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1. Introduction
Let A denote the class of functions f of the form

f(z) = z +
∞∑
n=2

anz
n, (1.1)
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which are analytic in the open unit disk U = {z : z ∈ C and |z| < 1} and satisfy
the normalization condition f(0) = f ′(0)− 1 = 0.

As usual, we denote by S the subclass of A consisting of functions which are
also univalent in U . A function f ∈ A is said to be starlike of order α(0 ≤ α < 1),
if and only if

<
(
zf

′
(z)

f (z)

)
> α, (z ∈ U) .

The class of this function is denoted by S∗(α). We also write S∗(0) = S∗ , where
S∗ denote the class of functions f ∈ A that are starlike in U with respect to the
origin. A function f ∈ A is said to be convex of order α(0 ≤ α < 1), if and only if

<
(

1 +
zf

′′
(z)

f ′ (z)

)
> α, (z ∈ U) .

This class is dented by K(α). Further, K = K(0), the well known standard class
of convex functions. It is an established fact that

f ∈ K (α)⇔ zf
′ ∈ S∗ (α) .

A function f ∈ A is said to be in the class UCV of uniformly convex functions
in U if and only if it has property that, for every circular arc γ contained in unit
disk U , with center ζ also in U , the image curve f(γ) is convex arc. The function
class UCV was introduced by Goodman [6]. Furthermore, we denote by k−UCV
and k − ST , (0 ≤ k < ∞), two interesting subclasses of S consisting respectively
of functions which are k−uniformly convex and k-starlike in U . Namely, we have
for (0 ≤ k <∞)

k − UCV =

{
f ∈ S : Re

(
1 +

zf
′′

(z)

f ′ (z)

)
> k

∣∣∣∣zf ′′
(z)

f ′ (z)

∣∣∣∣ , (z ∈ U)

}
and

k − ST =

{
f ∈ S : Re

(
zf

′
(z)

f (z)

)
> k

∣∣∣∣zf ′
(z)

f (z)
− 1

∣∣∣∣ , (z ∈ U)

}
.

The class k − UCV was introduced by Kanas and Wisniowska [8], where its
geometric definition and connections with conic domains were considered. The
class k − ST was investigated in [9]. In fact, it is related to the class k − UCV
by by means of the well-known Alexzander equivalence between the usual classes
of convex and starlike functions (see also the work of Kanas and Srivastava [10]
for further developments involving each of the classes k − UCV and k − ST ). In
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particular, when k = 1, we obtain 1 − UCV = UCV and 1 − ST = SP , where
UCV and SP are the familiar classes of uniformly convex functions and parabolic
starlike functions in U , respectively (see for detail study [6]). In fact, by making
use of a certain fractional calculus operator, Srivastava and Mishra [22] presented
a systematic and unified study of the classes UCV and SP . A function f ∈ A is
said to be in the class UCD(β), β ∈ R, if

Re
(
f

′
(z)
)
>
∣∣∣zf ′′

(z)
∣∣∣ (z ∈ U) .

The class UCD(β) is introduced Breaz [1]. A function f ∈ A is said to be in the
class Rτ (A,B), (τ ∈ C \ 0,−1 ≤ B < A ≤ 1), if it satisfied the inequality∣∣∣∣ f

′
(z)− 1

(A−B) τ −B [f ′ (z)− 1]

∣∣∣∣ < 1 (z ∈ U) .

The class Rτ (A,B) was introduced earlier by Dixit and Pal [4]. Two of the many
interesting subclasses of the class Rτ (A,B) are worthy of mention here. First of
all, by setting

τ = eiη cos cos η
(
−π

2
< η <

π

2

)
, A = 1− 2β (0 6 β < 1)

and B = −1, the class Rτ (A,B) reduces essentially to the class Rη(β) introduced
and studied by Ponnusamy and Ronning [13], where

Rη (β) =
{
f ∈ A : Re

(
eiη
(
f

′
(z)− β

))
> 0

(
z ∈ U ;−π

2
< η <

π

2
, 0 6 β < 1

)}
.

Second, if we put τ = 1, A = β and B = −β (0 < β 6 1) , we obtain the class of
functions f ∈ A satisfying the inequality∣∣∣∣f ′

(z)− 1

f ′ (z) + 1

∣∣∣∣ < β (z ∈ U ; 0 < β 6 1)

Which was studied by (among others) Padmanabham [12] and Caplinger and
Causey [2], (see the work in [16] also). The Gaussian hypergeometric function
F (a, b; c; z) given by

F (a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n(1)n

zn (z ∈ U) (1.2)



86 South East Asian J. of Mathematics and Mathematical Sciences

is the solution of the homogeneous hypergeometric differential equation

z (1− z)w
′′

(z) + [c− (a+ b+ 1) z]w
′
(z)− abw (z) = 0

and has rich applications in various fields such as conformal mappings, quasicon-
formal theory, continued fractions and so on.

Here, a, b, c are complex numbers such that c 6= 0,−1,−2,−3, . . . . . . .., (a)0 = 1
for a 6= 0, and for each positive integer n (a)n = a (a+ 1) (a+ 2) . . . . (a+n−1) is the
Pochhammer symbol. In the case of c = −k, k = 0, 1, 2, . . . , F (a, b; c; z) is defined if
a = −jorb = −j where j ≤ k. In this situation, F (a, b; c; z) becomes a polynomial
of degree j with respect to z result regarding F (a, b; c; z) when <(c−a−b) is positive,
zero or negative are abundant in the literature. In particular when <(c−a−b) > 0,
the function is bounded. This, and zero balanced case <(c−a−b) = 0 are discussed
in detail by many authors (see [14]). The hypergeometric function F (a, b; c; z)
has been studied extensively by various authors and plays an important role in
Geometric Function Theory. It is useful in unifying various functions by giving
appropriate values to the parameters a, b and c. We refer to [3, 5, 11, 13] [15]-[21]
and references therein for some important results.

For function f ∈ A given by (1.1) and g ∈ A given by g (z) = z +
∞∑
n=2

bnz
n, we

define the Hadamard product (or convolution ) of f and g by

(f ∗ g) (z) = z +
∞∑
n=2

anbnz
n, z ∈ U. (1.3)

For f ∈ A, we recall the operator I(a, b, c)(f) of Hohlov [7] which maps A into itself
defined by means of the Hadamard product as

Ia,b,c (f) (z) = I (a, b; c;λ, µ, z) ∗ f (z) . (1.4)

Therefore, for a function defined by (1.1), we have In present paper we introduce
a operator I(a, b; c;λ, µ, z) as follows

I (a, b; c;λ, µ, z) = λzF (a, b; c; z) + µz(zF (a, b; c; z))
′
+ (1− λ− µ)

z

∫
0
F (a, b; c; t) dt

using the series representation,

I (a, b; c;λ, µ, z) = z +
∞∑
n=2

(
λ+ µn+

1− λ− µ
n

)
(a)n−1(b)n−1
(c)n−1(1)n−1

zn

= 2I1 (a, b; c;λ, µ, z) . (1.5)
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If we put µ = 1− λ then it reduces to

I (a, b; c;λ, µ, z) = λzF (a, b; c; z) + (1− λ) (zF (a, b; c; z))
′
,

Studied by Sharma et al. [18]. In the present paper, we obtain certain inclusion
relation involving the classes k−UCV , k−ST , UCV , SP . Particularly λ = 1, µ = 0
we obtain the corresponding result of Shivasubramanian and Sokol [22].

Lemma 1.1. ([5]) A function f ∈ A is in the class UCD(β) if

∞∑
n=2

n (1 + β (n− 1)) |an| 6 1. (1.6)

Lemma 1.2. ([6]) If f ∈ Rτ (A,B) is of the form (1.1), then

|an| 6 (A−B)
|τ |
n
, n ∈ N\{1}. (1.7)

The result is sharp. Let us denote (see [8], [9])

P1 (k) =


8(arc cos cos k)2

π2(1−k2) , for 0 6 k < 1
8
π2 , for k = 1
π2

4
√
t(1+t)(k2−1)K2(t)

for k > 1,

(1.8)

where t ∈ (0, 1) is determined by k = cosh cosh(πK
′
(t)
/
[4K (t)]), K is Legender’s

complete elliptic integral of the first kind
The domain Ωk is elliptic for k > 1, hyperbolic when 0 < k < 1, parabolic

when k = 1 and a right half plane when k = 0. If p is an analytic function
with p(0) = 1 which maps the unit disc U conformally onto the region Ωk, then
P1(k) = p

′
(0).P1(k) is a strictly decreasing function of the variable k and its values

are included in the interval (0,2]. Let f ∈ A be of the form (1.1). If f ∈ k − ST ,
then the following coefficient inequalities hold true (cf. [9]):

|an| 6
(P1 (k))n−1

(n− 1)!
, n ∈ N\{1}. (1.9)

Let us also denote 3I2(a, b, d; c, e;λ, µ, z) by

3I2 (a, b, d; c, e;λ, µ, z) = z +
∞∑
n=2

(
λ+ µn+

1− λ− µ
n

)
(a)n−1(b)n−1(d)n−1
(c)n−1(e)n−1(1)n−1

zn.
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In this paper, we estimate certain inclusion relation involving the class k−ST and
UCD(β).

2. Main Results
We begin deriving a sufficient condition for the functions belonging to the class

GH(l, β, p,m, k, λ1, λ2). This result is contained in the following.

Theorem 2.1. Let a, b ∈ C\0. Also, let c be a real number such that c > |a|+|b|+2.
Let f ∈ A and of the form (1.1). If the hypergeometric inequality

Γ (c) Γ(c− |a| − |b| − 3)

Γ(c− |a|)Γ(c− |b|)
[(c− |a| − |b| − 3) (c− |a| − |b| − 2) (c− |a| − |b| − 1)

+ (λ+ β + 2µ+ βλ+ 3µβ) |ab| (c− |a| − |b| − 3) (c− |a| − |b| − 2)

+ (µ+ βλ+ 5µβ) |ab| (1 + |a|) (1 + |b|) (c− |a| − |b| − 3)

+µβ |ab| (1 + |a|) (1 + |b|) (2 + |a|) (2 + |b|)] ≤ 2

is satisfied, then I (a, b; c;λ, µ, z) ∈ UCD (β) .
Proof. The function I (a, b; c;λ, µ, z) has the series representation given by

I (a, b; c;λ, µ, z) = z +
∞∑
n=2

(
λ+ µn+

1− λ− µ
n

)
(a)n−1(b)n−1
(c)n−1(1)n−1

zn.

In view of Lemma 1.1, it suffices to show that

S (a, b; c;λ, µ, β) =
∞∑
n=2

n (1 + β (n− 1))

(
λ+ µn+

1− λ− µ
n

) ∣∣∣∣(a)n−1(b)n−1
(c)n−1(1)n−1

∣∣∣∣ 6 1

(2.1)
From the fact that |(a)n| 6 (|a|)n, we observe that, since c is real and positive,
under the hypothesis

S (a, b; c;λ, µ, β) 6
∞∑
n=2

n (1 + β (n− 1))

(
λ+ µn+

1− λ− µ
n

)
(|a|)n−1(|b|)n−1

(c)n−1(1)n−1

=
∞∑
n=2

(1 + β (n− 1))
(
λn+ µn2 + 1− λ− µ

) (|a|)n−1(|b|)n−1
(c)n−1(1)n−1

=
∞∑
n=2

{
µβn3 + (βλ+ µ− µβ)n2 + (λ+ β − βλ− µβ)n

+ (1− λ− µ− β + βλ+ µβ)}
(|a|)n−1(|b|)n−1

(c)n−1(1)n−1
.
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Writing {µβn3 + (βλ+ µ− µβ)n2 + (λ+ β − βλ− µβ)n + (1 − λ −µ −β +βλ
+µβ)} as,
[1 + (λ+ 2µ+ β + βλ+ 3µβ) (n− 1) + (µ+ βλ+ 5µβ) (n− 1) (n− 2)
+µβ (n− 1) (n− 2) (n− 3)] we get

S (a, b; c;λ, µ, β) 6
∞∑
n=2

(|a|)n−1(|b|)n−1
(c)n−1(1)n−1

+ (λ+ 2µ+ β + βλ+ 3µβ)
∞∑
n=2

(n− 1)
(|a|)n−1(|b|)n−1

(c)n−1(1)n−1

+ (µ+ βλ+ 5µβ)
∞∑
n=2

(n− 1) (n− 2)
(|a|)n−1(|b|)n−1

(c)n−1(1)n−1

+ µβ
∞∑
n=2

(n− 1) (n− 2) (n− 3)
(|a|)n−1(|b|)n−1

(c)n−1(1)n−1
.

Using the fact that
(a)n = a(a+ 1)n−1, (2.2)

It is so easy to see that,

S (a, b; c;λ, µ, β) 6
∞∑
n=2

(|a|)n−1(|b|)n−1
(c)n−1(1)n−1

+ (λ+ 2µ+ β + βλ+ 3µβ)
|ab|
c

∞∑
n=2

(1 + |a|)n−2(1 + |b|)n−2
(1 + c)n−2(1)n−2

+ (µ+ βλ+ 5µβ)
|ab| (1 + |a|) (1 + |b|)

c(1 + c)

∞∑
n=3

(2 + |a|)n−3(2 + |b|)n−3
(2 + c)n−3(1)n−3

+ µβ
|ab| (1 + |a|) (1 + |b|) (2 + |a|) (2 + |b|)

c (1 + c) (2 + c)

∞∑
n=4

(3 + |a|)n−4(3 + |b|)n−4
(3 + c)n−4(1)n−4

.

From (1.2), we have

S (a, b; c;λ, µ, β) 6 I (|a| , |b| ; c;λ, µ, 1)− 1

+ (λ+ 2µ+ β + βλ+ 3µβ)
|ab|
c
I (1 + |a| , 1 + |b| ; 1 + c;λ, µ, 1)

+ (µ+ βλ+ 5µβ)
|ab| (1 + |a|) (1 + |b|)

c(1 + c)
I (2 + |a| , 2 + |b| ; 2 + c;λ, µ, 1)

+ µβ
|ab| (1 + |a|) (1 + |b|) (2 + |a|) (2 + |b|)

c (1 + c) (2 + c)
I (3 + |a| , 3 + |b| ; 3 + c;λ, µ, 1) .
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Applying Gauss summation theorem

F (a, b; c; 1) =
∞∑
n=0

(a)n(b)n
(c)n(1)n

=
Γ (c) Γ(c− |a| − |b|)
Γ(c− |a|)Γ(c− |b|)

for <(c− a− b) > 0, last equation reduces as

S (a, b; c;λ, µ, β) =
Γ (c) Γ(c− |a| − |b|)
Γ(c− |a|)Γ(c− |b|)

− 1

+ (λ+ 2µ+ β + βλ+ 3µβ)
|ab|
c

Γ (1 + c) Γ(1 + c− 1− |a| − 1− |b|)
Γ(1 + c− 1− |a|)Γ(1 + c− 1− |b|)

+ (µ+ βλ+ 5µβ)
|ab| (1 + |a|) (1 + |b|)

c(1 + c)

Γ (2 + c) Γ(2 + c− 2− |a| − 2− |b|)
Γ(2 + c− 2− |a|)Γ(2 + c− 2− |b|)

+ µβ
|ab| (1 + |a|) (1 + |b|) (2 + |a|) (2 + |b|)

c (1 + c) (2 + c)

Γ (3 + c) Γ(3 + c− 3− |a| − 3− |b|)
Γ (3 + c− 3− |a|) Γ(3 + c− 3− |b|)

=
Γ (c) Γ(c− |a| − |b|)
Γ(c− |a|)Γ(c− |b|)

− 1

+ (λ+ 2µ+ β + βλ+ 3µβ)
|ab|
c

Γ (1 + c) Γ(c− |a| − |b| − 1)

Γ(c− |a|)Γ(c− |b|)

+ (µ+ βλ+ 5µβ)
|ab| (1 + |a|) (1 + |b|)

c(1 + c)

Γ (2 + c) Γ(c− |a| − |b| − 2)

Γ(c− |a|)Γ(c− |b|)

+ µβ
|ab| (1 + |a|) (1 + |b|) (2 + |a|) (2 + |b|)

c (1 + c) (2 + c)

Γ (3 + c) Γ(c− |a| − |b| − 3)

Γ(c− |a|)Γ(c− |b|)

⇒ Γ (c) Γ(c− |a| − |b|)
Γ(c− |a|)Γ(c− |b|)

− 1

+ (λ+ 2µ+ β + βλ+ 3µβ)
|ab|
c

Γ (1 + c) Γ(c− |a| − |b| − 1)

Γ(c− |a|)Γ(c− |b|)

+ (µ+ βλ+ 5µβ)
|ab| (1 + |a|) (1 + |b|)

c(1 + c)

Γ (2 + c) Γ(c− |a| − |b| − 2)

Γ(c− |a|)Γ(c− |b|)

+ µβ
|ab| (1 + |a|) (1 + |b|) (2 + |a|) (2 + |b|)

c (1 + c) (2 + c)

Γ (3 + c) Γ(c− |a| − |b| − 3)

Γ(c− |a|)Γ(c− |b|)
6 1

⇒ Γ (c) Γ(c− |a| − |b| − 3)

Γ(c− |a|)Γ(c− |b|)
[(c− |a| − |b| − 3) (c− |a| − |b| − 2) (c− |a| − |b| − 1)

+ (λ+ β + 2µ+ βλ+ 3µβ) |ab| (c− |a| − |b| − 3) (c− |a| − |b| − 2)+(µ+ βλ+ 5µβ)
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|ab| (1 + |a|) (1 + |b|) (c− |a| − |b| − 3) + µβ |ab| (1 + |a|) (1 + |b|) (2 + |a|) (2 + |b|)] 6 2.

In the special case when λ = 1 and µ = 0, Theorem 2.1 immediately yields a
following result of Sivasubramanian et al. [22].

Corollary 2.2. Let a, b ∈ C \ 0. Also, let c be a real number such that c >
|a|+ |b|+ 2. Let f ∈ A and of the form (1.1). If the hypergeometric inequality

Γ (c) Γ(c− |a| − |b| − 2)

Γ(c− |a|)Γ(c− |b|)
[(c− |a| − |b| − 2) (c− |a| − |b| − 1)

+ (1 + 2β) |ab| (c− |a| − |b| − 2) + β |ab| (1 + |a|) (1 + |b|) +] 6 2

is satisfied, then zF (a, b; c; z) ∈ UCD(β).

Theorem 2.3. Let a, b ∈ C\0. Also, let c be a real number such that c > |a|+|b|+1.
If f ∈ Rτ (A,B), and if the inequality

Γ (c) Γ (c− |a| − |b| − 2)

Γ (c− |a|) Γ (c− |b|)


(λ+ µ+ β − µβ − βλ) [(c− |a| − |b| − 1) (c− |a| − |b| − 2)]

+ (µ+ βλ+ 2µβ) |ab| (c− |a| − |b| − 2) + µβ |ab| (1 + |a|) (1 + |b|)
+ (1−λ−µ)(1−β)[(c−|a|−|b|)(c−|a|−|b|−1)(c−|a|−|b|−2)]

(|a|−1)(|b|−1)


6

1

(A−B) |τ |
+

(1− λ− µ) (1− β) (c− 1)

(|a| − 1) (|b| − 1)
+ 1. (2.3)

is satisfied, then I (a, b; c;λ, µ, z) ∈ UCD (β) .
Proof. Let f be of the form (1.1) belongs to the class f ∈ Rτ (A,B). By virtue of
Lemma 1.1 it is suffices to show that

∞∑
n=2

n (1 + β (n− 1))

(
λ+ µn+

1− λ− µ
n

) ∣∣∣∣(a)n−1(b)n−1
(c)n−1(1)n−1

an

∣∣∣∣ 6 1. (2.4)

Taking in to account of the inequality (1.7) and the relation | (a)n−1 | ≤ (|a|)n−1,
we deduce that

∞∑
n=2

n (1 + β (n− 1))

(
λ+ µn+

1− λ− µ
n

) ∣∣∣∣(a)n−1(b)n−1
(c)n−1(1)n−1

an

∣∣∣∣
6 (A−B) |τ |

∞∑
n=2

(1 + β (n− 1))

(
λn+ µn2 + 1− λ− µ

n

) ∣∣∣∣(a)n−1(b)n−1
(c)n−1(1)n−1

an

∣∣∣∣
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= (A−B) |τ |
∞∑
n=2

[
(λ+ β − µβ − 2βλ) + (βλ+ µ)n+ µβn (n− 1) + (1− λ− µ) (1− β)

1

n

]
∣∣∣∣ (a)n−1(b)n−1
(c)n−1(1)n−1

∣∣∣∣
= (A−B) |τ |

∞∑
n=2

[(λ+ β − µβ − 2βλ+ βλ+ µ) + (βλ+ µ) (n− 1) + µβ (n− 1) (n− 2)

+2µβ (n− 1) + (1− λ− µ) (1− β)
1

n

] ∣∣∣∣ (a)n−1(b)n−1
(c)n−1(1)n−1

∣∣∣∣
= (A−B) |τ |

∞∑
n=2

[(λ+ µ+ β − µβ − βλ) + (µ+ βλ+ 2µβ) (n− 1) + µβ (n− 1) (n− 2)

+ (1− λ− µ) (1− β)
1

n

] ∣∣∣∣ (a)n−1(b)n−1
(c)n−1(1)n−1

∣∣∣∣
= (A−B) |τ | (λ+ µ+ β − µβ − βλ)

∞∑
n=2

(|a|)n−1(|b|)n−1
(c)n−1(1)n−1

+ (A−B) |τ | (µ+ βλ+ 2µβ)

∞∑
n=2

(n− 1)
(|a|)n−1(|b|)n−1

(c)n−1(1)n−1

+ (A−B) |τ |µβ
∞∑
n=2

(n− 1) (n− 2)
(|a|)n−1(|b|)n−1

(c)n−1(1)n−1

+ (A−B) |τ | (1− λ− µ) (1− β)

∞∑
n=2

1

n

(|a|)n−1(|b|)n−1
(c)n−1(1)n−1

= (A−B) |τ | (λ+ µ+ β − µβ − βλ)

∞∑
n=2

(|a|)n−1(|b|)n−1
(c)n−1(1)n−1

+ (A−B) |τ | (µ+ βλ+ 2µβ)
|ab|
c

∞∑
n=2

(1 + |a|)n−2(1 + |b|)n−2
(1 + c)n−2(1)n−2

+ (A−B) |τ |µβ |ab| (1 + |a|) (1 + |b|)
c(1 + c)

∞∑
n=3

(2 + |a|)n−3(2 + |b|)n−3
(2 + c)n−3(1)n−3

+ (A−B) |τ | (1− λ− µ) (1− β)
(c− 1)

(|a| − 1) (|b| − 1)

∞∑
n=2

(|a| − 1)n(|b| − 1)n
(c− 1)n(1)n

Using (1.2) last equation reduces as

∞∑
n=2

n (1 + β (n− 1))

(
λ+ µn+

1− λ− µ
n

) ∣∣∣∣(a)n−1(b)n−1
(c)n−1(1)n−1

∣∣∣∣
6 (A−B) |τ | (λ+ µ+ β − µβ − βλ) [I (|a| , |b| ; c;λ, µ, 1)− 1]



Mapping Properties of Hypergeometric Transforms on Certain Class ... 93

+ (A−B) |τ | (µ+ βλ+ 2µβ)
|ab|
c
I (1 + |a| , 1 + |b| ; 1 + c;λ, µ, 1)

+ (A−B) |τ |µβ |ab| (1 + |a|) (1 + |b|)
c(1 + c)

I (2 + |a| , 2 + |b| ; 2 + c;λ, µ, 1)

+ (A−B) |τ | (1− λ− µ) (1− β)
(c− 1)

(|a| − 1) (|b| − 1)[
I (|a| − 1, |b| − 1; c− 1;λ, µ, 1)− 1− (|a| − 1) (|b| − 1)

(c− 1)
.

]
Now, applying Gauss summation theorem, we get

= (A−B) |τ |
{

(λ+ µ+ β − µβ − βλ)

[
Γ (c) Γ (c− |a| − |b|)
Γ (c− |a|) Γ (c− |b|)

− 1

]
+ (µ+ βλ+ 2µβ)

|ab|
c

Γ (1 + c) Γ (1 + c− 1− |a| − 1− |b|)
Γ (1 + c− 1− |a|) Γ (1 + c− 1− |b|)

+ µβ
|ab| (1 + |a|) (1 + |b|)

c (1 + c)

Γ (2 + c) Γ (2 + c− 2− |a| − 2− |b|)
Γ (2 + c− 2− |a|) Γ (2 + c− 2− |b|)

+ (1− λ− µ) (1− β)
(c− 1)

(|a| − 1) (|b| − 1)

[
Γ (c− 1) Γ (c− 1− |a|+ 1− |b|+ 1)

Γ (c− 1− |a|+ 1) Γ (c− 1− |b|+ 1)

−1− (|a| − 1) (|b| − 1)

(c− 1)

]}
= (A−B) |τ |

{
(λ+ µ+ β − µβ − βλ)

[
Γ (c) Γ (c− |a| − |b|)
Γ (c− |a|) Γ (c− |b|)

− 1

]
+ (µ+ βλ+ 2µβ)

|ab|
c

Γ (1 + c) Γ (c− |a| − |b| − 1)

Γ (c− |a|) Γ (c− |b|)

+ µβ
|ab| (1 + |a|) (1 + |b|)

c (1 + c)

Γ (2 + c) Γ (c− |a| − |b| − 2)

Γ (c− |a|) Γ (c− |b|)

+ (1− λ− µ) (1− β)
(c− 1)

(|a| − 1) (|b| − 1)

[
Γ (c− 1) Γ (c− |a| − |b|+ 1)

Γ (c− |a|) Γ (c− |b|)

−1− (|a| − 1) (|b| − 1)

(c− 1)

]}
= (A−B) |τ | Γ (c) Γ (c− |a| − |b| − 2)

Γ (c− |a|) Γ (c− |b|)
(λ+ µ+ β − µβ − βλ) [(c− |a| − |b| − 1) (c− |a| − |b| − 2)]

+ (µ+ βλ+ 2µβ) |ab| (c− |a| − |b| − 2) + µβ |ab| (1 + |a|) (1 + |b|)
+ (1−λ−µ)(1−β)[(c−|a|−|b|)(c−|a|−|b|−1)(c−|a|−|b|−2)]

(|a|−1)(|b|−1)


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− (A−B) |τ |
{

(λ+ µ+ β − µβ − βλ) +
(1− λ− µ) (1− β) (c− 1)

(|a| − 1) (|b| − 1)
+ (1− λ− µ) (1− β)

}
= (A−B) |τ | Γ (c) Γ (c− |a| − |b| − 2)

Γ (c− |a|) Γ (c− |b|)
(λ+ µ+ β − µβ − βλ) [(c− |a| − |b| − 1) (c− |a| − |b| − 2)]

+ (µ+ βλ+ 2µβ) |ab| (c− |a| − |b| − 2) + µβ |ab| (1 + |a|) (1 + |b|)
+ (1−λ−µ)(1−β)[(c−|a|−|b|)(c−|a|−|b|−1)(c−|a|−|b|−2)]

(|a|−1)(|b|−1)


− (A−B) |τ |

{
(λ+ µ+ β − µβ − βλ) +

(1− λ− µ) (1− β) (c− 1)

(|a| − 1) (|b| − 1)

+ (1− λ− µ− β + µβ + βλ)} .

⇒ Γ (c) Γ (c− |a| − |b| − 2)

Γ (c− |a|) Γ (c− |b|)
(λ+ µ+ β − µβ − βλ) [(c− |a| − |b| − 1) (c− |a| − |b| − 2)]

+ (µ+ βλ+ 2µβ) |ab| (c− |a| − |b| − 2) + µβ |ab| (1 + |a|) (1 + |b|)
+ (1−λ−µ)(1−β)[(c−|a|−|b|)(c−|a|−|b|−1)(c−|a|−|b|−2)]

(|a|−1)(|b|−1)


6

1

(A−B) |τ |
+

(1− λ− µ) (1− β) (c− 1)

(|a| − 1) (|b| − 1)
+ 1.

Repeating the above reasoning for |b| = |a|, we can improve the assertion of
Theorem 2.3 as follows.

Corollary 2.4. Let a, b ∈ C \ 0. Suppose that |b| = |a| . Further, let c be a real
number such that c > 2|a|+ 1. If f ∈ Rτ (A,B), and if the inequality

Γ (c) Γ (c− 2 |a| − 2)

[Γ (c− |a|)]2


(λ+ µ+ β − µβ − βλ) [(c− 2 |a| − 1) (c− 2 |a| − 2)]

+ (µ+ βλ+ 2µβ) |a|2 (c− 2 |a| − 2) + µβ|a|2(1 + |a|)2

+ (1−λ−µ)(1−β)[(c−2|a|)(c−2|a|−1)(c−2|a|−2)]
(|a|−1)2


6

1

(A−B) |τ |
+

(1− λ− µ) (1− β) (c− 1)

(|a| − 1)2
+ 1 (2.5)

is satisfied, then I(a, a, c)(f) ∈ UCD(β).
Particularly when λ = 1 and µ = 0, Theorem 2.3 yields a following result of

Sivasubramanian et al [22].

Corollary 2.5. Let a, b ∈ C \ 0. Also, let c be a real number such that c >
|a|+ |b|+ 1. If f ∈ Rτ (A,B), and if the inequality

Γ (c) Γ (c− |a| − |b| − 1)

Γ (c− |a|) Γ (c− |b|)
[(c− |a| − |b| − 1) + β |ab|] 6 1

(A−B) |τ |
+ 1. (2.6)

is satisfied, then I(a, b; c;λ, µ, z) ∈ UCD(β).
Proof. Let f be of the form (1.1) belongs to the class Rτ (A,B). By virtue of
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Lemma 1.1 it is suffices to show that

∞∑
n=2

n (1 + β (n− 1))

∣∣∣∣(a)n−1(b)n−1
(c)n−1(1)n−1

an

∣∣∣∣ 6 1.

Taking in to account of the inequality (1.7) and the relation
∣∣(a)n−1

∣∣ 6 (|a|)n−1,
we deduce that

∞∑
n=2

n (1 + β (n− 1))

∣∣∣∣(a)n−1(b)n−1
(c)n−1(1)n−1

an

∣∣∣∣ 6 (A−B) |τ |
∞∑
n=2

(1 + β (n− 1))

∣∣∣∣(a)n−1(b)n−1
(c)n−1(1)n−1

∣∣∣∣
= (A−B) |τ |

∞∑
n=2

(|a|)n−1(|b|)n−1
(c)n−1(1)n−1

+ β (A−B) |τ |
∞∑
n=2

(|a|)n−1(|b|)n−1
(c)n−1(1)n−1

By applying Gauss summation Theorem we get required result.

In the special case when b = 1, λ = 1 and µ = 0, Theorem 2.3 immediately
yields a result concerning the Carlson-Shaffer operator L (a, c) (f) = Ia,1,c (f) (see
[3]).

Corollary 2.6. Let a ∈ C \ 0. Also, let c be a real number such that c > |a| + 2.
If f ∈ Rτ (A,B), and if the inequality

Γ (c) Γ (c− |a| − 2)

Γ (c− |a|) Γ (c− 1)
[β |a|+ (c− |a| − 2)] 6

1

(A−B) |τ |
+ 1 (2.7)

is satisfied, then L (a, c) (f) ∈ UCD (β) .

Theorem 2.7. Let a, b ∈ C \ 0. Also, let c be a real number and P1 = P1(k) be
given by (1.8). If f ∈ k − ST, for some k(0 6 k <∞), and the inequality

3I2 (|a| , |b| , P1; c, 1;λ, µ, 1)+(λ+ 2µ+ β)
|ab|P1

c 3I2 (1 + |a| , 1 + |b| , 1 + P1; 1 + c, 2;λ, µ, 1)

+ (µ+ βλ+ 3µβ)
|ab|P1

c 3I2 (1 + |a| , 1 + |b| , 1 + P1; 1 + c, 1;λ, µ, 1)

+µβ
|ab| (1 + |a|) (1 + |b|) (1 + P1)

c (1 + c) 3I2 (2 + |a| , 2 + |b| , 2 + P1; 2 + c, 3;λ, µ, 1) 6 2

(2.8)
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is satisfied, then Ia,b,c (f) ∈ UCD (β) .
Proof. Let f be given by (1.1). By (1.6), to show Ia,b,c (f) ∈ UCD (β) it is
sufficient to prove that

∞∑
n=2

n (1 + β (n− 1))

(
λ+ µn+

1− λ− µ
n

) ∣∣∣∣(a)n−1(b)n−1
(c)n−1(1)n−1

an

∣∣∣∣ 6 1.

We will repeat the method of proving used in the proof of Theorem 2.1. Applying
the estimates for the coefficients given by (1.9), and make use of the (2.2) and∣∣(a)n−1

∣∣ 6 (|a|)n−1, we get

∞∑
n=2

n (1 + β (n− 1))

(
λ+ µn+

1− λ− µ
n

) ∣∣∣∣(a)n−1(b)n−1
(c)n−1(1)n−1

an

∣∣∣∣
6
∞∑
n=2

n (1 + β (n− 1))

(
λ+ µn+

1− λ− µ
n

)
(|a|)n−1(|b|)n−1(P1)n−1

(c)n−1(1)n−1(1)n−1

=
∞∑
n=2

n (1 + β (n− 1))

(
λn+ µn2 + 1− λ− µ

n

)
(|a|)n−1(|b|)n−1(P1)n−1

(c)n−1(1)n−1(1)n−1

=

∞∑
n=2

(1 + β (n− 1))
(
λn+ µn2 + 1− λ− µ

) (|a|)n−1(|b|)n−1(P1)n−1
(c)n−1(1)n−1(1)n−1

=
∞∑
n=2

[
µβn3 + (βλ+ µ− µβ)n2 + (λ+ β − 2βλ− µβ)n+ (1− λ− µ− β + βλ+ µβ)

]
(|a|)n−1(|b|)n−1(P1)n−1

(c)n−1(1)n−1(1)n−1

=

∞∑
n=2

[1 + (λ+ 2µ+ β) (n− 1) + (µ+ βλ+ 3µβ) (n− 1) (n− 1) + µβ (n− 1) (n− 1) (n− 2)]

(|a|)n−1(|b|)n−1(P1)n−1
(c)n−1(1)n−1(1)n−1

=
∞∑
n=2

(|a|)n−1(|b|)n−1(P1)n−1
(c)n−1(1)n−1(1)n−1

+ (λ+ 2µ+ β)
∞∑
n=2

(n− 1)
(|a|)n−1(|b|)n−1(P1)n−1

(c)n−1(1)n−1(1)n−1

+ (µ+ βλ+ 3µβ)
∞∑
n=2

(n− 1) (n− 1)
(|a|)n−1(|b|)n−1(P1)n−1

(c)n−1(1)n−1(1)n−1

+ µβ

∞∑
n=2

(n− 1) (n− 1) (n− 2)
(|a|)n−1(|b|)n−1(P1)n−1

(c)n−1(1)n−1(1)n−1
.
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Using the fact that (a)n = a(a+ 1)(n− 1), It is so easy to see that

=
∞∑
n=2

(|a|)n−1(|b|)n−1(P1)n−1
(c)n−1(1)n−1(1)n−1

+ (λ+ 2µ+ β)
|ab|P1

c

∞∑
n=2

(1 + |a|)n−2(1 + |b|)n−2(1 + P1)n−2
(1 + c)n−2(2)n−2(1)n−2

+ (µ+ βλ+ 3µβ)
|ab|P1

c

∞∑
n=2

(1 + |a|)n−2(1 + |b|)n−2(1 + P1)n−2
(1 + c)n−2(1)n−2(1)n−2

+ µβ
|ab|P1 (1 + |a|) (1 + |b|) (1 + P1)

c (1 + c)

∞∑
n=3

(2 + |a|)n−3(2 + |b|)n−3(2 + P1)n−3
(2 + c)n−3(3)n−3(1)n−3

.

From (1.2),

= 3I2 (|a| , |b| , P1; c, 1;λ, µ, 1)− 1

+ (λ+ 2µ+ β)
|ab|P1

c 3I2 (1 + |a| , 1 + |b| , 1 + P1; 1 + c, 2;λ, µ, 1)

+ (µ+ βλ+ 3µβ)
|ab|P1

c 3I2 (1 + |a| , 1 + |b| , 1 + P1; 1 + c, 1;λ, µ, 1)

+ µβ
|ab| (1 + |a|) (1 + |b|) (1 + P1)

c (1 + c) 3I2 (2 + |a| , 2 + |b| , 2 + P1; 2 + c, 3;λ, µ, 1) .

≤ 1

⇒ 3I2 (|a| , |b| , P1; c, 1;λ, µ, 1) + (λ+ 2µ+ β)
|ab|P1

c 3I2 (1 + |a| , 1 + |b| , 1 + P1; 1 + c, 2;λ, µ, 1)

+ (µ+ βλ+ 3µβ)
|ab|P1

c 3I2 (1 + |a| , 1 + |b| , 1 + P1; 1 + c, 1;λ, µ, 1)

+ µβ
|ab| (1 + |a|) (1 + |b|) (1 + P1)

c (1 + c) 3I2 (2 + |a| , 2 + |b| , 2 + P1; 2 + c, 3;λ, µ, 1) 6 2.

If |b| = |a| we can rewrite the Theorem 2.7 as follows.

Corollary 2.8. Let a, b ∈ C \0. Suppose that |b| = |a|. Also, let c be a real number
and P1 = P1(k) be given by (1.8). If f ∈ k− ST , for some k(0 ≤ k <∞), and the
inequality

3I2 (|a| , |a| , P1; c, 1;λ, µ, 1)+(λ+ 2µ+ β)
|a|2 P1

c 3I2 (1 + |a| , 1 + |a| , 1 + P1; 1 + c, 2;λ, µ, 1)

+ (µ+ βλ+ 3µβ)
|a|2 P1

c 3I2 (1 + |a| , 1 + |a| , 1 + P1; 1 + c, 1;λ, µ, 1)
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+µβ
|a|2 (1 + |a|) (1 + |a|) (1 + P1)

c (1 + c) 3I2 (2 + |a| , 2 + |a| , 2 + P1; 2 + c, 3;λ, µ, 1) 6 2

is satisfied, then I(a,b,c)(f) ∈ UCD(β).
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