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1. Introduction
Let A be the class of normalised analytic functions f defined on the open unit

disk ∆ = {z ∈ C : |z| < 1} with Taylor’s series expansion of the form

f(z) = z +
∞∑
n=2

anz
n (1)

and S denote the subclass of it containing univalent functions [3].
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The radius problem for subclasses of A or S is defined as follows: ifM is a class
of functions and P is a property which the functions inM may or may not possess
in the disk |z| < r, the radius for the property P in the setM is the largest R such
that every function in the setM has the property P in each disk {z ∈ C : |z| < r}
for every r < R. In other words, if F and G are two given subsets of A then the G
radius of f in F is the largest R such that for each f ∈ F , r−1f(rz) ∈ G for each
r ≤ R [4].

Several authors had considered this problem for various pairs of subclasses of S.
Gavrilov [5] in 1970 showed that the radius of univalence of functions in the class A
satisfying the inequality |an| ≤ n is the real root of the equation 2(1−r)3−(1+r) = 0

and the same for those functions satisfying |an| ≤M is 1−
√
M/(1 +M). In 1982,

Yamashitha [13] showed that the radius of univalence obtained by Gavrilov is also
the radii of starlikeness for the corresponding functions.The radius of starlikeness
and convexity of functions in the class S were found to be tanh(π/4) and 2−

√
3

respectively [4]. The radius of univalence of certain combination of two analytic
functions was obtained by [2, 7, 8].

In this paper we obtain few radii results for functions in the class S of analytic,
normalized univalent functions to be in certain standard subclasses of it defined
and studied by various authors.

2. Preliminaries

We recall certain standard subclasses of S and the respective sufficient conditions
for a function f ∈ S to be in these subclasses.

Definition 2.1. [12] A function f ∈ S is said to be in the class D if

<(f ′(z)) > |zf ′′(z)|, for all z ∈ ∆.

Theorem 2.1. [12] A function f ∈ D if it satisfies the condition

Σ∞n=2n
2|an| ≤ 1.

Definition 2.2. [10] A function f ∈ S is said to be in the class UCD if

<(f ′(z)) > 2|zf ′′(z)|, for all z ∈ ∆.

Theorem 2.2. [10] Let f ∈ S. If f satisfies

Σ∞n=2n(2n− 1)|an| ≤ 1

then f ∈ UCD.
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Definition 2.3. [6, 9] A function f ∈ S is said to be in the class UCD(α) if

<(f ′(z)) > α|zf ′′(z)|, for all z ∈ ∆, α ≥ 0.

Theorem 2.3. [10, 11] Let f ∈ S. If f satisfies

Σ∞n=2n[nα + (1− α)]|an| ≤ 1

then f ∈ UCD(α).

Definition 2.4. [10] A function f ∈ S is said to be in the class SD if

<
(
f(z)

z

)
>

∣∣∣∣f ′(z)− f(z)

z

∣∣∣∣, for all z ∈ ∆.

Theorem 2.4. [10] Let f ∈ S. If f satisfies

Σ∞n=2n|an| ≤ 1

then f ∈ SD.
Definition 2.5. [10] A function f ∈ S is said to be in the class SD(α) if

<
(
f(z)

z

)
> α

∣∣∣∣f ′(z)− f(z)

z

∣∣∣∣, for all z ∈ ∆, α ≥ 0.

Theorem 2.5. [10] Let f ∈ S. If f satisfies

Σ∞n=2[1 + α(n− 1)|an| ≤ 1

then f ∈ SD(α).

Definition 2.6. [10] A function f ∈ S is said to be in the class SD(α, β) if

<
(
f(z)

z

)
> β

∣∣∣∣f ′(z)− f(z)

z

∣∣∣∣+ α, for all z ∈ ∆, 0 ≤ α < 1, 0 ≤ β ≤ 1.

Theorem 2.6. [10] Let f ∈ S. If f satisfies

Σ∞n=2[βn+ (1− β)]|an| ≤ 1− α

then f ∈ SD(α, β).

Definition 2.7. [1] A function f ∈ S is said to be in the class SR(α, β) if

<(f ′(z)) > β|f ′(z)− 1|+ α, for all z ∈ ∆, 0 ≤ α < 1, 0 ≤ β ≤ 1.
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Theorem 2.7. [1] Let f ∈ S. If f satisfies

Σ∞n=2n|an| ≤
1− α
1 + β

then f ∈ SD(α, β).

3. Main Results
We now obtain the radii results for functions in the class S to be in the above

subclasses.

Theorem 3.1. The D− radius of f ∈ S is the real root of the equation
r4 + 8r3 − 11r2 + 12r − 1 = 0 lying in (0, 1).
Proof. Let f ∈ S be given by (1). For 0 < r0 < 1,

1

r0
f(r0z) = z +

∞∑
n=2

anr
n−1
0 zn.

Since |an| ≤ n, n ≥ 2,
∞∑
n=2

n2|an|rn−10 ≤
∞∑
n=2

n3rn−10 =
1 + 4r0 + r20

(1− r0)4
− 1.

If 1
r0
f(r0z) ∈ D then we must have

1 + 4r0 + r20
(1− r0)4

− 1 = 1

=⇒ 2r40 + 8r30 − 11r20 + 12r0 − 1 = 0.

Thus r0 is the root of the equation 2r4 + 8r3 − 11r2 + 12r − 1 = 0 lying in (0, 1).

Theorem 3.2. The UCD− radius of f ∈ S is the real root of equation
r4 − 5r3 + 3r2 − 15r + 1 = 0 lying in (0, 1).
Proof. Since f ∈ S, we have |an| ≤ n, n ≥ 2 and hence

∞∑
n=2

n(2n− 1)|an|rn−10

≤
∞∑
n=2

n(2n− 1)nrn−10

=2
∞∑
n=2

n3rn−10 −
∞∑
n=2

n2rn−10

=2

[
1 + 4r0 + r20

(1− r0)4
− 1

]
−
[

1 + r0
(1− r0)3

− 1

]
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=
2(1 + 4r0 + r20)− (1− r20)− (1− r0)3

(1− r0)4
.

For 1
r0
f(r0z) to be in the subclass UCD, we must have

2(1 + 4r0 + r20)− (1− r20)− (1− r0)3

(1− r0)4
= 1

=⇒ 2(1 + 4r0 + r20)− (1− r20)− (1− r0)3 = (1− r0)4

=⇒ r40 − r30 + 3r20 − 15r0 + 1 = 0.

Thus r0 is the root of the equation r4 − 5r3 + 3r2 − 15r + 1 = 0 lying in (0, 1).

Theorem 3.3. The SD− radius of f ∈ S is the real root of equation
2r3 − 6r2 + 7r − 1 = 0 lying in (0, 1).
Proof. Let f ∈ S. Then |an| ≤ n, n ≥ 2.

∞∑
n=2

n|an|rn−10 ≤
∞∑
n=2

n2rn−10 =
1 + r0

(1− r0)3
− 1.

Now, 1
r0
f(r0z) ∈ SD if

1 + r0
(1− r0)3

− 1 = 1

=⇒ 2r30 − 6r20 + 7r0 − 1 = 0.

Hence the SD− radius of f is the root of the equation 2r3− 6r2 + 7r− 1 = 0 lying
in (0, 1).

Theorem 3.4. Let α > 0. The UCD(α)-radius of f ∈ S is the real root of equation
2r4 − 8r3 + 11r2 − 6(1 + α)r + 1 = 0 lying in (0, 1).
Proof. Since f ∈ S, we have |an| ≤ n, n ≥ 2 and hence

∞∑
n=2

n[nα + (1− α)]|an|rn−10

≤
∞∑
n=2

n[nα + (1− α)]|an|rn−10

= α

[
1 + 4r0 + r20

(1− r0)4
− 1

]
+ (1− α)

[
1

(1− r0)2
− 1

]
= α

1 + 4r0 + r20
(1− r0)4

+
1− α

(1− r0)2
− 1.
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If 1
r0
f(r0z) ∈ UCD(α) then we must have

α(1 + 4r0 + r20) + (1− α)(1− r0)2 = 2(1− r0)4

=⇒ 2r40 − 8r30 + 11r20 − 6(1− α)r0 + 1 = 0.

Let f(r) = 2r4− 8r3 + 11r2− 6(1−α)r+ 1 we have f(0) = 1 and f(1) = −6α < 0.
Then f(0)f(1) < 0 if α > 0. The UCD(α)- radius of f ∈ S is the root of the
equation 2r4− 8r3 + 11r2− 6(1−α)r+ 1 = 0 in the interval (0, 1) whenever α > 0.

Theorem 3.5. If α > 0, then SD(α)− radius of f ∈ S is the real root of equation
2r3 − 6r2 + (5 + 2α)r − 1 = 0.
Proof. Since |an| ≤ n for f ∈ S,

∞∑
n=2

[1 + α(n− 1)]|an|rn−10

≤
∞∑
n=2

[1 + α(n− 1)]nrn−10

=(1− α)
∞∑
n=2

nrn−10 + α
∞∑
n=2

n2rn−10

=
1− α

(1− r0)2
+
α(1 + r0)

(1− r0)3
− 1.

If 1
r0
f(r0z) ∈ SD(α) then we must have

1− α
(1− r0)2

+
α(1 + r0)

(1− r0)3
− 1 = 1

calculation gives, 2r30 − 6r20 + (5 + 2α)r0 − 1 = 0.
Let f(r) = 2r3 − 6r2 + (5 + 2α)r − 1 = 0. Then f(0) = −1, f(1) = 2α. Also,
f(0)f(1) < 0 implies α > 0. This implies the SD(α)− radius of f is r4 where r4 is
the root of the equation 2r3 − 6r2 + (5 + 2α)r − 1 = 0 provided α > 0.

Theorem 3.6. The SD(α, β)-radius of f ∈ S is r5 where r5 is the root of equation
(2 − β)r4 − 4(2 − β)r3 + (11 − 6β − α)r2 − (4β + 6α + 10)r + 1 − β = 0 lying in
(0, 1) provided 7α + 8β + 4 > 0.
Proof. Let f ∈ S. Then |an| ≤ n for f ∈ S.
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Therefore

∞∑
n=2

[αn+ (1− α)]|an|rn−10

≤
∞∑
n=2

[αn+ (1− α)]nrn−10

=
α(1 + 4r0 + r20)

(1− r0)4
+

1− α
(1− r0)2

.

Thus 1
r0
f(r0z) ∈ SD(α, β) if

α(1 + 4r0 + r20) + (1− α)(1− r0)2 = (2− β)(1− r0)4

=⇒ (2− β)r40 − 4(2− β)r30 + (11− α− 6β)r20 − (4β + 6α + 10)r0 + (1− β) = 0.

Let f(r) = (2−β)r4−4(2−β)r3 +(11−α−6β)r2− (4β+6α+10)r+(1−β), then
f(0) = 1−β, f(1) = −4−8β−7α and hence f(0)f(1) < 0 implies 7α+8β+4 > 0.
Hence the SD(α, β) radius of f ∈ S is the root of equation (2−β)r4−4(2−β)r3 +
(11− 6β − α)r2 − (4β + 6α+ 10)r + 1− β = 0 in (0, 1) provided 7α+ 8β + 4 > 0.

4. Conclusion
We conclude that the radii of the largest disk inside the unit disk for which the

functions in the class of normalized, analytic and univalent functions S belong to
certain standard subclasses of it are the unique roots in (0, 1) of certain polynomial
equations.
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