South East Asian J. of Mathematics and Mathematical Sciences Vol. 17, No. 3 (2021), pp. 101-108

ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

ON RADIUS PROBLEMS FOR SOME SUBCLASSES OF ANALYTIC UNIVALENT FUNCTIONS

U. Vadivelan, S. Sunil Varma^{*} and Thomas Rosy^{*}

Department of Mathematics, Nazareth College of Arts and Science, Chennai – 600062, Tamil Nadu, INDIA

E-mail : vadivelanu@gmail.com

*Department of Mathematics, Madras Christian College, Tambaram, Chennai - 600059, Tamil Nadu, INDIA

E-mail : sunu_79@yahoo.com, thomas.rosy@gmail.com

(Received: Jan. 09, 2021 Accepted: Oct. 31, 2021 Published: Dec. 30, 2021)

Abstract: In this article we compute the radii of the largest disks for which the functions in the class S of normalized, analytic and univalent functions belong to certain subclasses of it.

Keywords and Phrases: Analytic function, univalent function, radius problem, polynomial equations.

2020 Mathematics Subject Classification: 30C45.

1. Introduction

Let \mathcal{A} be the class of normalised analytic functions f defined on the open unit disk $\Delta = \{z \in \mathbb{C} : |z| < 1\}$ with Taylor's series expansion of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{1}$$

and \mathcal{S} denote the subclass of it containing univalent functions [3].

The radius problem for subclasses of \mathcal{A} or \mathcal{S} is defined as follows: if \mathcal{M} is a class of functions and \mathcal{P} is a property which the functions in \mathcal{M} may or may not possess in the disk |z| < r, the radius for the property \mathcal{P} in the set \mathcal{M} is the largest R such that every function in the set \mathcal{M} has the property \mathcal{P} in each disk $\{z \in \mathbb{C} : |z| < r\}$ for every r < R. In other words, if \mathcal{F} and \mathcal{G} are two given subsets of \mathcal{A} then the \mathcal{G} radius of f in \mathcal{F} is the largest R such that for each $f \in \mathcal{F}, r^{-1}f(rz) \in \mathcal{G}$ for each $r \leq R$ [4].

Several authors had considered this problem for various pairs of subclasses of S. Gavrilov [5] in 1970 showed that the radius of univalence of functions in the class \mathcal{A} satisfying the inequality $|a_n| \leq n$ is the real root of the equation $2(1-r)^3 - (1+r) = 0$ and the same for those functions satisfying $|a_n| \leq M$ is $1 - \sqrt{M/(1+M)}$. In 1982, Yamashitha [13] showed that the radius of univalence obtained by Gavrilov is also the radii of starlikeness for the corresponding functions. The radius of starlikeness and convexity of functions in the class S were found to be $tanh(\pi/4)$ and $2 - \sqrt{3}$ respectively [4]. The radius of univalence of certain combination of two analytic functions was obtained by [2, 7, 8].

In this paper we obtain few radii results for functions in the class S of analytic, normalized univalent functions to be in certain standard subclasses of it defined and studied by various authors.

2. Preliminaries

We recall certain standard subclasses of S and the respective sufficient conditions for a function $f \in S$ to be in these subclasses.

Definition 2.1. [12] A function $f \in S$ is said to be in the class D if

$$\Re(f'(z)) > |zf''(z)|, \text{ for all } z \in \Delta.$$

Theorem 2.1. [12] A function $f \in \mathcal{D}$ if it satisfies the condition

$$\sum_{n=2}^{\infty} n^2 |a_n| \le 1.$$

Definition 2.2. [10] A function $f \in S$ is said to be in the class UCD if

 $\Re(f'(z)) > 2|zf''(z)|, \text{ for all } z \in \Delta.$

Theorem 2.2. [10] Let $f \in S$. If f satisfies

$$\sum_{n=2}^{\infty} n(2n-1)|a_n| \le 1$$

then $f \in \mathcal{UCD}$.

Definition 2.3. [6, 9] A function $f \in S$ is said to be in the class $\mathcal{UCD}(\alpha)$ if

$$\Re(f'(z)) > \alpha |zf''(z)|, \text{ for all } z \in \Delta, \alpha \ge 0$$

Theorem 2.3. [10, 11] Let $f \in S$. If f satisfies

$$\sum_{n=2}^{\infty} n[n\alpha + (1-\alpha)]|a_n| \le 1$$

then $f \in \mathcal{UCD}(\alpha)$.

Definition 2.4. [10] A function $f \in S$ is said to be in the class SD if

$$\Re\left(\frac{f(z)}{z}\right) > \left|f'(z) - \frac{f(z)}{z}\right|, \text{ for all } z \in \Delta.$$

Theorem 2.4. [10] Let $f \in S$. If f satisfies

$$\sum_{n=2}^{\infty} n|a_n| \le 1$$

then $f \in SD$.

Definition 2.5. [10] A function $f \in S$ is said to be in the class $SD(\alpha)$ if

$$\Re\left(\frac{f(z)}{z}\right) > \alpha \left| f'(z) - \frac{f(z)}{z} \right|, \text{ for all } z \in \Delta, \alpha \ge 0.$$

Theorem 2.5. [10] Let $f \in S$. If f satisfies

$$\sum_{n=2}^{\infty} [1 + \alpha(n-1)|a_n| \le 1$$

then $f \in \mathcal{SD}(\alpha)$.

Definition 2.6. [10] A function $f \in S$ is said to be in the class $SD(\alpha, \beta)$ if

$$\Re\left(\frac{f(z)}{z}\right) > \beta \left| f'(z) - \frac{f(z)}{z} \right| + \alpha, \text{ for all } z \in \Delta, \ 0 \le \alpha < 1, \ 0 \le \beta \le 1.$$

Theorem 2.6. [10] Let $f \in S$. If f satisfies

$$\sum_{n=2}^{\infty} [\beta n + (1-\beta)] |a_n| \le 1 - \alpha$$

then $f \in \mathcal{SD}(\alpha, \beta)$.

Definition 2.7. [1] A function $f \in S$ is said to be in the class $SR(\alpha, \beta)$ if

 $\Re(f'(z)) > \beta |f'(z) - 1| + \alpha, \text{ for all } z \in \Delta, \ 0 \le \alpha < 1, \ 0 \le \beta \le 1.$

Theorem 2.7. [1] Let $f \in S$. If f satisfies

$$\sum_{n=2}^{\infty} n|a_n| \le \frac{1-\alpha}{1+\beta}$$

then $f \in \mathcal{SD}(\alpha, \beta)$.

3. Main Results

We now obtain the radii results for functions in the class \mathcal{S} to be in the above subclasses.

Theorem 3.1. The \mathcal{D} - radius of $f \in \mathcal{S}$ is the real root of the equation $r^4 + 8r^3 - 11r^2 + 12r - 1 = 0$ lying in (0, 1). **Proof.** Let $f \in \mathcal{S}$ be given by (1). For $0 < r_0 < 1$,

$$\frac{1}{r_0}f(r_0z) = z + \sum_{n=2}^{\infty} a_n r_0^{n-1} z^n.$$

Since $|a_n| \le n, n \ge 2$,

$$\sum_{n=2}^{\infty} n^2 |a_n| r_0^{n-1} \le \sum_{n=2}^{\infty} n^3 r_0^{n-1} = \frac{1+4r_0+r_0^2}{(1-r_0)^4} - 1.$$

If $\frac{1}{r_0}f(r_0z) \in \mathcal{D}$ then we must have

$$\frac{1+4r_0+r_0^2}{(1-r_0)^4} - 1 = 1$$

$$\implies 2r_0^4 + 8r_0^3 - 11r_0^2 + 12r_0 - 1 = 0.$$

Thus r_0 is the root of the equation $2r^4 + 8r^3 - 11r^2 + 12r - 1 = 0$ lying in (0, 1).

Theorem 3.2. The $\mathcal{UCD}-$ radius of $f \in \mathcal{S}$ is the real root of equation $r^4 - 5r^3 + 3r^2 - 15r + 1 = 0$ lying in (0, 1). **Proof.** Since $f \in \mathcal{S}$, we have $|a_n| \leq n, n \geq 2$ and hence

$$\sum_{n=2}^{\infty} n(2n-1)|a_n|r_0^{n-1}$$

$$\leq \sum_{n=2}^{\infty} n(2n-1)nr_0^{n-1}$$

$$= 2\sum_{n=2}^{\infty} n^3 r_0^{n-1} - \sum_{n=2}^{\infty} n^2 r_0^{n-1}$$

$$= 2\left[\frac{1+4r_0+r_0^2}{(1-r_0)^4} - 1\right] - \left[\frac{1+r_0}{(1-r_0)^3} - 1\right]$$

$$=\frac{2(1+4r_0+r_0^2)-(1-r_0^2)-(1-r_0)^3}{(1-r_0)^4}.$$

For $\frac{1}{r_0}f(r_0z)$ to be in the subclass \mathcal{UCD} , we must have

$$\frac{2(1+4r_0+r_0^2)-(1-r_0^2)-(1-r_0)^3}{(1-r_0)^4} = 1$$

$$\implies 2(1+4r_0+r_0^2)-(1-r_0^2)-(1-r_0)^3 = (1-r_0)^4$$

$$\implies r_0^4-r_0^3+3r_0^2-15r_0+1=0.$$

Thus r_0 is the root of the equation $r^4 - 5r^3 + 3r^2 - 15r + 1 = 0$ lying in (0, 1).

Theorem 3.3. The SD- radius of $f \in S$ is the real root of equation $2r^3 - 6r^2 + 7r - 1 = 0$ lying in (0, 1). **Proof.** Let $f \in S$. Then $|a_n| \le n, n \ge 2$.

$$\sum_{n=2}^{\infty} n|a_n|r_0^{n-1} \le \sum_{n=2}^{\infty} n^2 r_0^{n-1} = \frac{1+r_0}{(1-r_0)^3} - 1$$

Now, $\frac{1}{r_0}f(r_0z) \in \mathcal{SD}$ if

$$\frac{1+r_0}{(1-r_0)^3} - 1 = 1$$
$$\implies 2r_0^3 - 6r_0^2 + 7r_0 - 1 = 0.$$

Hence the SD- radius of f is the root of the equation $2r^3 - 6r^2 + 7r - 1 = 0$ lying in (0, 1).

Theorem 3.4. Let $\alpha > 0$. The $\mathcal{UCD}(\alpha)$ -radius of $f \in \mathcal{S}$ is the real root of equation $2r^4 - 8r^3 + 11r^2 - 6(1+\alpha)r + 1 = 0$ lying in (0,1). **Proof.** Since $f \in \mathcal{S}$, we have $|a_n| \leq n, n \geq 2$ and hence

$$\sum_{n=2}^{\infty} n[n\alpha + (1-\alpha)] |a_n| r_0^{n-1}$$

$$\leq \sum_{n=2}^{\infty} n[n\alpha + (1-\alpha)] |a_n| r_0^{n-1}$$

$$= \alpha \left[\frac{1+4r_0 + r_0^2}{(1-r_0)^4} - 1 \right] + (1-\alpha) \left[\frac{1}{(1-r_0)^2} - 1 \right]$$

$$= \alpha \frac{1+4r_0 + r_0^2}{(1-r_0)^4} + \frac{1-\alpha}{(1-r_0)^2} - 1.$$

If $\frac{1}{r_0}f(r_0z) \in \mathcal{UCD}(\alpha)$ then we must have

$$\alpha (1 + 4r_0 + r_0^2) + (1 - \alpha)(1 - r_0)^2 = 2(1 - r_0)^4$$
$$\implies 2r_0^4 - 8r_0^3 + 11r_0^2 - 6(1 - \alpha)r_0 + 1 = 0.$$

Let $f(r) = 2r^4 - 8r^3 + 11r^2 - 6(1-\alpha)r + 1$ we have f(0) = 1 and $f(1) = -6\alpha < 0$. Then f(0)f(1) < 0 if $\alpha > 0$. The $\mathcal{UCD}(\alpha)$ - radius of $f \in \mathcal{S}$ is the root of the equation $2r^4 - 8r^3 + 11r^2 - 6(1-\alpha)r + 1 = 0$ in the interval (0,1) whenever $\alpha > 0$.

Theorem 3.5. If $\alpha > 0$, then $\mathcal{SD}(\alpha)$ -radius of $f \in \mathcal{S}$ is the real root of equation $2r^3 - 6r^2 + (5 + 2\alpha)r - 1 = 0$. **Proof.** Since $|a_n| \leq n$ for $f \in \mathcal{S}$,

$$\sum_{n=2}^{\infty} [1 + \alpha(n-1)] |a_n| r_0^{n-1}$$

$$\leq \sum_{n=2}^{\infty} [1 + \alpha(n-1)] n r_0^{n-1}$$

$$= (1 - \alpha) \sum_{n=2}^{\infty} n r_0^{n-1} + \alpha \sum_{n=2}^{\infty} n^2 r_0^{n-1}$$

$$= \frac{1 - \alpha}{(1 - r_0)^2} + \frac{\alpha(1 + r_0)}{(1 - r_0)^3} - 1.$$

If $\frac{1}{r_0}f(r_0z) \in \mathcal{SD}(\alpha)$ then we must have

$$\frac{1-\alpha}{(1-r_0)^2} + \frac{\alpha(1+r_0)}{(1-r_0)^3} - 1 = 1$$

calculation gives, $2r_0^3 - 6r_0^2 + (5+2\alpha)r_0 - 1 = 0$. Let $f(r) = 2r^3 - 6r^2 + (5+2\alpha)r - 1 = 0$. Then f(0) = -1, $f(1) = 2\alpha$. Also, f(0)f(1) < 0 implies $\alpha > 0$. This implies the $\mathcal{SD}(\alpha)$ - radius of f is r_4 where r_4 is the root of the equation $2r^3 - 6r^2 + (5+2\alpha)r - 1 = 0$ provided $\alpha > 0$.

Theorem 3.6. The $\mathcal{SD}(\alpha, \beta)$ -radius of $f \in \mathcal{S}$ is r_5 where r_5 is the root of equation $(2 - \beta)r^4 - 4(2 - \beta)r^3 + (11 - 6\beta - \alpha)r^2 - (4\beta + 6\alpha + 10)r + 1 - \beta = 0$ lying in (0, 1) provided $7\alpha + 8\beta + 4 > 0$. **Proof.** Let $f \in \mathcal{S}$. Then $|a_n| \leq n$ for $f \in \mathcal{S}$. Therefore

$$\sum_{n=2}^{\infty} [\alpha n + (1-\alpha)] |a_n| r_0^{n-1}$$

$$\leq \sum_{n=2}^{\infty} [\alpha n + (1-\alpha)] n r_0^{n-1}$$

$$= \frac{\alpha (1+4r_0+r_0^2)}{(1-r_0)^4} + \frac{1-\alpha}{(1-r_0)^2}$$

Thus $\frac{1}{r_0}f(r_0z) \in \mathcal{SD}(\alpha,\beta)$ if

$$\alpha (1 + 4r_0 + r_0^2) + (1 - \alpha)(1 - r_0)^2 = (2 - \beta)(1 - r_0)^4$$

$$\implies (2 - \beta)r_0^4 - 4(2 - \beta)r_0^3 + (11 - \alpha - 6\beta)r_0^2 - (4\beta + 6\alpha + 10)r_0 + (1 - \beta) = 0.$$

Let $f(r) = (2-\beta)r^4 - 4(2-\beta)r^3 + (11-\alpha-6\beta)r^2 - (4\beta+6\alpha+10)r + (1-\beta)$, then $f(0) = 1-\beta$, $f(1) = -4-8\beta-7\alpha$ and hence f(0)f(1) < 0 implies $7\alpha+8\beta+4 > 0$. Hence the $\mathcal{SD}(\alpha,\beta)$ radius of $f \in \mathcal{S}$ is the root of equation $(2-\beta)r^4 - 4(2-\beta)r^3 + (11-6\beta-\alpha)r^2 - (4\beta+6\alpha+10)r + 1-\beta = 0$ in (0,1) provided $7\alpha+8\beta+4 > 0$.

4. Conclusion

We conclude that the radii of the largest disk inside the unit disk for which the functions in the class of normalized, analytic and univalent functions S belong to certain standard subclasses of it are the unique roots in (0, 1) of certain polynomial equations.

References

- Adolf S. B., Subramanian K. G., On a subclass of Noshiro type analytic functions with negative coefficient (Presented at the 13th Ramanujan Mathematical Society Conference), (1998).
- [2] Baricz A., Obradovic M., Ponnusamy S., The radius of Univalence of the reciprocal of a product of two analytic functions, J. Analysis, 21 (2013), 1-19.
- [3] Duren P. L., Univalent functions, Springer Verlag, New York, Inc (1983).
- [4] Goodman A. W., Univalent Functions Vol 1 and 2, Mariner Publishing, Tampa, Fla. USA. (1983).

- [5] Gavrilov V. I., Remarks on the radius of univalence of holomorphic functions, Mathematicheskie Zametki., 7 (1970), 295-298.
- [6] Khalida I. N., Sadia R., Generalized q-Starlike Functions, Studia Scientiarum Mathematicarum Hungarica, 54 (4) (2017), 509–522.
- [7] Obradovic M., Ponnusamy S., Tuneski N., Radius of univalence of certain combination of univalent and analytic functions, Bull. Malay. Math. Sci. Soc., 35(2) (2012), 325-334.
- [8] Obradovic M., Ponnusamy S., Univalence of the average of two analytic functions, arxiv:1203:2713v1. 13 pp.
- [9] Prajapat J. K., Raina R. K., Certain Subclasses of Analytic Functions Involving Salagean Operator, Italian J. Pure Appld. Math., 27 (2010), 91-98.
- [10] Rosy T., Studies on subclasses of starlike and convex functions, Ph.D. Thesis submitted to University of Madras, (2001).
- [11] Rosy T., Stephen B. A., Subramanian K. G., Silverman H., Classes of convex functions, Int. J of Math. and Mathematical Sci., 23(12) (2000), 819-825.
- [12] Ruscheweyh S., Extension of Szegö's theorem on the sections of univalent functions, SIAM J. Math. Anal., 19(6) (1988), 1442-1449.
- [13] Yamashita S., Radii of univalence starlikeness and convexity, Bull. of the Aust. Math.Soc. 25(3) (1982), 453-457.