South East Asian J. of Mathematics and Mathematical Sciences Vol. 17, No. 3 (2021), pp. 299-312

ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

ss-EXCELLENCE IN GRAPHS

V. Praba and V. Swaminathan*

Department of Mathematics, Shrimati Indira Gandhi College, Tiruchirappalli - 620002, Tamil Nadu, INDIA

E-mail: prabasigc@yahoo.co.in

*Ramanujan Research Center in Mathematics, Saraswathi Narayanan College, Madurai - 625022, Tamil Nadu, INDIA

E-mail: swaminathan.sulanesri@gmail.com

(Received: Aug. 25, 2020 Accepted: Oct. 15, 2021 Published: Dec. 30, 2021)

Abstract: Let G be a simple graph with vertex set V(G) and edge set E(G). A subset S of V(G) is called a semi-strong set abbreviated as ss-set if $|N[v] \cap S| \leq 1$ for all v in V(G). This concept was introduced by E. Sampathkumar in the paper titled Semi-strong chromatic number of a graph. Any ss-set has hereditary property. That is, a subset of an ss-set is an ss-set. So, an ss-set is maximal iff for any $u \in (V-S)$, there exists $v \in V(G)$, $v \neq u$ such that v is adjacent with u and a vertex of S. Excellence is studied with respect to several parameters like domination. A vertex u is α -good with respect to the parameter α if u belongs to a minimum (maximum) α -set of G. A graph G is α -excellent if every vertex of G is α -good. A graph G is ss- excellent if every vertex of ss- good. ss- excellence and ss-just excellence are studied in this paper.

Keywords and Phrases: Semi-strong set, semi-strong partition, excellent, just-excellent.

2020 Mathematics Subject Classification: 05C69.

1. Introduction

As a generalization of strong set introduced by Claude Berge [2]. E. Sampathkumar defined semi-strong sets in a graph. In a simple graph G, a subset S

of the vertex set V(G) of G is called a semi-strong set of G if $|N[v] \cap S| \leq 1$ for v in V(G). A is semi-strong set has hereditary property. Hence maximum ss-set considered. A vertex u is ss-good if u belongs to a maximum ss-set of G. A graph G is said to be ss-excellent if every vertex of G is ss-good. ss-excellence and ss-just excellence are studied in this paper.

Definition 1.1. [9] A subset S of V(G) is said to be semi-strong if for every vertex $v \in V$, $|N(v) \cap S| \leq 1$ (or no two vertices of S have the same neighbour in V, that is, no two vertices of S are joined by a path of length two in V). The minimum cardinality of a semi-strong partition of G is called the semi-strong chromatic number of G and is denoted by $\chi_s(G)$.

Definition 1.2. A subset S of V(G) is called a maximal semi-strong set of G if S is semi-strong and no proper super set of S is semi-strong. The maximum cardinality of a maximal semi-strong set of G is called semi-strong number of G and is denoted by ss(G).

Definition 1.3. A vertex u is ss-good if u belongs to a maximum ss-set of G. A graph G is said to be ss-excellent if every vertex of G is ss-good.

Example 1.1. (i) K_n is ss-excellent, for all $n \ge 1$.

- (ii) $K_{1,n}$ is ss-excellent.
- (iii) $K_{m,n}$ is ss-excellent.

Theorem 1.1. P_n is ss-excellent if and only if $n \equiv 0 \pmod{4}$.

Proof. Let $n \equiv 0 \pmod{4}$. Let n = 4k. $ss(P_n) = 2k$. ss-sets of P_{4k} are $\{u_1, u_2, u_5, u_6, \dots, u_{4k-3}, u_{4k-2}\}$; $\{u_2, u_3, u_6, u_7, \dots, u_{4k-2}, u_{4k-1}\}$; $\{u_3, u_4, u_7, u_8, \dots, u_{4k-3}, u_{4k-2}\}$. P_{4k} is ss-excellent.

Let $n \equiv 1 \pmod{4}$. Let n = 4k + 1. $ss(P_{4k+1}) = \lceil \frac{4k+1}{2} \rceil = 2k + 1$. The bad vertices are $u_3, u_7, \ldots, u_{4k-1}$.

Let $n \equiv 2 \pmod{4}$. Let n = 4k + 2. $ss(P_{4k+2}) = \frac{n}{2} + 1 = 2k + 2$. The bad vertices are $u_3, u_4, u_7, u_8, \ldots, u_{4k-1}, u_{4k}$.

Let $n \equiv 3 \pmod{4}$. Let n = 4k + 3. $ss(P_{4k+3}) = \lceil \frac{4k+3}{2} \rceil = 2k + 2$. The bad vertices are u_4, u_8, \ldots, u_{4k} .

Theorem 1.2. C_n is ss-excellent, for every $n \geq 3$.

Proof. Let $n \equiv 2 \pmod{4}$. Let n = 4k + 2. $ss(C_{4k+2}) = \frac{4k+2}{2} - 1 = 2k$. Let $V(C_{4k+2}) = \{u_1, u_2, \dots, u_{4k+2}\}, k \geq 1$. Let $S_1 = \{u_1, u_2, u_5, u_6, \dots, u_{4k-3}, u_{4k-2}\}.$ $|S_1| = 2k$ and S_1 is a ss-set of C_{4k+2} . By rotating the vertices in S_1 , it can be shown that every vertex is ss-good. Hence C_{4k+2} is ss-excellent.

Let $n \equiv 1 \pmod{4}$. Let n = 4k + 1. Then $ss(C_{4k+1}) = \frac{4k+1}{2} = 2k$. Let $S_2 = \{u_1, u_2, u_5, u_6, \dots, u_{4k-3}, u_{4k-2}\}$. $|S_2| = 2k$ and S_2 is a ss-set of C_{4k+1} . By

rotating the vertices in S_2 , it can be shown that every vertex is ss-good. Hence C_{4k+1} is ss-excellent.

Let $n \equiv 3 \pmod 4$. Let n=4k+3. Then $ss(C_{4k+3})=\frac{4k+3}{2}=2k+1$. Let $S_3=\{u_1,u_2,u_5,u_6,\ldots,u_{4k-3},u_{4k-2},u_{4k+1}\}$. $|S_2|=2k$ and S_3 is a ss-set of C_{4k+3} . By rotating the vertices in S_3 , it can be shown that every vertex is ss-good. Hence C_{4k+3} is ss-excellent.

Let $n \equiv 0 \pmod{4}$. Let n = 4k. Then $ss(C_{4k}) = \frac{4k}{2} = 2k$. Let $S_4 = \{u_1, u_2, u_5, u_6, \dots, u_{4k-3}, u_{4k-2}\}$. $|S_4| = 2k$ and S_4 is a ss-set of C_{4k} . By rotating the vertices in S_4 , it can be shown that every vertex is ss-good. Hence C_{4k} is ss-excellent.

Observation 1.1. (i) W_n is ss-excellent, since $ss(W_n) = 1$.

- (ii) $K_{a_1,a_2,...,a_m}$ is ss-excellent, since $ss(K_{a_1,a_2,...,a_m}) = 1$.
- (iii) Petersen graph P is ss-excellent, since ss(P) = 2.

Observation 1.2. $ss(K_m(a_1, a_2, ..., a_m)) = m$. Any ss-set of $G = K_m(a_1, a_2, ..., a_m)$ consists of one pendent vertex each at every vertex of K_m . The vertices of K_m are ss-bad. Therefore for $m \ge 2$, $K_m(a_1, a_2, ..., a_m)$ is not ss-excellent.

Theorem 1.3. A vertex transitive graph is ss-excellent.

Proof. Let G be a vertex transitive graph. Let S be a ss-set of G. Let $u \notin S$. Select any vertex v in S. As G is vertex-transitive, there exists an automorphism φ of G which maps v into u. Let $S' = \{\varphi(w) : w \in S\}$. Since S is a ss-set, S' is a ss-set of G. Since $\varphi(v) = u$, $u \in S'$. Therefore u is ss-good. That is, G is ss-excellent.

Theorem 1.4. Suppose G has a unique ss-set. Then G is ss-excellent if and only if every component of G is either K_1 or K_2 .

Proof. Suppose G has a unique ss-set say S. If S is a proper subset of V(G), then there will be ss-bad vertices. Suppose G is ss-excellent. Then S = V(G) and hence ss(G) = n. Therefore every component of G is either K_1 or K_2 .

The converse is obvious.

Theorem 1.5. Let G be a non-ss-excellent graph. Then there exists a ss-excellent graph H such that G is an induced subgraph of H.

Proof. Let G be a non-ss-excellent graph. Attach a P_3 with an edge at every vertex of G. Let H be the resulting graph. Let $V(G) = \{u_1, u_2, \dots, u_n\}$.

Let $V(H) = \{u_1, u_2, \dots, u_n, u_{1,1}, u_{1,2}, u_{1,3}, u_{2,1}, u_{2,2}, u_{2,3}, \dots, u_{n,1}, u_{n,2}, u_{n,3}\}$ where $u_{i,1}, u_{i,2}, u_{i,3}$ is a P_3 attached with u_i by an edge, $(1 \le i \le n)$. Then $S = \{u_{1,2}, u_{1,3}, u_{2,2}, u_{2,3}, \dots, u_{n,2}, u_{n,3}\}$ is a ss-set of H and ss(H) = 2n. Also $S_1 = \{u_1, u_{1,3}, u_{2,2}, u_{2,3}, \dots, u_{n,2}, u_{n,3}\}$, $S_i = \{u_i, u_{i,3}, u_{1,2}, u_{1,3}, u_{i,2}, u_{2,2}, u_{2,3}, \dots, u_{i,3}, \dots, u_{i,3}, u_{i,3}, u_{i,4}, u_{i$

..., $u_{n,2}$, $u_{n,3}$ }, $j \neq i$, $(2 \leq j \leq n)$, $(1 \leq i \leq n)$, are ss-sets of H. Therefore H is ss-excellent and G is an induced subgraph of H.

Remark 1.1. ss(H) = 2n in the above construction.

Theorem 1.6. Let G be a graph. Then ss(G) = n - 1 if and only if there exists exactly one P_3 component and other components are either K_1 or K_2 .

Proof. Let ss(G) = n-1. Let $V(G) = \{u_1, u_2, \ldots, u_n\}$. Let $S = \{u_1, u_2, \ldots, u_{n-1}\}$ be a ss-set of G. Any component of S is either K_1 or K_2 . Also, $|N(u_n) \cap S| \leq 1$. If u_n is not adjacent with any vertex of S, then $S \cup \{u_n\}$ is a ss-set of G, a contradiction. If u_n is adjacent with exactly one K_1 component of S, then again $S \cup \{u_n\}$ is a ss-set of G, a contradiction. If u_n is adjacent with exactly one K_2 component of S, then $S \cup \{u_n\}$ contains exactly one P_3 . Therefore every component of G is either K_1 or K_2 or P_3 (the P_3 component being unique).

The converse is obvious.

Illustration 1.1. Let G be the graph shown in Figure 1. ss-sets of G are $\{u_1, u_2, u_4, u_5, u_6, u_7\}, \{u_2, u_3, u_4, u_5, u_6, u_7\}.$

Figure 1: A graph G with ss(G) = n - 1

Remark 1.2. Any graph G with ss(G) = n - 1 is ss-excellent.

Theorem 1.7. ss(G) = n-2 if and only if G has one of the following components:

- (i). two P_3 components
- (ii). one P_4 component
- (iii). one $K_{1,3}$ component
- (iv). one C_4 component
- (v). one P_5 component
- (vi). one C_3 component
- (vii). one C_3 with a pendent.

Proof. Let ss(G) = n-2. Let $V(G) = \{u_1, u_2, \dots, u_n\}$. Let $S = \{u_1, u_2, \dots, u_{n-2}\}$ be a ss-set of G. Then $|N(u_{n-1} \cap S| \le 1 \text{ and } |N(u_n) \cap S| \le 1$. If $|N(u_{n-1} \cap S| = 0 \text{ or } |N(u_n) \cap S| = 0$, then $S \cup \{u_{n-1}\}$ or $S \cup \{u_n\}$ is a ss-set of G, a contradiction. Therefore u_{n-1} and u_n are adjacent with one vertex of S. If u_{n-1} or u_n is adjacent with a K_1 component of S, then ss(G) = n - 1, a contradiction. Therefore u_{n-1} is adjacent with exactly one vertex of exactly one K_2 component. Moreover u_n

or u_{n-1} , u_n are adjacent and u_{n-1} is adjacent with a K_1 and u_n is adjacent with exactly one vertex of a K_2 . That is G contains exactly one of the following: two P_3 components or exactly one P_4 component or exactly one $K_{1,3}$ component or exactly one C_3 (provided u_{n-1} , u_n are adjacent) or a triangle with a pendent vertex or C_4 or P_5 .

The converse is obvious.

```
Illustration 1.2. Let G_i, (1 \le i \le 7) be the graphs given in Figure 2.
     ss-sets of G_1 are
     \{u_1, u_2, u_3, u_4, u_5, u_6, u_8, u_9\},\
     \{u_1, u_2, u_3, u_4, u_6, u_7, u_9, u_{10}\},\
     \{u_1, u_2, u_3, u_4, u_5, u_6, u_9, u_{10}\},\
     {u_1, u_2, u_3, u_4, u_6, u_7, u_8, u_9}.
ss-sets of G_2 are
     \{u_1, u_2, u_3, u_4, u_5, u_6\},\
     \{u_1, u_2, u_3, u_4, u_7, u_8\},\
     \{u_1, u_2, u_3, u_4, u_6, u_7\},\
     \{u_1, u_2, u_3, u_4, u_5, u_8\}.
ss-sets of G_3 are
     \{u_1, u_2, u_3, u_4, u_5, u_6\},\
     \{u_1, u_2, u_3, u_4, u_5, u_7\},\
     \{u_1, u_2, u_3, u_4, u_5, u_8\}.
ss-sets of G_4 are
     \{u_1, u_2, u_3, u_4, u_5, u_6\},\
     \{u_1, u_2, u_3, u_4, u_6, u_7\},\
     \{u_1, u_2, u_3, u_4, u_7, u_8\},\
     \{u_1, u_2, u_3, u_4, u_5, u_8\}.
ss-sets of G_5 are
     \{u_1, u_2, u_3, u_4, u_5\},\
     \{u_1, u_2, u_3, u_4, u_6\},\
     \{u_1, u_2, u_3, u_4, u_7\}.
ss-sets of G_6 is
     \{u_1, u_2, u_3, u_4, u_5, u_8\}.
ss-sets of G_7 are
     \{u_1, u_2, u_3, u_4, u_5, u_8, u_9\},\
     \{u_1, u_2, u_3, u_4, u_5, u_6, u_9\}.
```

Here G_1 , G_2 , G_3 , G_4 , G_5 are ss-excellent but G_6 and G_7 are not ss-excellent.

Figure 2: Set of Graphs G_1, G_2, \dots, G_7 for which ss(G) = n - 2

Corollary 1.1. Let G be a graph with ss(G) = n - 2. Then G is ss-excellent if and only if

- (i) there exists exactly two components of P_3
- (ii) one P_4 component
- (iii) one $K_{1,3}$ components
- (iv) one C_3 component
- (v) one C_4 component.

In each case the remaining components are K_1 or K_2 .

If G has a P_5 component, then G is not ss-excellent or a component with C_3 with a pendent.

2. ss-excellence of Graph Operations

Theorem 2.1. Let G, H be ss-excellent graphs with ss(H) = |V(H)|. Then $G \square H$ is ss-excellent and $ss(G \square H) = n(r - s_1) + ls_1$, where s_1 is the number of K_2 components of G and l is the number of K_1 component of H and r = ss(G).

Proof. Let G and H be ss-excellent graphs. Let $V(G) = \{u_1, u_2, \ldots, u_m\}$ and $V(H) = \{v_1, v_2, \ldots, v_n\}$. Let $S_1 = \{w_1, w_2, \ldots, w_r\}$ and $S_2 = \{v_1, v_2, \ldots, v_n\}$ be the ss-sets of G and H respectively. Let $\{w_1, w_2\}$ be a K_2 component of S_1 . Without loss of generality, let v_1, v_2, \ldots, v_l be the K_1 components of H. Let $\{w_1, w_2\}, \{w_3, w_4\}, \ldots, \{w_r, w_{r_1+1}\}$ be the K_2 components of S_1 . The remaining vertices of S_1 are K_1 components. Let $T = \{(w_1, v_1), (w_1, v_2), \ldots, (w_1, v_n), (w_2, v_1), \ldots, (w_2, v_l), (w_3, v_1), (w_3, v_2), \ldots, (w_3, v_n), (w_4, v_1), \ldots, (w_4, v_l), \ldots, (w_{r_1}, v_1), (w_{r_1}, v_2), \ldots, (w_{r_1}, v_n), (w_{r_1+1}, v_1), \ldots, (w_{r_1+1}, v_l), (w_{r_1+2}, v_1), \ldots, (w_{r_1+2}, v_n), \ldots, (w_r, v_1), \ldots, (w_r, v_n)\}$. Then T is a semi strong set of $G \square H$ of maximum cardinality. Let $\{u_i, v_j\} \in V(G \square H)$. Since G and G are G and G are G and G are G and G are G and G are G and G

Illustration 2.1. Let G be the graph given in Figure 3.

```
S_1 = \{u_1, u_2, u_5, u_6, u_9\} and S_2 = \{v_1, v_2, \dots, v_{10}\}.

Then T = \{(u_1, v_1), (u_1, v_2), \dots, (u_1, v_{10}), (u_2, v_1), \dots, (u_2, v_4), (u_5, v_1), (u_5, v_2), \dots, (u_5, v_{10}), (u_6, v_1), \dots, (u_6, v_4), (u_9, v_1), (u_9, v_2), \dots, (u_9, v_{10})\} and |T| = 10 + 4 + 10 + 4 + 10 = 38. Here s_1 = 2, n = 10, r = 5, l = 4. n(r - s_1) + ls_1 = 10(3) + 8 = 38.
```

Corollary 2.1. The following graphs are ss-excellent: $C_n\Box(tK_2\cup sK_1);$ $K_n\Box(tK_2\cup sK_1);$

Figure 3: A graph for which $G \square H$ is ss-excellent

```
K_{1,n} \Box (tK_2 \cup sK_1);

P_n \Box (tK_2 \cup sK_1), (n \equiv 0 \pmod{4});

K_{m,n} \Box (tK_2 \cup sK_1);

W_n \Box (tK_2 \cup sK_1);

K_{a_1,a_2,...,a_n} \Box (tK_2 \cup sK_1).
```

Theorem 2.2. Let G and H be ss-excellent graphs. Then $G \square H$ is ss-excellent. **Proof.** Let G and H be ss-excellent graphs. Let $V(G) = \{u_1, u_2, \ldots, u_m\}$ and $V(H) = \{v_1, v_2, \ldots, v_n\}$. Let $S_1 = \{w_1, w_2, \ldots, w_r\}$ and $S_2 = \{x_1, x_2, \ldots, x_s\}$ be

ss-sets of G and H respectively. Let $\{w_1, w_2\}, \{w_3, w_4\}, \dots, \{w_{r_1}, w_{r_1+1}\}$ be the K_2 components of S_1 and $\{x_1, x_2\}, \{x_3, x_4\}, \dots, \{x_{s_1}, x_{s_1+1}\}$ be the K_2 components of S_2 .

Then $T = \{(w_1, x_1), (w_1, x_2), (w_1, x_3), (w_1, x_4), \dots, (w_1, x_{s_1}), (w_1, x_{s_1+1}), (w_1, x_{s_1+2}), \dots, (w_1, x_s), (w_3, x_1), (w_3, x_2), (w_3, x_3), (w_3, x_4), \dots, (w_3, x_{s_1}), (w_3, x_{s_1+1}), (w_3, x_{s_1+2}), \dots, (w_3, x_s), \dots, (w_{r_1}, x_1), (w_{r_1}, x_2), (w_{r_1}, x_3), (w_{r_1}, x_4), \dots, (w_{r_1}, x_{s_1}), (w_{r_1}, x_{s_1+1}), (w_{r_1}, x_{s_1+2}), \dots, (w_{r_1}, x_s), (w_{r_1+2}, x_1), (w_{r_1+2}, x_2), \dots, (w_{r_1+2}, x_s), (w_r, x_1), (w_r, x_2), (w_r, x_3), (w_r, x_4), \dots, (w_r, x_s)\}$ is clearly a semi strong set of $G \square H$ of maximum cardinality. Also any vertex (u_i, v_j) belongs to a ss-set of $G \square H$. Therefore $G \square H$ is ss-excellent. Also,

Figure 4: $G = C_{11} \square P_8$

$$ss(G \square H) = \left(\frac{r_1 + 1}{2}\right) s + (r - (r_1 + 1))s$$

$$= \frac{r_1 s}{2} + \frac{s}{2} + rs - r_1 s - s$$

$$= rs - \frac{r_1 s}{2} - \frac{s}{2}$$

$$= s\left(r - \left(\frac{r_1 + 1}{2}\right)\right)$$

Illustration 2.2. Let $G = C_{11} \square P_8$ be the graph shown in Figure 4. $S_1 = \{u_1, u_2, u_5, u_6, u_9\}, S_2 = \{v_1, v_2, v_5, v_6\}.$ Let $T = \{(u_1, v_1), (u_1, v_2), (u_1, v_5), (u_1, v_6), (u_5, v_1), (u_5, v_2), (u_5, v_5), (u_5, v_6), (u_9, v_1), (u_9, v_2), (u_9, v_5), (u_9, v_6)\}.$ Then |T| = 12. Here $r_1 = 3$, r = 5, s = 4. Therefore, $s\left(r - \left(\frac{r_1+1}{2}\right)\right) = 4\left(5 - \left(\frac{3+1}{2}\right)\right) = 4(5-2) = 12$.

3. Just ss-excellence in Graphs

Definition 3.1. A graph G is just ss-excellent if every vertex belongs to a unique ss-set of G.

Example 3.1. K_n , W_n , $K_{a_1,a_2,...,a_n}$, $n \ge 3$, F_n , $tK_2 \cup sK_1$ are just ss-excellent.

Remark 3.1. (i) If ss(G) = 1, then G is just ss-excellent.

(ii) P_n , $n \geq 3$ and C_n , $n \geq 4$ are not just ss-excellent.

Theorem 3.1. Let G be a just ss-excellent graph. Then

- (i) G is ss-excellent.
- (ii) there exists a unique partition of V(G) into ss-sets of G.
- $(iii) |V(G)| = \chi_s(G).ss(G).$

Proof. Let G be a just ss-excellent graph.

- (i). The result is obvious.
- (ii). Let $u \in V(G)$. By hypothesis there exists a unique ss-set S_1 of G containing u. If $V S_1 = \phi$, then the result is true. Suppose $V S_1 \neq \phi$. Let $v \in V S_1$. Therefore there exists a unique ss-set S_2 of G containing v. Since G is just ss-excellent, $S_1 \cap S_2 = \phi$. If $S_1 \cup S_2 = V$, then the result is true. Suppose $S_1 \cup S_2 \subsetneq V$. Then there exists $w \in V (S_1 \cup S_2)$ and there exists a unique ss-set S_3 of G containing w. S_1 , S_2 , S_3 are pairwise disjoint. Proceeding in this way, after a finite number of steps, V can be partitioned into ss-sets of G. Suppose Π_1 and Π_2 are two distinct partitions of V(G) into ss-sets of G. Then there exists a vertex $u \in V(G)$ which belongs to more than one ss-set of G, a contradiction. Therefore (ii) follows.

(iii). From (ii), $V = S_1 \cup S_2 \cup \ldots \cup S_k$, where each S_i is a ss-set of G and S_1, S_2, \ldots, S_k are pairwise disjoint. Since $|S_i| = ss(G)$, $1 \le i \le k$, n = ss(G). Therefore $\chi_s(G) \le k$. Suppose Π is a χ_s -partition of G into semi strong sets. Let $\Pi = \{T_1, T_2, \ldots, T_{\chi_s(G)}\}$. $|T_i| \le ss(G)$, $(1 \le i \le \chi_s(G))$.

Therefore $n = \bigcup_{i=1}^{\chi_s(G)} |T_i| \le \chi_s(G).ss(G)$. Therefore $\frac{n}{ss(G)} \le \chi_s(G)$. That is, $k \le \chi_s(G)$. But $\chi_s(G) \le k$. Therefore $\chi_s(G) = k$. Therefore $|V(G)| = ss(G).\chi_s(G)$.

Remark 3.2. If $|V(G)| = \chi_s(G).ss(G)$, then G need not be just ss-excellent. For: let $G = C_6$. ss(G) = 2, $\chi_s(G) = 3$. Therefore $|V(G)| = \chi_s(G).ss(G)$. But C_6 is not just ss-excellent, since any vertex of C_6 belongs to two ss-sets of C_6 .

Theorem 3.2. If G is just ss-excellent and ss(G) < n, then G has no isolates. **Proof.** Suppose G has an isolate. As G is just ss-excellent, V(G) is an ss-set of G. Therefore ss(G) = n, a contradiction. Therefore G has no isolates.

Corollary 3.1. Suppose G is just ss-excellent and $\chi_s(G) > 1$. Then G has no isolates.

Proof. Since $n = \chi_s(G).ss(G)$ and since $\chi_s(G) > 1$, ss(G) < n. Therefore G has no isolates.

Corollary 3.2. If G is just ss-excellent and G is not the union of K_1 or K_2 , then G has no isolates.

Proof. Since G is not the union of K_1 or K_2 , ss(G) < n. Therefore G has no isolates.

Problem: Construct a connected graph G which is just ss-excellent and $ss(G) = k \geq 2$.

Theorem 3.3. Let G be a graph without isolates. Then G is an induced subgraph of a just ss-excellent graph H.

Proof. Let G be a graph without isolates. Add a vertex w and make w adjacent with every vertex of G. Let H be the resulting graph. Then $diam(H) \leq 2$ and every edge of H is on a triangle. Therefore $N(H) = K_{n+1}$ and ss(H) = 1. Therefore H is a just ss-excellent graph containing G as an induced subgraph.

Illustration 3.1. P_5 is not ss-excellent and hence not just ss-excellent, but P_5+K_1 , a fan, is just ss-excellent.

Theorem 3.4. Let G and H be just ss-excellent graphs. $G \cup H$ is just ss-excellent if and only if every component of G and H are either K_1 or K_2 .

Proof. Suppose $G \cup H$ is just ss-excellent. Any ss-set of $G \cup H$ is of the form $S_1 \cup S_2$ where S_1 is an ss-set of G and S_2 is an ss-set of H. Since $G \cup H$ is just

ss-excellent, G and H have exactly one ss-set. Since G and H are just ss-excellent, there exists a unique partition of G (or H) into ss-sets of G (or H). Therefore ss(G) = n and ss(H) = n. Therefore every component of G and H are either K_1 or K_2 . The converse is obvious.

Theorem 3.5. Let G and H be two graphs. G + H is just ss-excellent if and only if G or H has no isolates.

Proof. Suppose G+H is just ss-excellent. Suppose $ss(G) \geq 2$. Let S_1 be a ss-set of G. Then S_1 is not a semi strong set of G+H. Let T be a ss-set of G+H. Let $T \cap V(G) = k_1$ and $T \cap V(H) = k_2$. If k_1 or $k_2 \geq 2$, then T is not a ss-set of G+H. Therefore $k_1 \leq 1$, $k_2 \leq 1$. Suppose G has at least two vertices. If G has no isolates, then any edge of G+H will not give rise to a semi strong set. Therefore ss(G+H) = 1. If G has an isolate or H has an isolate, each non-isolate of G constitute a semi strong set of G and each non-isolate of G lies in a semi strong set of G of cardinality G. Therefore $G \cap G$ will not be just G exception. Hence G or G does not have isolates. The converse is obvious.

Illustration 3.2. Let $G_1 = P_3 + \overline{K_2}$, $G_2 = P_3 + K_2$ be shown in Figure 5. In both the cases, P_3 has no isolates. $ss(G_1) = ss(G_2) = 1$. Therefore G_1 and G_2 are just ss-excellent.

Figure 5: A set of just ss-excellent graph G_1 and G_2

References

- [1] Balakrishnan R. and Ranganathan K., A textbook of Graph theory, Springer, New York (2nd edition), (2012).
- [2] Berge C., Graphs and Hyper graphs, North Holland, Amsterdam, (1973).
- [3] Brigham R. C., Dutton R. D., Combinatorics, Information and System Science, 12 (1987), 75-85.
- [4] Fricke G. H., Haynes T. W., Hedetniemi S. M., Hedetniemi S. T., Laskar R. C., Excellent Trees, Bull. Inst. Combin. Appl. 34 (2002), 27-38.

- [5] Jothilakshmi G., Pushpalatha A. P., Suganthi S. and Swaminathan V., (k,r) Semi Strong Chromatic Number of a Graph, International Journal of Computer Applications, Vol. 21, No. 2 (2011).
- [6] Sridharan N. and Yamuna M., A Note on Excellent graphs, Ars Combinatoria, Vol. 78 (2006), 267-276.
- [7] Sridharan N. and Yamuna M., Excellent-Just Excellent -Very Excellent Graphs, Journal of Mathematics and Physical Sciences, Vol. 14, No. 5 (1980), 471-475.
- [8] Sampathkumar E. and Pushpa Latha L., Semi-Strong Chromatic Number of a Graph, Indian Journal of Pure and Applied Mathematics, 26(1) (1995), 35-40.
- [9] Sampathkumar E. and Venkatachalam C. V., Chromatic partition of a graph, Discrete Mathematics, 74 (1989), 227-239.