions not
defined here, the reader may refer [2, 3].

A subset S of V (G) is said to be a dominating set of G if for every vertex u not
in S, there is a vertex v in S such that u and v are adjacent in G. The minimum
cardinality of a dominating set of G is called the domination number of G and is
denoted by γ(G). A vertex v in a graph is said to ve-dominate an edge e = uw
if either v ∈ {u,w} or vu ∈ E(G) or vw ∈ E(G). A subset D ⊆ V (G) is said to
be a ve - dominating set of a graph G if every edge in the graph is dominated by
a vertex in D. The minimum cardinality of a ve - dominating set of a graph is
called ve - domination number of the graph and is denoted by γve(G). The study
of ve - domination number has been initiated in [4]. An assignment of colors to the
edges of a graph is said to be a proper coloring if no two adjacent edges(i.e., edges
having common vertex) receive same color. The minimum number colors required
for proper edge coloring is called edge chromatic number or chromatic index of G
and is denoted by χ′(G). An edge uv is said to be dominated by the vertex u as
well as the vertex v. From the definition of edge coloring, one can observe that
the edges dominated by a vertex receive different colors in an edge coloring. In
a similar way, when we come through ve-domination, one can generalize the edge
coloring by means of ve-domination. By this observation, we define the following
edge coloring. An edge coloring of a graph is called ve-dominating coloring if the
edges ve - dominated by a single vertex receive different colors. The minimum
number of colors required for a ve - dominating coloring of a graph G is called ve
- chromatic number of G and is denoted by χve(G).
2. Results
Proposition 2.1. Two edges e1 and e2 receive the same color in a ve-dominating
coloring if and only if d(e1, e2) ≥ 3.
Proof. Let G be a graph and e1, e2 ∈ E(G). Suppose that, in a ve-dominated
coloring, e1 and e2 receive same color. Then both e1 and e2 are not dominated by
a vertex. Therefore d(e1, e2) ≥ 3. Conversely, let d(e1, e2) ≥ 3. Then e1 and e2 can
not be dominated by a vertex. Then we can give a ve-dominating coloring to G so
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that e1 and e2 receive the same color.
Proposition 2.2. Let G be a (p, q) graph. Then χve(G) = q if and only if the
distance between any two edges is less than or equal to two.
Proof. Assume that χve(G) = q. Then any two edges e1 and e2 are ve-dominated
by a vertex in G. Then d(e1, e2) ≤ 2. Conversely, if χve(G) < q, then there are
edges e1 and e2 receiving same color in a ve-coloring of G. Then the edges e1 and
e2 can not be ve-dominated by a vertex. Therefore, d(e1, e2) ≥ 3.
Corollary 2.1. If G is a (p, q) graph with diameter less than or equal to two, then
χve(G) = q.
Corollary 2.2. χve(Kr,s) = rs.
Proof. The diameter of every complete bipartite graph G is less than or equal to
two, by above corollary χve(G) = q = rs.
Remark 2.1. If G is a (p, q) graph with diam(G) = 3 or 4, then χve(G) need not
be equal to q.
Example 2.1.
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Remark 2.2. If diam(G) ≥ 5, then χve(G) < q.
Definition 2.1. For a vertex v of a graph G, the ve - degree of v is defined as
the number of edges ve - dominated by the vertex v and is denoted by degve(v).
The minimum and maximum ve - degrees of the graph are defined as δve(G) =
min{degve(v)|v ∈ V (G)} and ∆ve(G) = max{degve(v)|v ∈ V (G)} respectively.

Note 2.1. δve(G) ≥
(
δ(G) + 1

2

)
Theorem 2.1. For any (p, q)-graph G, ∆ve(G) ≤ χve(G) ≤ q. Moreover, χve(G) =
∆ve(G) if there exists a γve - set D of G such that |N2(v) ∩ N2(u)| ≤ 1 for all
u, v ∈ D.
Proof. Suppose that the theorem is not true. Let v be a vertex in G and degve(v) =
∆ve. The number of edges dominated by v exceeds the number of colors. Then
some edges receive same color, which is not a ve - dominating coloring. Therefore
∆ve(G) ≤ χve(G). By giving different colors to all the edges, we get a trivial
ve-coloring and hence χve(G) ≤ q.

Let D = {v1, v2, · · · , vγve} be a γve - set of G. Then
γve∪
i=1

E(⟨N2(vi)⟩) = E(G).

If |N2(vi) ∩ N2(vj)| ≤ 1, vi ̸= vj ∈ D. E(⟨N2(vi)⟩) ∩ E(⟨N2(vj⟩) = ϕ. There-
fore, {E(⟨N2(v1)⟩), E(⟨N2(v2)⟩), · · · , E(⟨N2(vγve)⟩} is a partition of E(G). Since
|E(⟨N2(vi)⟩)| ≤ ∆ve, χve(⟨N2(vi)⟩) ≤ ∆ve for all i. Hence, χve(G) ≤ ∆ve. Since,
χve(G) ≥ ∆ve, χve(G) = ∆ve(G).
Theorem 2.2. For any graph G with maximum degree ∆,

χve(G) ≤ 2∆((∆− 1)2 + 1)− 1

Proof. Let the edge xy be assigned by a color red. Then the color red can not
be assigned to the edges ux or vy. Since u and v ve-dominate xy, red can not be
assigned to the edges vv1, uu1 and v1v2, u1u2. The coloring of the edge xy affects
the coloring of at most 2(∆ − 1) adjacent edges of the edge xy, the coloring of
at most 2(∆ − 1)2 second neighbours of xy and the coloring of 2(∆ − 1)3 third
neighbours of xy. Therefore,

χve(G) ≤ 2(∆− 1) + 2(∆− 1)2 + 2(∆− 1)3 + 1

= 2(∆− 1)

(
1 + ∆− 1 + ∆2 − 2∆ + 1

)
+ 1

= 2∆((∆− 1)2 + 1)− 1
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Proposition 2.3. For any graph G,

∆ve(G) = max
v∈V (G)

d(v) +
∑

u∈N(v)

(d(u)− 1)− |E(⟨N(v)⟩)|

 and

δve(G) = min
v∈V (G)

d(v) +
∑

u∈N(v)

(d(u)− 1)− |E(⟨N(v)⟩)|


Proof. Every v ∈ V (G) ve-dominate all two distance edges. For each u ∈ N(v),
the vertex v ve-dominates d(v) edges incident with v and d(u) − 1 edges incident
with u other than v. An edge e = uw ∈ E(⟨N(v)⟩) is counted twice, for u as well
as for w in the degve(v). Therefore,

degve(v) = d(v) +
∑

u∈N(v)

d(u)− 1− |E(⟨N(v)⟩)|

Hence,

∆ve(G) = max
v∈V (G)

d(v) +
∑

u∈N(v)

(d(u)− 1)− |E(⟨N(v)⟩)|


and

δve(G) = min
v∈V (G)

d(v) +
∑

u∈N(v)

(d(u)− 1)− |E(⟨N(v)⟩)|


Corollary 2.3. For any graph G with maximum degree ∆, ∆ve(G) ≤ ∆2

Proof. Since for any vertex v, d(v) ≤ ∆,
∑

u∈N(v)(d(u) − 1) ≤ ∆2 − ∆. Hence
∆ve ≤ ∆2.
Corollary 2.4. For a graph G with girth g(G) ≥ 4,

∆ve(G) = max
v∈V (G)

d(v) +
∑

u∈N(v)

(d(u)− 1)

.

For a bipartite graph g(G) ≥ 4, but not the converse. So, as a special case we
have the following.

Corollary 2.5. For a bipartite graph G, ∆ve(G) = max
v∈V (G)

d(v) +
∑

u∈N(v)

(d(u)− 1)

.

Corollary 2.6. ∆ve(Pp) = 4, p ≥ 5.
Proposition 2.4. If G is an r - regular graph, then ∆ve(G) = r2− min

v∈V (G)
{E(⟨N(v)⟩)}.
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Proof. Let G be an r-regular graph. Then from Proposition 2.3,

∆ve(G) = max
v∈V (G)

r +
∑

u∈N(v)

(r − 1)− |E(⟨N(v)⟩)|


= max

v∈V (G)
{r + r(r − 1)− |E(⟨N(v)⟩)|}

= r2 − min
v∈V (G)

{E(⟨N(v)⟩)}

Corollary 2.7. If G is an r - regular graph and girth atleast 4, then ∆ve(G) = r2.
Corollary 2.8. ∆ve(Cp) = 4, p ≥ 4.

Corollary 2.9. ∆ve(Kp) =
p(p−1)

2
, p ≥ 2.

Corollary 2.10. If G is an r - regular bipartite graph, then ∆ve(G) = r2.
Proposition 2.5. Let Pp be a path on p vertices. Then, χve(Pp) = 4 for p ≥ 5.
Proof. Let Pp : v1v2 · · · vp be a path on p vertices. Let p = 4k + r. Let
M1 = {v1v2, v5v6, · · · , v4k−3v4k−2}, M2 = {v2v3, v6v7, · · · , v4k−2v4k−1},
M3 = {v3v4, v7v8, · · · , v4k−1v4k}, M4 = {v4v5, v8v9, · · · , v4(k−1)v4k−3}.
If r = 0, then M1,M2,M3 and M4 are ve-color classes.
If r = 1, then M1,M2,M3 and M4 ∪ {v4kv4k+1} are ve-color classes.
If r = 2, then M1 ∪ {v4k+1v4k+2},M2,M3 and M4 ∪ {v4kv4k+1} are ve-color classes.
If r = 3, then M1 ∪ {v4k+1v4k+2},M2 ∪ {v4k+2v4k+3},M3 and M4 ∪ {v4kv4k+1} are
ve-color classes.
Hence, χve(Pp) ≤ 4. Since χve(Pp) ≥ ∆ve(Pp) = 4, χve(Pp) = 4 for p ≥ 5.
Definition 2.2. An edge subset S of E is said to be 3 - distance edge set if
d(ei, ej) ≥ 3 for all ei, ej ∈ S. The maximum cardinality of a 3 - distance edge set
of a graph is denoted by β3e(G).
Proposition 2.6.

i) β3e(Pp) =

⌈
p− 1

4

⌉
ii) β3e(Cp) =

⌊p
4

⌋
, if p ≥ 4

Proposition 2.7. If G is a graph of size q ≥ 1, then χve(G) ≥ q

β3e(G)
.

Proof. Suppose that χve(G) = k and that E1, E2, · · · , Ek are the ve-color classes
in a k-edge coloring in G. Thus |Ei| ≤ β3e(G) for each i(1 ≤ i ≤ k). Hence
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q = |E(G)| =
k∑

i=1

|Ei| ≤ kβ3e(G) and χve(G) = k ≥ q

β3e(G)
.

Proposition 2.8. Let Cp be a cycle on p vertices. Then,

χve(Cp) =


4, if p ≡ 0(mod 4)

p, if 3 ≤ p ≤ 7

6, if p = 11

5, otherwise

Proof. Let Cp : v1v2 · · · vpv1 be a cycle on p vertices.
Case 1: Let p ≡ 0 (mod 4). Then {v1v2, v5v6, · · · , v4k−3v4k−2}, {v2v3, v6v7, · · · ,
v4k−2 v4k−1}, {v3v4, v7v8, · · · , v4k−1v4k} and {v4v5, v8v9, · · · , v4k)v1} are the four ve-
domination color classes of C4k. Hence χve(C4k) ≤ 4. But χve(C4k) ≥ ∆ve(C4k) = 4.
Therefore, χve(C4k) = 4.
Case 2: Let p ̸≡ 0 (mod 4). When 3 ≤ p ≤ 7, d(e, f) ≤ 2 for all e, f ∈ E(Cp).
Therefore, χve(Cp) = p for 3 ≤ p ≤ 7.

Let p ≥ 9. Let p = 4k + r, where 0 < r ≤ 3. By lemma, χve(Cp) ≥
⌈
|E(Cp)|
β3e(Cp)

⌉
=⌈

4k + r

k

⌉
=

⌈
4 +

r

k

⌉
. If k ≥ r, then

⌈
4 +

r

k

⌉
= 5. Therefore, χve(Cp) ≥ 5.

Sub-case 2.1: Let p ≡ 1 (mod 4). LetM1 = {v1v2}∪{v6v7, v10v11, · · · , v4k−2v4k−1};
M2 = {v2v3} ∪ {v7v8, v11v12, · · · , v4k−1v4k}; M3 = {v4v5, v8v9, · · · , v4kv4k+1};
M4 = {v5v6, v9v10 · · · , v4k+1v1} and M5 = {v3v4}.
Sub-case 2.2: Let p ≡ 2 (mod 4).
Let M1 = {v1v2, v6v7} ∪ {v11v12, v15v16 · · · , v4k−1v4k};
M2 = {v2v3, v7v8} ∪ {v12v13, v16v17 · · · , v4kv4k+1};
M3 = {v4v5}∪{v9v10, v13v14, · · · , v4k+1v4k+2}; M4 = {v5v6, v10v11, v14v15 · · · , v4k+2v1}
and M5 = {v3v4, v8v9}.
Sub-case 2.3: Let p ≡ 3 (mod 4).
Let M1 = {v1v2, v6v7, v11v12} ∪ {v16v17, v20v21 · · · , v4kv4k+1};
M2 = {v2v3, v7v8, v12v13} ∪ {v17v18, v21v22 · · · , v4k+1v4k+2};
M3 = {v4v5, v9v10} ∪ {v14v15, v18v19, · · · , v4k+2v4k+3};
M4 = {v5v6, v10v11}∪{v15v16, v19v20, · · · , v4k+3v1} and M5 = {v3v4, v8v9, v13v14}. In
all cases M1,M2,M3,M4,M5 are the ve-color classes of Cp. Therefore, χve(Cp) ≤ 5.
Thus if k > r, χve(Cp) = 5.
Let k < r. Since k ≥ 2 and r ≤ 3, 2 ≤ k < r ≤ 3. Hence, k = 2 and r = 3, there-
fore p = 11. Then,

⌈
4 +

r

k

⌉
= 6. Therefore, χve(C11) ≥ 6. Now, M1 = {v1v2, v7v8};
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M2 = {v2v3, v8v9}; M3 = {v3v4, v9v10};M4 = {v4v5}; M5 = {v5v6, v10v11};
M6 = {v6v7, v11v1} are the color classes of C11. Therefore, χve(C11) ≤ 6. Hence,
χve(C11) = 6.
3. χve of tree
Proposition 3.1. For any tree T, χve(T ) = ∆ve(T ).
Proof. Let T be a tree. Let v be a vertex of maximum ve-degree ∆ve. Root at
v. Color all the edges joining v to the vertives ve - dominated by v. Let v1 be the
descendent of v and v1 have r1 descendents. Let v2 be a descendent of v1 and v2
have r2 descendents. The line joins v2 to its r2 descendents are not yet colored. If
r2 > ∆ve−(r1+1), then r1+r2+1 > ∆ve. The ve - degree of v2 ≥ r1+r2+1 > ∆ve.
Therefore, degve(v2) > ∆ve, a contradiction. Thus, r2 ≤ ∆ve− (r1+1). But all the
lines joining these r1 descendents of v1 to v1 and the line vv1 are colored with r1+1
colors. Also the remaining ∆ve − (r1 + 1) ve-neighbors of v are not dominated by
v2. By using these ∆ve − (r1 +1) colors, color the edges joining v2 to its r2 descen-
dents,since r2 ≤ ∆ve−(r1+1). Thus all the lines joining the descendents v1j of v1 to
the descendents of v1j . Hence all the edges dominated by vj is colored with atmost
∆ve edges. Hence χve(T ) ≤ ∆ve(T ). Since χve(T ) ≥ ∆ve(T ), χve(T ) = ∆ve(T ).
4. Conclusion

In this paper, some basic results and some characterization theorems on ve-
chromatic number have been studied. In the forthcoming papers, the ve-chromatic
number of some more special types of graphs and the relation connecting ve-
chromatic number and the domination, chromatic index will be studied.
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