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Abstract: In this article, the physico-chemical properties of octane isomers such
as entropy, acentric factor, enthalpy of vaporization (HVAP) and Heat of fusion
(DHVAP) are tested by using hyper Zagreb index HM(G). Here we show that
the hyper Zagreb index has a great correlation with these chemical properties and
observe that the index HM(G) highly correlates with acentric factor. Further,
we also establish the results on bounds for HM(G) interms of order and size of a
graph G. Also, we compute the results of HM(G) for Fractal and Cayley tree type
dendrimers.
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1. Introduction
Let G = (n,m) be a simple(molecular) graph with vertex set |V (G)| = n and

edge set |E(G)| = m. The degree of vertex v is denoted as dG(v), where dG(v) is the
number of edges incident to vertex v. The maximum degree and minimum degree
of a graph G is denoted by ∆(G) and δ(G) respectively. For a real number x, bxc
denotes the floor, which is the greatest integer less than or equal to x. Similarly,
dxe denotes the ceil, which is least integer greater than or equal to x. For undefined
terminologies we refer [10].

Molecules and molecular compounds are often modeled by molecular graphs.
A molecular graph is a structural representation formula of a chemical compound,
whose vertices corresponds to the atoms of the compound and edges corresponds
to bonds.

We are living in an era where every day sees better innovation than the previous,
with the same trend in the enhancement and innovation in the production of differ-
ent types of medicines, chemical compounds and drugs for the improved health of
humans and other living species on the planet. A great amount of time and money
is required to test these drugs and chemical compounds to determine their pharma-
cological, chemical and biological characteristics using expensive equipment, which
in truth makes the task more cumbersome. In countries with economic imbalance
the task of evaluating the biological behavior and existence of side effects of chem-
ical compounds becomes more difficult. In this respect, computing different types
of topological indices have provided the indicators of such medicinal behaviour of
several compounds and drugs. The computation method of topological indices has
proven its worth by yielding medical information of drugs with less use of chemical
related equipment.

Chemical graph theory is a branch of mathematics which combines graph theory
and chemistry. Graph theory is used to mathematically model the molecules in
order to gain the insight into the physical properties of these chemical compounds.
The basic idea of chemical graph theory is that physico-chemical properties of
molecules can be studied by using the information encoded in their corresponding
chemical graphs.

In recent days chemical graph theory is rapidly growing because of its appli-
cation in quantitative structure property relationships (QSPR) and quantitative
structure activity relationships (QSAR). A graph associated to a chemical molecule
is easier to study in terms of graph invariants. Topological indices are such graph
invariants. Due to this special property, topological indices are extensively used in
chemistry. Numerous applications of topological indices can be found in [8, 11, 12,
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14, 15, 21]. There are numerous indices defined so far. One of the oldest and most
thoroughly studied topological indices in graph theory is Wiener index denoted
as W (G), which is related to molecular branching [22], introduced by Wiener in
the year 1947 and is defined as,

W (G) =
∑

u,v∈V (G)

d(u, v). (1)

The first Zagreb index is the first degree based topological index conceived in 1972
[9].

M1 = M1(G) =
∑

uv∈E(G)

[dG(u) + dG(v)]. (2)

In 2013, Shirdel et al. [19] defined the hyper Zagreb index as,

HM(G) =
∑

uv∈E(G)

[dG(u) + dG(v)]2. (3)

The present paper is organized as follows: In Section 2, we study the chemical
applicability of the hyper Zagreb index. In Section 3.1, we obtain the upper and
lower bounds for hyper Zagreb index. In section 3.2, we establish the results on
Fractal and Cayley tree type dendrimers by using hyper Zagreb index.

2. On the Chemical Applicability of Hyper Zagreb Index
In this section, we discuss the linear regression analysis of hyper Zagreb in-

dex HM(G) with entropy, acentic factor, DHVAP and HVAP of an octane iso-
mers taken as molecular graph. The topological indices with the high correla-
tion factor are of foremost important in quantitative structure-property relation-
ships (QSPR) and quantitative structure-activity relationships (QSAR) analysis.
The hyper Zagreb index was tested using a dataset of octane isomers found in
http://www.moleculardiscriptors.eu/dataset.htm. We have noticed that
this index is highly correlated with acentric factor (|r| = 0.982914). The dataset of
octane isomers (coloumns 1-5 of Table 1) are taken from above web link whereas
the last coloumn of Table 1 is calculated by using the definition of HM(G) i.e.,
from equation (2).
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Table 1: Experimental values of the entropy, AcentFac, HVAP, DHVAP and cor-
responding value of HM(G) of octane isomers.

Alkane Entropy AcentFac DHVAP HVAP HM(G)

n-octane 111.67 0.397898 9.915 73.19 98
2-methyl-heptane 109.84 0.377916 9.484 70.3 114
3-methyl-heptane 111.26 0.371002 9.521 71.3 116
4-methyl-heptane 109.32 0.371504 9.483 70.91 116
3-ethyl-hexane 109.43 0.362472 9.476 71.1 118
2,2-dimethyl-hexane 103.42 0.339426 8.915 67.7 152
2,3-dimethyl-hexane 108.02 0.348247 9.272 70.2 134
2,4-dimethyl-hexane 106.98 0.344223 9.029 68.5 132
2,5-dimethyl-hexane 105.72 0.35683 9.051 68.6 130
3,3-dimethyl-hexane 104.74 0.322596 8.973 68.5 156
3,4-dimethyl-hexane 106.59 0.340345 9.316 70.2 136
2-methyl-3-ethyl-pentane 106.06 0.332433 9.209 69.7 136
3-methyl-3-ethyl-pentane 101.48 0.306899 9.081 69.3 160
2,2,3-trimethyl-pentane 101.31 0.300816 8.826 67.3 174
2,2,3-trimethyl-pentane 104.09 0.30537 8.402 64.87 168
2,2,3-trimethyl-pentane 102.06 0.293177 8.897 68.1 176
2,2,3-trimethyl-pentane 102.39 0.317422 9.014 68.37 152
2,2,3,3-tetramethylbutane 93.06 0.255294 8.41 66.2 214

The linear regression models for the entropy, acentric factor, DHVAP and HVAP
using the data of Table 1 are obtained by using the least squares fitting procedure
as implemented in R software [18] The fitted models are,

Entropy = 127.3197(±1.5956)− 0.15272(±0.0109)HM(G) (4)

AcentFac = 0.5115(±0.008379)− 0.00123(±0.0000573)HM(G) (5)

DHV AP = 10.87453(±0.210176)− 0.01219(±0.001439)HM(G) (6)

HV AP = 77.77334(±1.401771)− 0.06002(±0.009596)HM(G) (7)
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Figure 1

Figure 1: Scatter Diagram Entropy on HM(G) and AcentFac on HM(G)
superimposed by the fitted regression line.
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Figure 2: Scatter Diagram DHV AP on HM(G) and HV AP on HM(G) su-
perimposed by the fitted regression line.

In Figure 1 and Figure 2, the direction of the dots on the scatterplot dis-
plays a strong negative correlation of HM(G) to Entropy, AcentFac, DHV AP
and HV AP . The dots much closer to the fitted line in all the scatterplot diagram
indicates that model is good fit.

Note: The values in the brackets of equations (4) to (7) are the corresponding
standard errors of the regression coefficients.
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Table 2: Correlation coefficient and residual standard error of regression models

Physical Property Absolute value of the Residual
correlation coefficient (|r|) Standard error

Enthalpy 0.961428 1.28083
Acentric Factor 0.982914 0.006726
DHVAP 0.904252 0.168711
HVAP 0.842475 1.125216

From Table 2, we observe that HM(G) highly correlates with acentric factor
which is better than first Zagreb index(|r| = 0.973087869 and residual standard
error is 0.008424), F -index (|r| = 0.965038859 and residual error is 0.009577) [3]
and (β, α)-connectivity index (|r| = 0.95802 and residual error is 0.01047) [2].
Further the remaining physical properties of hyper Zagreb index correlates more
in comparison with the first neighbourhood Zagreb index such as Enthalpy (|r| =
0.9526144 and residual error is 1.416), DHVAP(|r| = 0.8935526 and residual error
is 0.1774) and HVAP (|r| = 0.8260472 and residual error is 0.8260472), which was
said to be the better correlation [1]. Closer |r| to 1, better is the index.

3. Results

3.1. Mathematical Properties of the Hyper Zagreb Index

Some important theorems which are used through out this section are mentioned
below.

Theorem 3.1. [17] Suppose ai and bi, 1 ≤ i ≤ n are positive real numbers, then

n∑
i=1

a2i

n∑
i=1

b2i ≤
1

4

(√
M1M2

m1m2

+

√
m1m2

M1M2

)2( n∑
i=1

aibi

)2

where M1 = max1≤i≤n(ai); M2 = max1≤i≤n(bi); m1 = min1≤i≤n(ai); m2 =
min1≤i≤n(bi).

Theorem 3.2. [16] Let ai and bi, 1 ≤ i ≤ n are nonnegative real numbers, then

n∑
i=1

a2i

n∑
i=1

b2i −

(
n∑

i=1

aibi

)2

≤ n2

4
(M1M2 −m1m2)

2

where M1M2 and m1m2 are defined similarly to Theorem 3.1.
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Theorem 3.3. [5] Suppose ai and bi, 1 ≤ i ≤ n are positive real numbers, then∣∣∣∣∣n
n∑

i=1

aibi −
n∑

i=1

ai

n∑
i=1

bi

∣∣∣∣∣ ≤ µ(n)(A− a)(B − b)

where a, b, A and B are real constants, that for each i, 1 ≤ i ≤ n, a ≤ ai ≤ A and

b ≤ bi ≤ B. Further, µ(n) = nbn
2
c
(

1− 1

n
bn
2
c
)

.

Theorem 3.4. [7] Let ai and bi, 1 ≤ i ≤ n are nonnegative real numbers, then

n∑
i=1

b2i + rR
n∑

i=1

a2i ≤ (r +R)

(
n∑

i=1

aibi

)

where r and R are real constants. So that for each i, 1 ≤ i ≤ n holds rai ≤ bi ≤ Rai.

Remark A. Let G = (V,E) be a graph with |V |= n and |E| = m. Then

M1(G) ≤ 2m(n− 1). (8)

Remark A holds, from the fact that maximum degree of a vertex in any graph G of
order n is (n− 1) and the remaining vertices may have degree less than or equal to
(n− 1).
If the graph G is complete graph then all of its vertices have the degree (n− 1) and
the first Zagreb index is equal to 2m(n−1). This is possible only if G is a complete
graph. Hence

M1(G) = 2m(n− 1). (9)

Theorem 3.5. Let G = (V,E) be a graph with |V |= n and |E| = m. Then,

HM(G) ≤ 4m(n− 1)2

Further, the equality of this equation holds for the graph G = Kn.
Proof. Let a1, a2, a3, ..., am and b1, b2, b3, ..., bm be any two sequence of real num-
bers. Now we consider the Cauchy-Schwarz inequality [4] i.e.,(

n∑
i=1

aibi

)2

≤

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
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By applying ai = 1 and bi = (di + dj), i, j = 1, 2, 3, ...,m then the inequality
becomes, (

m∑
i,j=1

(1)(di + dj)

)2

≤

(
m∑
i=1

12

)(
m∑

i,j=1

(di + dj)
2

)
(

m∑
i,j=1

(di + dj)

)2

≤ mHM(G)

[M1(G)]2 ≤ mHM(G)

M1(G) ≤
√
mHM(G)

From equation (8), we have

1 ≤ 2m(n− 1)√
mHM(G)√

mHM(G) ≤ 2m(n− 1)

mHM(G) ≤ 4m2(n− 1)2

HM(G) ≤ 4m(n− 1)2

Corollary 3.6. Let G = (V,E) be a graph with |V |= n and |E| = m. Then,

HM(G) ≤ 2(n− 1)M1(G).

Further, the equality of this equation holds for the graph G = Kn.
Proof. Proof follows from Remark A and Theorem 3.5.

Theorem 3.7. Let G be (n,m) graph and δ(G) and ∆(G) are minimum and
maximum degree of a graph G respectively, then the following inequality holds.

HM(G) ≤ m(n− 1)2
(

∆(G)

δ(G)
+
δ(G)

∆(G)

)2

.

Proof. Let G be (n,m) graph with δ(G) and ∆(G) as minimum and maximum
degree of a graph G respectively.
We have the inequality from the Theorem 3.1.

n∑
i=1

a2i

n∑
i=1

b2i ≤
1

4

(√
M1M2

m1m2

+

√
m1m2

M1M2

)2( n∑
i=1

aibi

)2

.
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Assume ai = 1, bi = (di + dj), M1 = M2 = ∆(G) and m1 = m2 = δ(G) then,

m∑
i=1

12

m∑
i,j=1

(di + dj)
2 ≤ 1

4

(√
∆(G)2

δ(G)2
+

√
δ(G)2

∆(G)2

)2(
m∑

i,j=1

(1)(di + dj)

)2

mHM(G) ≤ 1

4

(
∆(G)

δ(G)
+
δ(G)

∆(G)

)2

(M1(G))2

HM(G) ≤ 1

4m

(
∆(G)

δ(G)
+
δ(G)

∆(G)

)2

(4m2(n− 1)2)

HM(G) ≤ m(n− 1)2
(

∆(G)

δ(G)
+
δ(G)

∆(G)

)2

.

Theorem 3.8. Let G be (n,m) graph and δ(G) and ∆(G) are minimum and
maximum degree of a graph G respectively, then the following inequality holds.

HM(G) ≤ 1

m

[
n2

4
(∆(G)2 − δ(G)2)2 + 4m2(n− 1)2

]
.

Proof. Let G be (n,m) graph with δ(G) and ∆(G) as minimum and maximum
degree of a graph G respectively.
From Theorem 3.2 we have the inequality,

n∑
i=1

a2i

n∑
i=1

b2i −

(
n∑

i=1

aibi

)2

≤ n2

4
(M1M2 −m1m2)

2

Assume ai = 1, bi = (di + dj), M1 = M2 = ∆(G) and m1 = m2 = δ(G) then,

m∑
i=1

12

m∑
i,j=1

(di + dj)
2 −

(
m∑

i,j=1

1(di + dj)

)2

≤ n2

4

(
∆(G)2 − δ(G)2

)2
mHM(G)− (M1(G))2 ≤ n2

4

(
∆(G)2 − δ(G)2

)2
mHM(G)−

(
4m2(n− 1)2

)
≤ n2

4

(
∆(G)2 − δ(G)2

)2
HM(G) ≤ 1

m

[
n2

4

(
∆(G)2 − δ(G)2

)2
+ 4m2(n− 1)2

]
.

Theorem 3.9. Let G be (n,m) graph and δ(G) and ∆(G) are minimum and
maximum degree of a graph G respectively, then the following inequality holds.

HM(G) ≤ µ(n)(∆(G)− δ(G))2 + 4m2(n− 1)2

m
.
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Proof. Let G be (n,m) graph with δ(G) and ∆(G) as minimum and maximum
degree of a graph G respectively.
From Theorem 3.3 we have the inequality,∣∣∣∣∣n

n∑
i=1

aibi −
n∑

i=1

ai

n∑
i=1

bi

∣∣∣∣∣ ≤ µ(n)(A− a)(B − b)

Let a1, a2, ..., am and b1, b2, ..., bm are the real numbers for which there exist real
constants a, b, A and B, so that for each i, i = 1, 2, ...,m, a ≤ ai ≤ A and b ≤ bi ≤
B.

We choose ai = (di + dj) = bi, A = ∆(G) = B and a = δ(G) = b for the terms
in Theorem 3.3, then the inequality reduces to,∣∣∣∣∣∣n

m∑
i,j=1

(di + dj)
2 −

(
m∑

i,j=1

(di + dj)

)2
∣∣∣∣∣∣ ≤ µ(n)(∆(G)− δ(G))(∆(G)− δ(G))

∣∣nHM(G)− (M1)
2
∣∣ ≤ µ(n)(∆(G)− δ(G))2.

Theorem 3.10. Let G be (n,m) graph and suppose δ(G) and ∆(G) are minimum
and maximum degree of a graph G respectively, then the following inequality holds.

HM(G) ≤ (δ(G) + ∆(G))(2m(n− 1))−mδ(G)∆(G).

Proof. Let G be (n,m) graph with δ(G) and ∆(G) as minimum and maximum
degree of a graph G respectively.
Let a1, a2, ..., am and b1, b2, ..., bm are the real numbers for which there exist real
constants r and R, so that for each i, i = 1, 2, ...,m holds rai ≤ bi ≤ Rai. Then
inequality from Theorem 3.4 is,

n∑
i=1

b2i + rR
n∑

i=1

a2i ≤ (r +R)

(
n∑

i=1

aibi

)

We choose bi = (di + dj), ai = 1, R = ∆(G) and r = δ(G),

m∑
i,j=1

(di + dj)
2 + δ(G)∆(G)

m∑
i=1

12 ≤ (δ(G) + ∆(G))

(
m∑

i,j=1

(di + dj)

)
HM((G) + δ(G)∆(G)m ≤ (δ(G) + ∆(G))M1(G)

HM(G) ≤ (δ(G) + ∆(G))M1(G)−mδ(G)∆(G).
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3.2. Hyper Zagreb Index of Fractal and Cayley Tree Type Dendrimers
Dendrimers consist of highly branched organic macromolecules with successive

generations/iterations of branch units surrounding a central core. There are dif-
ferent types of dendrimers that are discovered so far. These have a wide range of
applications in the field of chemistry, nanoscience, biology, etc. The topological in-
dices of some dendrimers are recently investigated in [6, 20]. Here we consider two
types of dendrimers namely, Fractal tree dendrimer and Cayley Tree dendrimer.

Fractal Tree Dendrimer: [19] The word fractal comes from the Latin word
meaning ”to break”. Fractals are geometric patterns in which every smaller part
of the structure is similar to the whole. The fractal tree dendrimers are generally
denoted by Fp, where p ≥ 0 is the iterations. If p = 0, then F0 is an edge connecting
two vertices. Fp is obtained from Fp−1 by using two steps on each existing edge in
Fp−1. The first step is to create a path of three links with the two same end points.
The second step is to create k new vertices for each of the two middle vertices in
the path. After that, attach them to the middle vertices.

Figure 3: Some construction model for next generations of the Fractal trees [13].

Figure 4: Fractal tree F3 for k = 2 [13].
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Table 3: Edge partition of Fp based on degree of end vertices of each edge [13]

du, dv Frequency
(1, k + 2) 42pk − 28k + 14p− 8
(4, k + 2) 28p− 20
(k + 2, K + 2) 21p− 14

Theorem 3.11. Let Fp with p and k ≥ 2 be a fractal tree dendrimer for p itera-
tions. Then the hyper Zagreb index of Fp is

HM(Fp) = 14k3(3p− 2) + 126k2(p− 2) + 18k(77p+ 30) + 2(735p− 508).

Proof. The hyper Zagreb index of Fp is computed by using Table 3 in the following
formula.

HM(G) =
∑

uv∈E(G)

(du + dv)
2 = 42pk − 28k + 14p− 8(1 + k + 2)2

+ 28p− 20(4 + k + 2)2 + (21p− 14)(k + 2 + k + 2)2

After Simplification, we get

HM(Fp) = 14k3(3p− 2) + 126k2(p− 2) + 18k(77p+ 30) + 2(735p− 508).

Cayley tree dendrimer:

Figure 5: Cayley tree network C3,2 [13].
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The Cayley tree is one among the different types of dendrimers, also called
Bethe lattice. The construction procedure of Cayley tree Cs,t(s ≥ 3, t ≥ 0) consists
of t iterations. s is the number of nodes at first iteration. Cs,0, for t = 0, consists of
only a central vertex. For t = 1,Cs,1 is obtained by creating s nodes and attaching
them to the central vertex by an edge. For t > 1, the Cayley tree Cs,t is obtained
from Cs,t−1 by creating s − 1 nodes and attaching them to each of the pendent
vertices of Cs,t−1.

Table 4: Edge partition of Fp based on degree of end vertices of each edge [13]

du, dv Frequency
(1, s) s(s− 1)t−1

(s, s) s
∑t

i=1(s− 1)i−1 − s(s− 1)t−1

Theorem 3.12. Let Cayley tree dendrimer Cs,t with s and t ≥ 3 be a tree graph
for t iterations, then the hyper Zagreb index is

HM(Cs,t) = s(s− 1)t−1
(
(s+ 1)2 − 4s

)
+ 4s3

t∑
i=1

(s− 1)i−1.

Proof. Let Cs,t with s and t ≥ 3 be a Cayley tree dendrimer. The hyper Zagreb
index of Cs,t is computed by using Table 4 in the following formula.

HM(G) =
∑

uv∈E(G)

(du + dv)
2

= s(s− 1)t−1(1 + s)2 +

[
s

t∑
i=1

(s− 1)i−1 − s(s− 1)t−1

]
(s+ s)2

= s(s− 1)t−1
(
(s+ 1)2 − 4s

)
+ 4s3

t∑
i=1

(s− 1)i−1.
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