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1. Introduction
Let A be the class of normalised analytic functions f defined on the open unit
disk A = {z € C: |z| < 1} with Taylor’s series expansion of the form

f(2) :z—l—Zanz” (1)

and S denote the subclass of it containing univalent functions [3].
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The radius problem for subclasses of A or § is defined as follows: if M is a class
of functions and P is a property which the functions in M may or may not possess
in the disk |z| < r, the radius for the property P in the set M is the largest R such
that every function in the set M has the property P in each disk {z € C: |z| < r}
for every r < R. In other words, if 7 and G are two given subsets of A then the G
radius of f in F is the largest R such that for each f € F,r~'f(rz) € G for each
r < R [4].

Several authors had considered this problem for various pairs of subclasses of S.
Gavrilov [5] in 1970 showed that the radius of univalence of functions in the class A
satisfying the inequality |a,| < n is the real root of the equation 2(1—7)3—(14+r) =0
and the same for those functions satisfying |a,| < M is 1 —+/M/(1 4+ M). In 1982,
Yamashitha [13] showed that the radius of univalence obtained by Gavrilov is also
the radii of starlikeness for the corresponding functions.The radius of starlikeness
and convexity of functions in the class S were found to be tanh(r/4) and 2 — /3
respectively [4]. The radius of univalence of certain combination of two analytic
functions was obtained by [2, 7, §].

In this paper we obtain few radii results for functions in the class S of analytic,
normalized univalent functions to be in certain standard subclasses of it defined
and studied by various authors.

2. Preliminaries

We recall certain standard subclasses of S and the respective sufficient conditions
for a function f € S to be in these subclasses.

Definition 2.1. [12] A function f € S is said to be in the class D if
R(f'(2) > |2f"(2)], for all z € A.
Theorem 2.1. [12] A function f € D if it satisfies the condition
¥ ,n?lan] < 1.
Definition 2.2. [10] A function f € S is said to be in the class UCD if
R(f'(2) > 221" ()], for all z € A.
Theorem 2.2. [10] Let f € S. If f satisfies
Y on(2n —1)]a,| <1

then f € UCD.
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Definition 2.3. [6, 9] A function f € S is said to be in the class UCD(«) if
R(f'(2)) > alzf"(2)], forall z€ A;a>0.
Theorem 2.3. [10, 11] Let f € S. If f satisfies
Y onna+ (1 —a)lla,| <1

then f € UCD(«).
Definition 2.4. [10] A function f € S is said to be in the class SD if

2(12) ()

f'(z) — — for all z € A.
Theorem 2.4. [10] Let f € S. If [ satisfies

¥ onla,| <1

then f € SD.
Definition 2.5. [10] A function f € S is said to be in the class SD(«) if

8(£2) 2 ofpio - 12

Theorem 2.5. [10] Let f € S. If f satisfies

f'(z) -

, forall ze A;a > 0.

52l 4+ a(n — Dla,| < 1

then f € SD(a).
Definition 2.6. [10] A function f € S is said to be in the class SD(w, f) if

R(1E)) 5 oo - 12

f'(z)—==|+aq, forall ze A, 0<a<1, 0<3<1.
z
Theorem 2.6. [10] Let f € S. If f satisfies

Ynalfn+ (1= B)llan] <1 -«

then f € SD(a, B).
Definition 2.7. [1] A function f € S is said to be in the class SR(a, ) if

R(f'(2)>8lf'(z) =1 +a, forallze A, 0<a<1, 0<B<1.
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Theorem 2.7. [1] Let f € S. If f satisfies
11—«
147

Zn 2n|an|

then f € SD(a, B).

3. Main Results
We now obtain the radii results for functions in the class S to be in the above
subclasses.

Theorem 3.1. The D— radius of f € S is the real root of the equation
rt+8r3 — 11r% + 12r — 1 = 0 lying in (0,1).
Proof. Let f € S be given by (1). For 0 < rg < 1,

—f(rgz —z—l—Zanr" 1m
Since |a,| < n, n > 2,
1+4ry+1r2
2 n—1 3,.n—1 0
Zn|an|r0 <Z7’L —1_—710)4—]_
If %f(roz) € D then we must have
1+drg+ 13

(1 — 7”0)4
= 2rg + 8y — 11rf + 12ry — 1 = 0.

Thus 7 is the root of the equation 2r* + 83 — 1172 4+ 12r — 1 = 0 lying in (0, 1).

Theorem 3.2. The UCD— radius of f € S is the real root of equation
r* —5r3 4+ 3r2 — 157 + 1 = 0 lying in (0,1).
Proof. Since f € S, we have |a,| <n, n > 2 and hence

—1=1

o0
Z n(2n — 1)|a,|rd™*
n=2
o0
< Z n(2n — Dnry ™!
n=2
oo oo
=2 Z n?’rg*l — Z nzqu
n=2 n=2

5 1+4T0+T8_1 | L+ 1
(1 — 7“0)4 (1 — 7“0)3
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2(1 +4rg +12) — (1 —13) — (1 — rp)?
(1 — 7”0)4 .

For %f(roz) to be in the subclass UCD, we must have

2(1 +4rg +72) — (1 —7r3) — (1 — rp)3
(1—7"0)4

— 2(14+4rg+72) — (1 —712) — (1 —r9)® = (1 —ro)*

— ) —rs4+3r2 — 157 +1=0.

=1

Thus rq is the root of the equation 7* — 5r3 + 3r* — 15r + 1 = 0 lying in (0, 1).
Theorem 3.3. The SD— radius of f € S s the real root of equation

213 — 6r2 +Tr — 1 =0 lying in (0,1).

Proof. Let f € S. Then |a,| <n, n > 2.

n—1 2. n—1
n|ay |1 < ner = —F—1.
2l S 2t =
Now, %f(roz) € SD if
1
Aty
(1—7“0)3

= 21y — 615 +Trg — 1 = 0.

Hence the SD— radius of f is the root of the equation 2% — 612 4+ 7r — 1 = 0 lying
in (0,1).

Theorem 3.4. Let a > 0. The UCD(«)-radius of f € S is the real root of equation
2rt — 873 + 1172 — 6(1 + a)r + 1 = 0 lying in (0, 1).
Proof. Since f € S, we have |a,| < n,n > 2 and hence

n[na+ (1 — a)]|an|7‘g_1

hE

n=2
< Zn[na + (1 — a)]|an|rg™?
n=2
1+4rg+ 73 1
SN i AU AT IS P P
da et R
:Oél+47‘0+7’(2)+ 11—« _1

(1 —rg)4 (1 —1rp)?
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If %f(roz) € UCD(«) then we must have

al +4rg+7r3) + (1 —a)(1 —1rg)? = 2(1 —r)*
= 2r5 — 8rp + 11rg — 6(1 —a)rg +1 = 0.

Let f(r) =2rt—8r® +11r? — 6(1 — a)r + 1 we have f(0) = 1 and f(1) = —6a < 0.
Then f(0)f(1) < 0 if @« > 0. The UCD(«)- radius of f € S is the root of the
equation 2r* — 8r® + 1172 — 6(1 — a)r + 1 = 0 in the interval (0, 1) whenever a > 0.
Theorem 3.5. If a > 0, then SD(«)— radius of f € S is the real root of equation
2r — 6r? + (5 + 2a)r — 1 = 0.

Proof. Since |a,| < n for f € S,

[e.e]

Z[l +a(n —1)]|a,|rg™!

n=2

<> L+ a(n— 1)y

oo [e.e]
=(1—a) E nrg” +a E nrgt
n=2 n=2

-« a(l+ )
REETS AR .

If %f(roz) € SD(«) then we must have

-« a(l+ o)

TSRS

calculation gives, 213 — 613 + (5 + 2a)rg — 1 = 0.

Let f(r) = 2r® — 6r + (5 + 2a)r — 1 = 0. Then f(0) = —1, f(1) = 2a. Also,
f(0)f(1) < 0 implies & > 0. This implies the SD(«)— radius of f is r4 where ry4 is
the root of the equation 2r® — 6r% + (5 + 2a)r — 1 = 0 provided a > 0.

Theorem 3.6. The SD(«, B)-radius of f € S is r5 where 15 is the root of equation
(2—8)r* —4(2—=B)r* + (11 — 68 — a)r? — (48 + 6a + 10)r + 1 — 3 = 0 lying in
(0,1) provided Tae + 83 + 4 > 0.

Proof. Let f € S. Then |a,| < n for f € S.
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Therefore

o0

> lan+ (1= a)ljanlry™

n=2
<Zo¢n+ (1 —a)nry™

(1+4r0+r0) 11—«
(1 —rp)* (1—179)?

Thus %f(roz) € SD(a, p) if

a(l + 4rg + 7’8) +(1—a)(l- r0)2 =2-0)(1- 7“0)4
= (2—B)rg — 42— B)rg + (11 —a — 68)rg — (48 + 6a + 10)rg + (1 — B) = 0.

Let f(r) = (2-8)r'—4(2—B8)r*+ (11 —a—68)r* — (43 +6a+ 10)r + (1 — 3), then
f(0)=1-p, f(1) = —4—88 —Ta and hence f(0)f(1) < 0 implies Ta+83+4 > 0.
Hence the SD(a, 3) radius of f € S is the root of equation (2 — 3)r* —4(2—8)r® +
(11 — 68 — a)r? —(4/3—1—6a+10)r+1—6:01n (0,1) provided 7o+ 85+ 4 > 0.

4. Conclusion

We conclude that the radii of the largest disk inside the unit disk for which the
functions in the class of normalized, analytic and univalent functions S belong to
certain standard subclasses of it are the unique roots in (0, 1) of certain polynomial
equations.
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