HANKEL DETERMINANT OF GENERALISED CLASSES OF STARLIKE FUNCTIONS WITH RESPECT TO m-FOLD SYMMETRIC POINTS

R. Reena Roy and Thomas Rosy*
CIPET: Institute Of Plastics Technology, Guindy, Chennai - 600032, Tamil Nadu, INDIA
E-mail : reenaraju26@gmail.com
*Department of Mathematics, Madras Christian College, Tambaram, Chennai - 600059, Tamil Nadu, INDIA
E-mail : thomas.rosy@gmail.com

(Received: Jan. 09, 2021 Accepted: Sep. 22, 2021 Published: Dec. 30, 2021)

Abstract: Denote \mathcal{S} to be the class of functions which are analytic, normalized and univalent in the open unit disk $\mathbb{E}=\{z \in \mathbb{C}:|z|<1\}$. The upper bound for the functional $\left|a_{m+1} a_{3 m+1}-a_{2 m+1}^{2}\right|$ with respect to m-fold symmetric points are determined.

Keywords and Phrases: Starlike functions, Convex functions, $q^{\text {th }}$ Hankel determinant, m-fold symmetric points.
2020 Mathematics Subject Classification: 30C45, 30C50.

1. Introduction

Let \mathcal{S} denote the class of functions

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathbb{E}=\{z \in \mathbb{C}:|z|<1\}$. In [4], $q^{\text {th }}$ Hankel determinant for $q \geq 1$ and $n \geq 0$ is defined by Noonan and Thomas as

$$
H_{q}(n)=\left|\begin{array}{cccc}
a_{n} & a_{n+1} & \ldots & a_{n+q-1} \\
a_{n+1} & a_{n+2} & \ldots & a_{n+q} \\
\ldots & \ldots & \ldots & \ldots \\
a_{n+q-1} & a_{n+q} & \ldots & a_{n+2 q-2}
\end{array}\right|
$$

Easily, one can observe that the Fekete and Szego functional is $H_{2}(1)$, Fekete and Szego then further generalised the estimate $\left|a_{3}-\mu a_{2}^{2}\right|$, where μ is real. For our discussion in this paper, we consider the Hankel determinant in the case $q=2$ and $n=2$,

$$
H_{2}(2)=\left|\begin{array}{ll}
a_{2} & a_{3} \\
a_{3} & a_{4}
\end{array}\right|
$$

The class \mathcal{S}^{*} and \mathcal{C} are defined as follows.

2. Preliminaries

Definition 2.1. [1] Let $f \in \mathcal{S}$ be given by (1). Then $f \in \mathcal{S}^{*}$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>0, z \in \mathbb{E} \tag{2}
\end{equation*}
$$

Definition 2.2. [1] Let $f \in \mathcal{S}$ be given by (1). Then $f \in \mathcal{C}$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left(\frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}\right)>0, z \in \mathbb{E} \tag{3}
\end{equation*}
$$

It follows that $f \in \mathcal{C}$ if and only if $z f^{\prime}(z) \in \mathcal{S}^{*}$.
Definition 2.3. [8] A function $f \in \mathcal{S}$ is called univalent starlike functions with respect to symmetric points if and only if

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)-f(-z)}\right)>0, z \in \mathbb{E} \tag{4}
\end{equation*}
$$

and the class of functions satisfying (4) may be denoted by $\mathcal{S}_{\mathcal{S}}^{*}$.
A function $f \in \mathcal{S}$ is said to be convex functions with respect to symmetric points if and only if

$$
\begin{equation*}
\operatorname{Re}\left(\frac{\left(z f^{\prime}(z)\right)^{\prime}}{f(z)-f(-z)}\right)>0, z \in \mathbb{E} \tag{5}
\end{equation*}
$$

and the class of such functions is denoted by $\mathcal{K}_{\mathcal{S}}$.
$\mathcal{C}_{\mathcal{S}}$ is the class of close to convex functions $f \in \mathcal{S}$ with respect to symmetric points if there exists a function

$$
\begin{equation*}
g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \in \mathcal{S}_{\mathcal{S}}^{*} \tag{6}
\end{equation*}
$$

such that

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{g(z)-g(-z)}\right)>0 \tag{7}
\end{equation*}
$$

The class $\mathcal{C}_{1(\mathcal{S})}$ consisting of functions $f(z)$ in \mathcal{S} with respect to symmetric points is obtained by replacing $g(z)$ by

$$
\begin{equation*}
h(z)=z+\sum_{n=2}^{\infty} c_{n} z^{n} \in \mathcal{K}_{\mathcal{S}} \tag{8}
\end{equation*}
$$

in the condition (7). Obviously $\mathcal{C}_{1(\mathcal{S})} \subset \mathcal{C}_{\mathcal{S}}^{*}$.
A function f in \mathcal{S} belongs to $\mathcal{S}_{\mathcal{S}}^{*}(\mathcal{A}, \mathcal{B})$ [7], if

$$
\begin{equation*}
\left(\frac{2 z f^{\prime}(z)}{f(z)-f(-z)}\right) \prec \frac{1+A z}{1+B z},-1 \leq B<A \leq 1 \tag{9}
\end{equation*}
$$

The class $\mathcal{K}_{\mathcal{S}}(\mathcal{A}, \mathcal{B})$ consists of functions $f(z)$ in \mathcal{S} which satisfying the condition

$$
\begin{equation*}
\left(\frac{2\left(z f^{\prime}(z)\right)^{\prime}}{f(z)-f(-z)}\right) \prec \frac{1+A z}{1+B z},-1 \leq B<A \leq 1 \tag{10}
\end{equation*}
$$

It is obvious that $f(z) \in \mathcal{K}_{\mathcal{S}}(\mathcal{A}, \mathcal{B}) \Longrightarrow z f^{\prime}(z) \in \mathcal{S}_{\mathcal{S}}^{*}(\mathcal{A}, \mathcal{B})$.
Let $\alpha \geq 0$ and $\frac{f(z) f^{\prime}(z)}{z} \neq 0$. Then $\mathcal{C}_{\mathcal{S}}^{*}(\alpha)$ is the class of functions $f \in \mathcal{S}$ with respect to symmetric points if there exists a function $g \in \mathcal{S}_{\mathcal{S}}^{*}$ such that

$$
\begin{equation*}
\operatorname{Re}\left(\frac{(1-\alpha) f(z)}{g(z)-g(-z)}+\frac{\alpha z f^{\prime}(z)}{g(z)-g(-z)}\right)>0 \tag{11}
\end{equation*}
$$

If g is replaced by h in the condition (11) then the corresponding class may be denoted by $\mathcal{C}_{\mathbf{1}(\mathcal{S})}^{*}(\alpha)$.

The classes $\mathcal{J}_{\mathcal{S}}^{*}(\alpha)$ and $\mathcal{J}_{1(\mathcal{S})}^{*}(\alpha)$ represent the subclasses of functions $f \in \mathcal{S}$ which satisfy the following conditions, respectively

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{g(z)-g(-z)}+\frac{\alpha z^{2} f^{\prime \prime}(z)}{g(z)-g(-z)}\right)>0, g \in \mathcal{S}_{\mathcal{S}}^{*} \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{h(z)-h(-z)}+\frac{\alpha z^{2} f^{\prime \prime}(z)}{h(z)-h(-z)}\right)>0, h \in \mathcal{K}_{\mathcal{S}} \tag{13}
\end{equation*}
$$

We have the following observations
(i) $f(z) \in \mathcal{C}_{\mathcal{S}}^{*}(\alpha) \Longrightarrow z f^{\prime}(z) \in \mathcal{J}_{\mathcal{S}}^{*}(\alpha)$
(ii) $f(z) \in \mathcal{C}_{\mathbf{1}(\mathcal{S})}^{*}(\alpha) \Longrightarrow z f^{\prime}(z) \in \mathcal{J}_{\mathbf{1}(\mathcal{S})}^{*}(\alpha)$

Let $0<\delta \leq 1,-1 \leq D \leq B<A \leq C \leq 1, g \in \mathcal{S}_{\mathcal{S}}^{*}(\mathcal{A}, \mathcal{B})$ and $h \in \mathcal{K}_{\mathcal{S}}(\mathcal{A}, \mathcal{B})$. Then we shall also deal with the following classes.

$$
\begin{align*}
& \mathcal{C}_{S}^{*}(\alpha, \delta, A, B, C, D)=\left\{f \in \mathcal{S}, \frac{2(1-\alpha) f(z)}{g(z)-g(-z)}+\frac{2 \alpha z f^{\prime}(z)}{g(z)-g(-z)} \prec\left(\frac{1+C z}{1+D z}\right)^{\delta}\right\} \\
& \mathcal{C}_{1(S)}^{*}(\alpha, \delta, A, B, C, D)=\left\{f \in \mathcal{S}, \frac{2(1-\alpha) f(z)}{h(z)-h(-z)}+\frac{2 \alpha z f^{\prime}(z)}{h(z)-h(-z)} \prec\left(\frac{1+C z}{1+D z}\right)^{\delta}\right\} \tag{15}\\
& \mathcal{J}_{S}^{*}(\alpha, \delta, A, B, C, D)=\left\{f \in \mathcal{S}, \frac{2 z f^{\prime}(z)}{g(z)-g(-z)}+\frac{2 \alpha z^{2} f^{\prime \prime}(z)}{g(z)-g(-z)} \prec\left(\frac{1+C z}{1+D z}\right)^{\delta}\right\} \tag{16}\\
& \mathcal{J}_{1(S)}^{*}(\alpha, \delta, A, B, C, D)=\left\{f \in \mathcal{S}, \frac{2 z f^{\prime}(z)}{h(z)-h(-z)}+\frac{2 \alpha z^{2} f^{\prime \prime}(z)}{h(z)-h(-z)} \prec\left(\frac{1+C z)}{1+D z}\right)^{\delta}\right\} \tag{17}
\end{align*}
$$

For $\delta=1$, we write
(i) $\mathcal{C}_{S}^{*}(\alpha, 1, A, B, C, D) \equiv \mathcal{C}_{S}^{*}(\alpha, A, B, C, D)$
(ii) $\mathcal{C}_{1(S)}^{*}(\alpha, 1, A, B, C, D) \equiv \mathcal{C}_{1(S)}^{*}(\alpha, A, B, C, D)$
(iii) $\mathcal{J}_{S}^{*}(\alpha, 1, A, B, C, D) \equiv \mathcal{J}_{S}^{*}(\alpha, A, B, C, D)$
(iv) $\mathcal{J}_{1(S)}^{*}(\alpha, 1, A, B, C, D) \equiv \mathcal{J}_{1(S)}^{*}(\alpha, A, B, C, D)$

Throughout this paper we assume that
$z \in \mathbb{E}, 0 \leq \alpha, 0<\delta \leq 1,-1 \leq D \leq B<A \leq C \leq 1$
$g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \in \mathcal{S}_{\mathcal{S}}^{*}, h(z)=z+\sum_{n=2}^{\infty} c_{n} z^{n} \in \mathcal{K}_{\mathcal{S}}$
$G(z)=\frac{g(z)-g(-z)}{2}=z+b_{m+1} z^{m+1}+b_{3 m+1} z^{3 m+1}$,
$H(z)=\frac{h(z)-h(-z)}{2}=z+c_{m+1} z^{m+1}+c_{3 m+1} z^{3 m+1}$,
$P(z)=1+\sum_{k=1}^{\infty} p_{k m} z^{k m}, Q(z)=1+\sum_{k=1}^{\infty} q_{k m} z^{k m}$.

Definition 2.4. [1] Let $m \in \mathbb{N}=\{1,2,3, \ldots\}$. A domain \mathbb{E} is said to be m-fold symmetric if a rotation of \mathbb{E} about the origin through an angle $\frac{2 \pi}{m}$ carries \mathbb{E} on itself. It follows that a function $f(z)$ analytic in \mathbb{E} is said to be m-fold symmetric $(m \in \mathbb{N})$ if

$$
f\left(e^{\frac{2 \pi i}{m}} z\right)=e^{\frac{2 \pi i}{m}} f(z)
$$

In particular, every $f(z)$ is 1 -fold symmetric and every odd $f(z)$ is 2 -fold symmetric. We denote by \mathcal{S}_{m} the class of m-fold symmetric univalent functions in \mathbb{E}. A simple argument shows that $f \in \mathcal{S}_{m}$ is characterized by having a power series of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=1}^{\infty} a_{m k+1} z^{m k+1} \tag{18}
\end{equation*}
$$

Lemma 2.1. [6] If $p \in \mathcal{P},\left|p_{k}\right| \leq 2, k \in \mathbb{N}$, where the caratheodary class \mathcal{P} is the family of all functions p analytic in \mathbb{E} for which

$$
\operatorname{Re}\{p(z)\}>0, p(z)=1+p_{1} z+p_{2} z^{2}+\ldots
$$

Lemma 2.2. [2] Let $p \in \mathcal{P}$, then

$$
\begin{equation*}
2 p_{2}=p_{1}^{2}+x\left(4-p_{1}^{2}\right) \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
4 p_{3}=p_{1}^{3}+2\left(4-p_{1}^{2}\right) p_{1} x-p_{1}\left(4-p_{1}^{2}\right) x^{2}+2\left(4-p_{1}^{2}\right)\left(1-|x|^{2}\right) t \tag{20}
\end{equation*}
$$

for some x and t satisfying $|x| \leq 1$ and $|t| \leq 1$.

3. Main Results

Theorem 3.1. Let $0 \leq \alpha<1$, and $f \in \mathcal{C}_{\mathcal{S}}^{*}(\alpha)$, then

$$
\begin{equation*}
\left|a_{m+1} a_{3 m+1}-a_{2 m+1}^{2}\right| \leq \frac{4}{(1+2 \alpha m)^{2}} \tag{21}
\end{equation*}
$$

Proof. Since, $f \in \mathcal{C}_{\mathcal{S}}^{*}(\alpha)$ it follows that

$$
\begin{equation*}
(1-\alpha) f(z)+\alpha z f^{\prime}(z)=P(z) G(z) \tag{22}
\end{equation*}
$$

Identifying the terms in (22), we get

$$
\left\{\begin{array}{l}
a_{m+1}=\frac{1}{(1+\alpha m)}\left[b_{m+1}+p_{m}\right] \tag{23}\\
a_{2 m+1}=\frac{1}{(1+2 \alpha m)}\left[p_{m} b_{m+1}+p_{2 m}\right] \\
a_{3 m+1}=\frac{1}{(1+3 \alpha m)}\left[p_{2 m} b_{m+1}+b_{3 m+1}+p_{3 m}\right]
\end{array}\right.
$$

As $g \in \mathcal{S}_{\mathcal{S}}^{*}$, by definition

$$
\begin{gather*}
z g^{\prime}(z)=P(z) G(z) \tag{24}\\
\Longrightarrow b_{m+1}(m+1) z^{m+1}+b_{2 m+1}(2 m+1) z^{2 m+1}+b_{3 m+1}(3 m+1) z^{3 m+1} \\
=b_{m+1} z^{m+1}+b_{3 m+1} z^{3 m+1}+p_{m} z^{m+1}+p_{m} b_{m+1} z^{2 m+1}+p_{2 m} z^{2 m+1} \\
+p_{2 m} b_{m+1} z^{3 m+1}+p_{3 m} z^{3 m+1}
\end{gather*}
$$

Equating the coefficients in (24), we obtain

$$
\left\{\begin{array}{l}
b_{m+1}=\frac{p_{m}}{m} \tag{25}\\
b_{2 m+1}=\frac{p_{m}^{2}+m p_{2 m}}{m(2 m+1)} \\
b_{3 m+1}=\frac{1}{3 m}\left[p_{2 m} b_{m+1}+p_{3 m}\right]
\end{array}\right.
$$

from (23) and (25), we obtain

$$
\begin{align*}
& a_{m+1}=\frac{(1+m) p_{m}}{m(1+\alpha m)} \tag{26}\\
& a_{2 m+1}=\frac{1}{m(1+2 \alpha m)}\left[p_{m} b_{m+1}+p_{2 m}\right] \tag{27}\\
& a_{3 m+1}=\frac{1}{3 m^{2}(1+3 \alpha m)}\left[p_{2 m} b_{m+1}+b_{3 m+1}+p_{3 m}\right] \tag{28}\\
& \Longrightarrow\left|a_{m+1} a_{3 m+1}-a_{2 m+1}^{2}\right|=\left\lvert\, \frac{1}{C(\alpha)}\left\{(1 + m) (1 + 3 m) (1 + 2 \alpha m) ^ { 2 } \left[p_{m}^{2} p_{2 m}\right.\right.\right. \\
&\left.\left.+m p_{m} p_{3 m}\right]-3 m(1+\alpha m)(1+3 \alpha m)\left[p_{m}^{4}+2 m p_{m}^{2} p_{2 m}+m^{2} p_{2 m}^{2}\right]\right\}
\end{align*}
$$

where $C(\alpha)=3 m^{3}(1+\alpha m)(1+2 \alpha m)^{2}(1+3 \alpha m)$.
Using Lemma 2.2, we get

$$
\begin{aligned}
& \left|a_{m+1} a_{3 m+1}-a_{2 m+1}^{2}\right| \leq \frac{1}{C(\alpha)}\left\{(1+m)(1+3 m)(1+2 \alpha m)^{2}\left[\frac{p_{m}^{2}}{2}\left(p_{m}^{2}+|x|\left(4-p_{m}^{2}\right)\right)\right]\right. \\
& \quad+\frac{m p_{m}}{4}\left[p_{m}^{3}+2\left(4-p_{m}^{2}\right) p_{m}|x|-p_{m}\left(4-p_{m}^{2}\right)|x|^{2}+2\left(4-p_{m}^{2}\right)\left(1-|x|^{2}\right)|z|\right] \\
& +3 m(1+\alpha m)(1+3 \alpha m)\left[p_{m}^{4}+m p^{2}\left[p_{m}^{2}+|x|\left(4-p_{m}^{2}\right)\right]+\frac{m^{2}}{4}\left[p_{m}^{2}+|x|\left(4-p_{m}^{2}\right)^{2}\right]\right\}
\end{aligned}
$$

Assume $\left|p_{m}\right|=p$ and $p \in[0,2]$. Using triangle inequality and $|z| \leq 1$, we have

$$
\begin{gathered}
\left|a_{m+1} a_{3 m+1}-a_{2 m+1}^{2}\right| \leq \frac{1}{C(\alpha)}\left\{(1+m)(1+3 m)(1+2 \alpha m)^{2}\left[\frac{p^{2}}{2}\left(p^{2}+\delta\left(4-p^{2}\right)\right)\right]\right. \\
+\frac{m p}{4}\left[p^{3}+2\left(4-p^{2}\right) p \delta-p\left(4-p^{2}\right) \delta^{2}+2\left(4-p^{2}\right)\left(1-\delta^{2}\right)\right] \\
\left.+3 m(1+\alpha m)(1+3 \alpha m)\left[p^{4}+m p\left(p^{2}+\delta\left(4-p^{2}\right)\right)\right]+\frac{m^{2}}{4}\left[p^{2}+2 p^{2} \delta^{2}\left(4-p^{2}\right)+\delta^{2}\left(4-p^{2}\right)^{2}\right]\right\} \\
\Longrightarrow\left|a_{m+1} a_{3 m+1}-a_{2 m+1}^{2}\right| \leq \frac{1}{C_{1}(\alpha)}\left\{(1 + m) (1 + 3 m) (1 + 2 \alpha m) ^ { 2 } \left[p^{4}(m+2)\right.\right. \\
\left.\quad+2 p^{2}(m+1)\left(4-p^{2}\right) \delta-m p^{2}\left(4-p^{2}\right) \delta^{2}+2 m p\left(4-p^{2}\right)\left(1-\delta^{2}\right)\right]
\end{gathered}
$$

$$
\left.+3 m(1+\alpha m)(1+3 \alpha m)\left[4 p^{4}+4 m p^{3}+m^{2} p^{2}+\left(2 m^{2} p^{2}+4 m p+m^{2}\left(4-p^{2}\right)^{2} \delta\right)\left(4-p^{2}\right)^{2} \delta\right]\right\}
$$

$\equiv \frac{1}{C_{1}(\alpha)} F(\delta)$, where $\delta=|x| \leq 1$.
where $C_{1}(\alpha)=4 C(\alpha)$.
Using fundamental theorem of calculus,
By elementary calculation, it is seen that, $F(\delta)$ is an increasing function.
Therefore max $F(\delta)=F(1)$.
Consequently

$$
\begin{equation*}
\left|a_{m+1} a_{3 m+1}-a_{2 m+1}^{2}\right| \leq \frac{1}{C_{1}(\alpha)} G(p) \tag{29}
\end{equation*}
$$

where $G(p)=(1+m)(1+3 m)(1+2 \alpha m)^{2}(8 m p)+3 m(1+\alpha m)(1+3 \alpha m)\left(16 m^{2}\right)$. obviously $G(p) \leq 48 m^{3}(1+\alpha m)(1+3 \alpha m)$.
Theorem 3.2. Let $0 \leq \alpha<1$ and $f \in \mathcal{C}_{\mathbf{1}(\mathcal{S})}^{*}(\alpha)$, then

$$
\begin{equation*}
\left|a_{m+1} a_{3 m+1}-a_{2 m+1}^{2}\right| \leq \frac{16}{(1+2 \alpha m)^{2}} \tag{30}
\end{equation*}
$$

Proof. Since, $f \in \mathcal{C}_{\mathbf{1}(\mathcal{S})}^{*}(\alpha)$ it follows that

$$
\begin{equation*}
(1-\alpha) f(z)+\alpha z f^{\prime}(z)=P(z) H(z) \tag{31}
\end{equation*}
$$

Identifying the terms in (31), we get

$$
\left\{\begin{array}{l}
a_{m+1}=\frac{1}{(1+\alpha m)}\left[c_{m+1}+p_{m}\right] \tag{32}\\
a_{2 m+1}=\frac{1}{(1+2 \alpha m)}\left[p_{m} c_{m+1}+p_{2 m}\right] \\
a_{3 m+1}=\frac{1}{(1+3 \alpha m)}\left[p_{2 m} c_{m+1}+c_{3 m+1}+p_{3 m}\right]
\end{array}\right.
$$

As $h \in \mathcal{K}_{\mathcal{S}}$, by definition

$$
\begin{equation*}
\left(z h^{\prime}(z)\right)^{\prime}=P(z) H^{\prime}(z) \tag{33}
\end{equation*}
$$

Equating the coefficients in (33), we obtain

$$
\left\{\begin{array}{l}
c_{m+1}=\frac{p_{m}}{(m+1)^{2}} \tag{34}\\
c_{2 m+1}=\frac{p_{2 m}}{(2 m+1)^{2}} \\
c_{3 m+1}=\frac{p_{3 m}}{(3 m+1)^{2}}
\end{array}\right.
$$

from (32) and (34), we obtain

$$
\begin{align*}
& a_{m+1}=\frac{p_{m}\left(m^{2}+2 m+2\right)}{(1+\alpha m)(m+1)^{2}} \tag{35}\\
& a_{2 m+1}=\frac{1}{(1+2 \alpha m)}\left[\frac{p_{m}^{2}}{(1+m)^{2}}+p_{2 m}\right] \tag{36}\\
& a_{3 m+1}=\frac{1}{(1+3 \alpha m)}\left[\frac{p_{3 m}}{(1+3 m)^{2}}+p_{2 m} \frac{p_{m}}{(1+m)^{2}}+p_{3 m}\right] \tag{37}\\
& \Longrightarrow\left|a_{m+1} a_{3 m+1}-a_{2 m+1}^{2}\right|=\left\lvert\, \frac{1}{C(\alpha)}\left\{(m ^ { 2 } + 2 m + 2) (1 + 2 \alpha m) ^ { 2 } \left[p_{m} p_{3 m}(1+m)^{2}\right.\right.\right. \\
&\left.+p_{m}^{2} p_{2 m}(1+3 m)^{2}+p_{m} p_{3 m}(1+3 m)^{2}(1+m)^{2}\right] \\
&\left.-(1+\alpha m)(1+3 \alpha m)(1+3 m)^{2}\left[p_{m}^{4}+2 p_{m}^{2} p_{2 m}(1+m)^{2}+p_{2 m}^{2}(1+m)^{4}\right]\right\}
\end{align*}
$$

where $C(\alpha)=(1+\alpha m)(1+2 \alpha m)(1+3 \alpha m)(1+m)^{4}(1+3 m)^{2}$
Using Lemma 2.2, we get

$$
\begin{gathered}
\left|a_{m+1} a_{3 m+1}-a_{2 m+1}^{2}\right|=\frac{1}{C(\alpha)}\left\{(m ^ { 2 } + 2 m + 2) (1 + 2 \alpha m) ^ { 2 } \left[p_{m}^{3}+2\left(4-p_{m}^{2}\right) p_{m}|x|\right.\right. \\
\left.-p_{m}\left(4-p_{m}^{2}\right)|x|^{2}+2\left(4-p_{m}^{2}\right)\left(1-|x|^{2}\right)|z|\right] \times
\end{gathered}
$$

$$
\begin{aligned}
& {\left[\frac{p_{m}(1+m)^{2}}{4}\left(9 m^{2}+6 m+2\right)+\frac{p_{m}^{2}(1+3 m)^{2}}{2}\left(p_{m}^{2}+x\left(4-p_{m}^{2}\right)\right)\right]} \\
& +(1+\alpha m)(1+3 \alpha m)(1+3 m)^{2}\left[p_{m}^{4}+p_{m}^{2}(1+m)^{2}\left(p_{m}^{2}+|x|\left(4-p_{m}^{2}\right)\right)\right] \\
& \left.+\frac{(1+m)^{4}}{4}\left(p_{m}^{2}+|x|\left(4-p_{m}^{2}\right)\right)^{2}\right\}
\end{aligned}
$$

where $C(\alpha)=(1+\alpha m)(1+2 \alpha m)(1+3 \alpha m)(1+m)^{4}(1+3 m)^{2}$
Assume $\left|p_{m}\right|=p$ and $p \in[0,2]$. Using triangle inequality and $|x| \leq 1$, we have

$$
\begin{aligned}
& \left|a_{m+1} a_{3 m+1}-a_{2 m+1}^{2}\right| \leq \frac{1}{C_{1}(\alpha)}\left\{\left(m^{2}+2 m+2\right)(1+2 \alpha m)^{2}\right. \\
& {\left[\left(p^{3}+2\left(4-p^{2}\right) p \delta-p\left(4-p^{2}\right) \delta^{2}+2\left(4-p^{2}\right)\left(1-\delta^{2}\right) \delta\right) \times\left(\frac{p(1+m)^{2}}{4}\left(9 m^{2}+6 m+2\right)\right)\right.} \\
& \left.+2 p^{2}(1+3 m)^{2}\left(p^{2}+\left(4-p^{2}\right) \delta\right)\right]+(1+\alpha m)(1+3 \alpha m)(1+3 m)^{2} \\
& \left.\left[4 p^{4}+4(1+m)^{2}\left(p^{4}+p^{2}\left(4-p^{2}\right) \delta\right)+(1+m)^{4}\left(p^{2}+2 p \delta\left(4-p^{2}\right)+\left(4-p^{2}\right)^{2} \delta^{2}\right)\right]\right\} \\
& \Longrightarrow\left|a_{m+1} a_{3 m+1}-a_{2 m+1}^{2}\right| \leq \frac{1}{C_{1}(\alpha)}\left\{(m ^ { 2 } + 2 m + 2) (1 + 2 \alpha m) ^ { 2 } \left[\left(p^{4}+2\left(4-p^{2}\right) p^{2} \delta\right.\right.\right. \\
& \left.+p^{2}\left(4-p^{2}\right) \delta^{2}+2 p \delta\left(4-p^{2}\right)\left(1-\delta^{2}\right)\right) \times\left((1+m)^{2}\left(9 m^{2}+6 m+2\right)\right) \\
& \left.+2(1+3 m)^{2}\left(p^{4}+\left(4-p^{2}\right) p^{2} \delta\right)\right]+(1+\alpha m)(1+3 \alpha m)(1+3 m)^{2} \\
& \left.\left[4 p^{4}+4(1+m)^{2}\left(p^{4}+p^{2}\left(4-p^{2}\right) \delta\right)+(1+m)^{4}\left(p^{2}+2 p \delta\left(4-p^{2}\right)+\left(4-p^{2}\right)^{2} \delta^{2}\right)\right]\right\} . \\
& \equiv \frac{1}{C_{1}(\alpha)} F(\delta)
\end{aligned}
$$

where $C_{1}(\alpha)=4 C(\alpha)$.
Using fundamental theorem of calculus,
By elementary calculation, it is seen that, $F(\delta)$ is an increasing function.
Therefore max $F(\delta)=F(1)$.
Consequently

$$
\begin{equation*}
\left|a_{m+1} a_{3 m+1}-a_{2 m+1}^{2}\right| \leq \frac{1}{C_{1}(\alpha)} G(p) \tag{38}
\end{equation*}
$$

where
$G(p)=\left(m^{2}+2 m+2\right)(1+2 \alpha m)^{2}\left[8 p(1+m)^{2}\left(9 m^{2}+6 m+2\right)\right]+$
$(1+\alpha m)(1+3 \alpha m)(1+3 m)^{2}\left[16(1+3 m)^{4}\right]$.
Obviously $G(p) \leq 16(1+\alpha m)(1+3 \alpha m)(1+m)^{4}(1+3 m)^{2}$.
Thus, we have

$$
\left|a_{m+1} a_{3 m+1}-a_{2 m+1}^{2}\right| \leq \frac{16}{(1+2 \alpha m)^{2}}
$$

Remark 3.1. Let f given by (1) be in the class $\mathcal{C}_{\mathbf{1}(\mathcal{S})}^{*}(\alpha)$ and $0 \leq \alpha<1$. Putting $m=1$, we get

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{16}{(1+2 \alpha)^{2}}
$$

References

[1] Koepf W., Coefficient of symmetric functions of bounded boundary rotations, Proc. Amer. Math. Soc., 105 (1989), 324-329.
[2] Noo K. L., Hankel determinant problem for the class of functions with bounded boundary rotation, Rev. Roum. Math. Pures Appl., 28 (8) (1983), 731-739.
[3] Noonan J. W., Thomas D. K., On the second Hankel determinant of a really mean p-valent functions, Trans. Amer. Math. Soc., 223 (2) (1976), 337-346.
[4] Peter L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Springer, New York, USA, 259 (1983).
[5] Pommerenke Ch., Univalent Functions, Math. Math, Lehrbucher, Vandenhoeck and Ruprecht, Gottingen, (1975).
[6] Rajya Lakshmi K., Ganesh K., Bharavi Sharma R., Third Hankel Determinant for a class of Functions with Respect to Symmetric Points Associated with Exponential Function, WSEAS Transaction. DOI-10.37394 23206.2020.19.13.
[7] Sakaguchi K., On a certain univalent mapping J. Math. Soc. Japan, 11 (1959), 72-75.

