South East Asian J. of Mathematics and Mathematical Sciences Vol. 17, No. 3 (2021), pp. 355-362

> ISSN (Online): 2582-0850 ISSN (Print): 0972-7752

VERTEX - EDGE DOMINATING COLORING OF GRAPHS

R. Madhiyalagan and A. Wilson Baskar*

Government Higher Secondary School, Avanam, Thanjavur - 614623, Tamil Nadu, INDIA

E-mail : mdmatialagan@gmail.com

*Ramanujan Research Center in Mathematics, Saraswathi Narayanan College, Madurai - 625022, Tamil Nadu, INDIA

E-mail : arwilvic@yahoo.com

(Received: Oct. 30, 2020 Accepted: Aug. 31, 2021 Published: Dec. 30, 2021)

Abstract: A vertex u in a graph G = (V,E) is said to ve-dominate an edge e = vwif $u \in \{v, w\}$ or $uv \in E(G)$ or $uw \in E(G)$. An edge coloring is said to be a vedominating coloring if no two edges ve- dominated by a single vertex receive the same color. The minimum number of colors required for a ve- dominating coloring of a graph G is called ve - chromatic number of G and is denoted by $\chi_{ve}(G)$. In this paper we initiate the study of this parameter.

Keywords and Phrases: ve-Domination, ve-chromatic number.

2020 Mathematics Subject Classification: 05C15, 05C69.

1. Introduction

Let G = (V, E) be a graph. Let p and q denote the number of vertices and the number of edges respectively. Let d(v) denote the degree of vertex v. The minimum and maximum degree of a graph are denoted by $\delta(G)$ and $\Delta(G)$ respectively. The neighbourhood of a vertex $v \in V(G)$ is the set of all vertices adjacent to v in G and is denoted by N(v).

Let d(u, v) denote the length of a shortest path between two vertices u and v in G. The length of the longest path is called the *diameter* and is denoted by diam(G). Let $S_1, S_2 \subseteq V(G)$. The distance between S_1 and S_2 is given by $d(S_1, S_2) =$ min{ $d(u, v) : u \in S_1$ and $v \in S_2$ }. For two edges $e_1 = u_1v_1$ and $e_2 = u_2v_2$, the distance between the two edges e_1, e_2 is defined as $d(e_1, e_2) = d(\{u_1, v_1\}, \{u_2, v_2\})$. The open 2 - neighbourhood set $N_2(v)$ of vertex $v \in V(G)$ is defined as $N_2(v) = \{u \in V(G) \mid 0 < d(u, v) \le 2\}$. The closed 2-neighbourhood set $N_2[v]$ of v is defined as $N_2[v] = N_2(v) \cup \{v\}$.

For any subset S of vertices of V(G), the induced subgraph $\langle S \rangle$ is the maximal subgraph of G with vertex set S. The length of a shortest cycle in the graph is called the *girth* of a graph G and is denoted by g(G). Graphs considered here are finite, undirected, connected, without loops and multiple edges. For definitions not defined here, the reader may refer [2, 3].

A subset S of V(G) is said to be a dominating set of G if for every vertex u not in S, there is a vertex v in S such that u and v are adjacent in G. The minimum cardinality of a dominating set of G is called the domination number of G and is denoted by $\gamma(G)$. A vertex v in a graph is said to ve-dominate an edge e = uwif either $v \in \{u, w\}$ or $vu \in E(G)$ or $vw \in E(G)$. A subset $D \subseteq V(G)$ is said to be a ve - dominating set of a graph G if every edge in the graph is dominated by a vertex in D. The minimum cardinality of a ve - dominating set of a graph is called ve - domination number of the graph and is denoted by $\gamma_{ve}(G)$. The study of ve - domination number has been initiated in [4]. An assignment of colors to the edges of a graph is said to be a proper coloring if no two adjacent edges (i.e., edges having common vertex) receive same color. The minimum number colors required for proper edge coloring is called *edge chromatic number or chromatic index* of Gand is denoted by $\chi'(G)$. An edge uv is said to be dominated by the vertex u as well as the vertex v. From the definition of edge coloring, one can observe that the edges dominated by a vertex receive different colors in an edge coloring. In a similar way, when we come through ve-domination, one can generalize the edge coloring by means of ve-domination. By this observation, we define the following edge coloring. An *edge coloring* of a graph is called *ve*-dominating coloring if the edges ve - dominated by a single vertex receive different colors. The minimum number of colors required for a ve - dominating coloring of a graph G is called ve- chromatic number of G and is denoted by $\chi_{ve}(G)$.

2. Results

Proposition 2.1. Two edges e_1 and e_2 receive the same color in a ve-dominating coloring if and only if $d(e_1, e_2) \ge 3$.

Proof. Let G be a graph and $e_1, e_2 \in E(G)$. Suppose that, in a *ve*-dominated coloring, e_1 and e_2 receive same color. Then both e_1 and e_2 are not dominated by a vertex. Therefore $d(e_1, e_2) \geq 3$. Conversely, let $d(e_1, e_2) \geq 3$. Then e_1 and e_2 can not be dominated by a vertex. Then we can give a *ve*-dominating coloring to G so

that e_1 and e_2 receive the same color.

Proposition 2.2. Let G be a (p,q) graph. Then $\chi_{ve}(G) = q$ if and only if the distance between any two edges is less than or equal to two.

Proof. Assume that $\chi_{ve}(G) = q$. Then any two edges e_1 and e_2 are ve-dominated by a vertex in G. Then $d(e_1, e_2) \leq 2$. Conversely, if $\chi_{ve}(G) < q$, then there are edges e_1 and e_2 receiving same color in a ve-coloring of G. Then the edges e_1 and e_2 can not be ve-dominated by a vertex. Therefore, $d(e_1, e_2) \geq 3$.

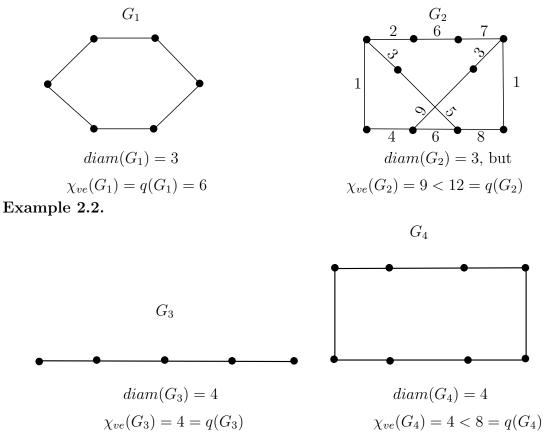
Corollary 2.1. If G is a (p,q) graph with diameter less than or equal to two, then $\chi_{ve}(G) = q$.

Corollary 2.2. $\chi_{ve}(K_{r,s}) = rs$.

Proof. The diameter of every complete bipartite graph G is less than or equal to two, by above corollary $\chi_{ve}(G) = q = rs$.

Remark 2.1. If G is a (p,q) graph with diam(G) = 3 or 4, then $\chi_{ve}(G)$ need not be equal to q.

Example 2.1.



Remark 2.2. If $diam(G) \ge 5$, then $\chi_{ve}(G) < q$.

Definition 2.1. For a vertex v of a graph G, the ve - degree of v is defined as the number of edges ve - dominated by the vertex v and is denoted by $deg_{ve}(v)$. The minimum and maximum ve - degrees of the graph are defined as $\delta_{ve}(G) = \min\{deg_{ve}(v)|v \in V(G)\}$ and $\Delta_{ve}(G) = \max\{deg_{ve}(v)|v \in V(G)\}$ respectively.

Note 2.1.
$$\delta_{ve}(G) \ge {\delta(G) + 1 \choose 2}$$

Theorem 2.1. For any (p,q)-graph G, $\Delta_{ve}(G) \leq \chi_{ve}(G) \leq q$. Moreover, $\chi_{ve}(G) = \Delta_{ve}(G)$ if there exists a γ_{ve} - set D of G such that $|N_2(v) \cap N_2(u)| \leq 1$ for all $u, v \in D$.

Proof. Suppose that the theorem is not true. Let v be a vertex in G and $deg_{ve}(v) = \Delta_{ve}$. The number of edges dominated by v exceeds the number of colors. Then some edges receive same color, which is not a ve - dominating coloring. Therefore $\Delta_{ve}(G) \leq \chi_{ve}(G)$. By giving different colors to all the edges, we get a trivial ve-coloring and hence $\chi_{ve}(G) \leq q$.

Let
$$D = \{v_1, v_2, \dots, v_{\gamma_{ve}}\}$$
 be a γ_{ve} - set of G. Then $\bigcup_{i=1}^{\gamma_{ve}} E(\langle N_2(v_i) \rangle) = E(G)$.
If $|N_2(v_i) \cap N_2(v_j)| \leq 1, v_i \neq v_j \in D$. $E(\langle N_2(v_i) \rangle) \cap E(\langle N_2(v_j \rangle) = \phi$. There-
fore, $\{E(\langle N_2(v_1) \rangle), E(\langle N_2(v_2) \rangle), \dots, E(\langle N_2(v_{\gamma_{ve}}) \rangle\}$ is a partition of E(G). Since
 $|E(\langle N_2(v_i) \rangle)| \leq \Delta_{ve}, \chi_{ve}(\langle N_2(v_i) \rangle) \leq \Delta_{ve}$ for all *i*. Hence, $\chi_{ve}(G) \leq \Delta_{ve}$. Since,
 $\chi_{ve}(G) \geq \Delta_{ve}, \chi_{ve}(G) = \Delta_{ve}(G)$.

Theorem 2.2. For any graph G with maximum degree Δ ,

$$\chi_{ve}(G) \le 2\Delta((\Delta - 1)^2 + 1) - 1$$

Proof. Let the edge xy be assigned by a color red. Then the color red can not be assigned to the edges ux or vy. Since u and v ve-dominate xy, red can not be assigned to the edges vv_1, uu_1 and v_1v_2, u_1u_2 . The coloring of the edge xy affects the coloring of at most $2(\Delta - 1)$ adjacent edges of the edge xy, the coloring of at most $2(\Delta - 1)^2$ second neighbours of xy and the coloring of $2(\Delta - 1)^3$ third neighbours of xy. Therefore,

$$\chi_{ve}(G) \leq 2(\Delta - 1) + 2(\Delta - 1)^2 + 2(\Delta - 1)^3 + 1$$

= $2(\Delta - 1)\left(1 + \Delta - 1 + \Delta^2 - 2\Delta + 1\right) + 1$
= $2\Delta((\Delta - 1)^2 + 1) - 1$

Proposition 2.3. For any graph G,

$$\Delta_{ve}(G) = \max_{v \in V(G)} \left\{ d(v) + \sum_{u \in N(v)} (d(u) - 1) - |E(\langle N(v) \rangle)| \right\} and$$
$$\delta_{ve}(G) = \min_{v \in V(G)} \left\{ d(v) + \sum_{u \in N(v)} (d(u) - 1) - |E(\langle N(v) \rangle)| \right\}$$

Proof. Every $v \in V(G)$ ve-dominate all two distance edges. For each $u \in N(v)$, the vertex v ve-dominates d(v) edges incident with v and d(u) - 1 edges incident with u other than v. An edge $e = uw \in E(\langle N(v) \rangle)$ is counted twice, for u as well as for w in the $deg_{ve}(v)$. Therefore,

$$deg_{ve}(v) = d(v) + \sum_{u \in N(v)} d(u) - 1 - |E(\langle N(v) \rangle)|$$

Hence,

$$\Delta_{ve}(G) = \max_{v \in V(G)} \left\{ d(v) + \sum_{u \in N(v)} (d(u) - 1) - |E(\langle N(v) \rangle)| \right\}$$

and

$$\delta_{ve}(G) = \min_{v \in V(G)} \left\{ d(v) + \sum_{u \in N(v)} (d(u) - 1) - |E(\langle N(v) \rangle)| \right\}$$

Corollary 2.3. For any graph G with maximum degree Δ , $\Delta_{ve}(G) \leq \Delta^2$ **Proof.** Since for any vertex v, $d(v) \leq \Delta$, $\sum_{u \in N(v)} (d(u) - 1) \leq \Delta^2 - \Delta$. Hence $\Delta_{ve} \leq \Delta^2$.

Corollary 2.4. For a graph G with girth $g(G) \ge 4$, $\Delta_{ve}(G) = \max_{v \in V(G)} \left\{ d(v) + \sum_{u \in N(v)} (d(u) - 1) \right\}.$

For a bipartite graph $g(G) \ge 4$, but not the converse. So, as a special case we have the following.

Corollary 2.5. For a bipartite graph
$$G$$
, $\Delta_{ve}(G) = \max_{v \in V(G)} \left\{ d(v) + \sum_{u \in N(v)} (d(u) - 1) \right\}$.

Corollary 2.6. $\Delta_{ve}(P_p) = 4, p \ge 5.$

Proposition 2.4. If G is an r - regular graph, then $\Delta_{ve}(G) = r^2 - \min_{v \in V(G)} \{E(\langle N(v) \rangle)\}.$

Proof. Let G be an r-regular graph. Then from Proposition 2.3,

$$\Delta_{ve}(G) = \max_{v \in V(G)} \left\{ r + \sum_{u \in N(v)} (r-1) - |E(\langle N(v) \rangle)| \right\}$$
$$= \max_{v \in V(G)} \left\{ r + r(r-1) - |E(\langle N(v) \rangle)| \right\}$$
$$= r^2 - \min_{v \in V(G)} \left\{ E(\langle N(v) \rangle) \right\}$$

Corollary 2.7. If G is an r - regular graph and girth atleast 4, then $\Delta_{ve}(G) = r^2$. Corollary 2.8. $\Delta_{ve}(C_p) = 4, p \ge 4$.

Corollary 2.9. $\Delta_{ve}(K_p) = \frac{p(p-1)}{2}, \ p \ge 2.$

Corollary 2.10. If G is an r - regular bipartite graph, then $\Delta_{ve}(G) = r^2$.

Proposition 2.5. Let P_p be a path on p vertices. Then, $\chi_{ve}(P_p) = 4$ for $p \ge 5$. **Proof.** Let $P_p : v_1v_2 \cdots v_p$ be a path on p vertices. Let p = 4k + r. Let $M_1 = \{v_1v_2, v_5v_6, \cdots, v_{4k-3}v_{4k-2}\}, M_2 = \{v_2v_3, v_6v_7, \cdots, v_{4k-2}v_{4k-1}\}, M_3 = \{v_3v_4, v_7v_8, \cdots, v_{4k-1}v_{4k}\}, M_4 = \{v_4v_5, v_8v_9, \cdots, v_{4(k-1)}v_{4k-3}\}.$ If r = 0, then M_1, M_2, M_3 and M_4 are ve-color classes. If r = 1, then M_1, M_2, M_3 and $M_4 \cup \{v_{4k}v_{4k+1}\}$ are ve-color classes. If r = 2, then $M_1 \cup \{v_{4k+1}v_{4k+2}\}, M_2, M_3$ and $M_4 \cup \{v_{4k}v_{4k+1}\}$ are ve-color classes. If r = 3, then $M_1 \cup \{v_{4k+1}v_{4k+2}\}, M_2 \cup \{v_{4k+2}v_{4k+3}\}, M_3$ and $M_4 \cup \{v_{4k}v_{4k+1}\}$ are ve-color classes.

Hence, $\chi_{ve}(P_p) \leq 4$. Since $\chi_{ve}(P_p) \geq \Delta_{ve}(P_p) = 4$, $\chi_{ve}(P_p) = 4$ for $p \geq 5$.

Definition 2.2. An edge subset S of E is said to be 3 - distance edge set if $d(e_i, e_j) \geq 3$ for all $e_i, e_j \in S$. The maximum cardinality of a 3 - distance edge set of a graph is denoted by $\beta_{3e}(G)$.

Proposition 2.6.

i)
$$\beta_{3e}(P_p) = \left\lceil \frac{p-1}{4} \right\rceil$$

ii) $\beta_{3e}(C_p) = \left\lfloor \frac{p}{4} \right\rfloor$, if $p \ge 4$

Proposition 2.7. If G is a graph of size $q \ge 1$, then $\chi_{ve}(G) \ge \frac{q}{\beta_{3e}(G)}$.

Proof. Suppose that $\chi_{ve}(G) = k$ and that E_1, E_2, \dots, E_k are the ve-color classes in a k-edge coloring in G. Thus $|E_i| \leq \beta_{3e}(G)$ for each $i(1 \leq i \leq k)$. Hence

$$q = |E(G)| = \sum_{i=1}^{k} |E_i| \le k\beta_{3e}(G) \text{ and } \chi_{ve}(G) = k \ge \frac{q}{\beta_{3e}(G)}$$

Proposition 2.8. Let C_p be a cycle on p vertices. Then,

$$\chi_{ve}(C_p) = \begin{cases} 4, & \text{if } p \equiv 0 \pmod{4} \\ p, & \text{if } 3 \leq p \leq 7 \\ 6, & \text{if } p = 11 \\ 5, & \text{otherwise} \end{cases}$$

Proof. Let $C_p: v_1v_2\cdots v_pv_1$ be a cycle on p vertices.

Case 1: Let $p \equiv 0 \pmod{4}$. Then $\{v_1v_2, v_5v_6, \cdots, v_{4k-3}v_{4k-2}\}, \{v_2v_3, v_6v_7, \cdots, v_{4k-2}v_{4k-1}\}, \{v_3v_4, v_7v_8, \cdots, v_{4k-1}v_{4k}\}$ and $\{v_4v_5, v_8v_9, \cdots, v_{4k}v_1\}$ are the four vedomination color classes of C_{4k} . Hence $\chi_{ve}(C_{4k}) \leq 4$. But $\chi_{ve}(C_{4k}) \geq \Delta_{ve}(C_{4k}) = 4$. Therefore, $\chi_{ve}(C_{4k}) = 4$.

Case 2: Let $p \not\equiv 0 \pmod{4}$. When $3 \leq p \leq 7$, $d(e, f) \leq 2$ for all $e, f \in E(C_p)$. Therefore, $\chi_{ve}(C_p) = p$ for $3 \leq p \leq 7$.

Let $p \ge 9$. Let p = 4k + r, where $0 < r \le 3$. By lemma, $\chi_{ve}(C_p) \ge \left| \frac{|E(C_p)|}{\beta_{3e}(C_p)} \right| =$ $\left[\frac{4k+r}{k}\right] = \left[4+\frac{r}{k}\right]$. If $k \ge r$, then $\left[4+\frac{r}{k}\right] = 5$. Therefore, $\chi_{ve}(C_p) \ge 5$. Sub-case 2.1: Let $p \equiv 1 \pmod{4}$. Let $M_1 = \{v_1v_2\} \cup \{v_6v_7, v_{10}v_{11}, \cdots, v_{4k-2}v_{4k-1}\};$ $M_2 = \{v_2v_3\} \cup \{v_7v_8, v_{11}v_{12}, \cdots, v_{4k-1}v_{4k}\}; M_3 = \{v_4v_5, v_8v_9, \cdots, v_{4k}v_{4k+1}\};$ $M_4 = \{v_5v_6, v_9v_{10}\cdots, v_{4k+1}v_1\}$ and $M_5 = \{v_3v_4\}.$ Sub-case 2.2: Let $p \equiv 2 \pmod{4}$. Let $M_1 = \{v_1v_2, v_6v_7\} \cup \{v_{11}v_{12}, v_{15}v_{16}\cdots, v_{4k-1}v_{4k}\};$ $M_2 = \{v_2v_3, v_7v_8\} \cup \{v_{12}v_{13}, v_{16}v_{17}\cdots, v_{4k}v_{4k+1}\};$ $M_3 = \{v_4v_5\} \cup \{v_9v_{10}, v_{13}v_{14}, \cdots, v_{4k+1}v_{4k+2}\}; M_4 = \{v_5v_6, v_{10}v_{11}, v_{14}v_{15}\cdots, v_{4k+2}v_{1}\}$ and $M_5 = \{v_3v_4, v_8v_9\}.$ Sub-case 2.3: Let $p \equiv 3 \pmod{4}$. Let $M_1 = \{v_1v_2, v_6v_7, v_{11}v_{12}\} \cup \{v_{16}v_{17}, v_{20}v_{21}\cdots, v_{4k}v_{4k+1}\};$ $M_2 = \{v_2v_3, v_7v_8, v_{12}v_{13}\} \cup \{v_{17}v_{18}, v_{21}v_{22}\cdots, v_{4k+1}v_{4k+2}\};$ $M_3 = \{v_4v_5, v_9v_{10}\} \cup \{v_{14}v_{15}, v_{18}v_{19}, \cdots, v_{4k+2}v_{4k+3}\};$ $M_4 = \{v_5v_6, v_{10}v_{11}\} \cup \{v_{15}v_{16}, v_{19}v_{20}, \cdots, v_{4k+3}v_1\}$ and $M_5 = \{v_3v_4, v_8v_9, v_{13}v_{14}\}$. In all cases M_1, M_2, M_3, M_4, M_5 are the ve-color classes of C_p . Therefore, $\chi_{ve}(C_p) \leq 5$. Thus if k > r, $\chi_{ve}(C_p) = 5$. Let k < r. Since $k \ge 2$ and $r \le 3$, $2 \le k < r \le 3$. Hence, k = 2 and r = 3, therefore p = 11. Then, $\left[4 + \frac{r}{k}\right] = 6$. Therefore, $\chi_{ve}(C_{11}) \ge 6$. Now, $M_1 = \{v_1v_2, v_7v_8\};$

 $M_{2} = \{v_{2}v_{3}, v_{8}v_{9}\}; M_{3} = \{v_{3}v_{4}, v_{9}v_{10}\}; M_{4} = \{v_{4}v_{5}\}; M_{5} = \{v_{5}v_{6}, v_{10}v_{11}\}; M_{6} = \{v_{6}v_{7}, v_{11}v_{1}\} \text{ are the color classes of } C_{11}. \text{ Therefore, } \chi_{ve}(C_{11}) \leq 6. \text{ Hence, } \chi_{ve}(C_{11}) = 6.$

3. χ_{ve} of tree

Proposition 3.1. For any tree T, $\chi_{ve}(T) = \Delta_{ve}(T)$.

Proof. Let T be a tree. Let v be a vertex of maximum ve-degree Δ_{ve} . Root at v. Color all the edges joining v to the vertives ve - dominated by v. Let v_1 be the descendent of v and v_1 have r_1 descendents. Let v_2 be a descendent of v_1 and v_2 have r_2 descendents. The line joins v_2 to its r_2 descendents are not yet colored. If $r_2 > \Delta_{ve} - (r_1+1)$, then $r_1 + r_2 + 1 > \Delta_{ve}$. The ve - degree of $v_2 \ge r_1 + r_2 + 1 > \Delta_{ve}$. Therefore, $deg_{ve}(v_2) > \Delta_{ve}$, a contradiction. Thus, $r_2 \le \Delta_{ve} - (r_1+1)$. But all the lines joining these r_1 descendents of v_1 to v_1 and the line vv_1 are colored with $r_1 + 1$ colors. Also the remaining $\Delta_{ve} - (r_1 + 1)$ ve-neighbors of v are not dominated by v_2 . By using these $\Delta_{ve} - (r_1 + 1)$. Thus all the lines joining the descendents v_{1_j} of v_1 to the descendents of v_{1_j} . Hence all the edges dominated by v_j is colored with atmost Δ_{ve} edges. Hence $\chi_{ve}(T) \le \Delta_{ve}(T)$. Since $\chi_{ve}(T) \ge \Delta_{ve}(T)$, $\chi_{ve}(T) = \Delta_{ve}(T)$.

4. Conclusion

In this paper, some basic results and some characterization theorems on vechromatic number have been studied. In the forthcoming papers, the ve-chromatic number of some more special types of graphs and the relation connecting vechromatic number and the domination, chromatic index will be studied.

References

- Faudree R. J., Gyarfas A., Schelp R. H. and Tuza Z., The strong chromatic index of graphs, Ars Combin., 29B (1990), 205-211.
- [2] Harary F., Graph Theory, Addison-Wesley, (1969).
- [3] Haynes T. W., Hedetniemi S. T., Slater P. J., Fundamentals of Domination in Graphs, Marcel Dekker, New York (1998).
- [4] Lewis J. R., Hedetniemi S. T., Haynes T. W., Fricke G. H., Vertex-edge domination, Util. Math. 81 (2010), 193-213.