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Abstract: Denote S to be the class of functions which are analytic, normalized
and univalent in the open unit disk E = {z € C : |z| < 1}. The upper bound for
the functional |ay,11a3m+1 — a3, 1| With respect to m-fold symmetric points are
determined.
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1. Introduction
Let S denote the class of functions

) =2+ an2" (1)
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which are analytic in the open unit disk E = {z € C : |z| < 1}. In [4], ¢'" Hankel
determinant for ¢ > 1 and n > 0 is defined by Noonan and Thomas as

Qp Qp+1 --- OGpyg—1
Ap41 Apy+2 ... a
Hy(n) = | Tt
Un+q—1 Qntq - OGny2g-2

Easily, one can observe that the Fekete and Szego functional is Hy(1), Fekete and
Szego then further generalised the estimate |az — pa3|, where u is real. For our
discussion in this paper, we consider the Hankel determinant in the case ¢ = 2 and
n =2,

Qa9 as

Hy(2) = s ay

The class S* and C are defined as follows.
2. Preliminaries

Definition 2.1. [1] Let f € S be given by (1). Then f € S* if and only if
Zf’(Z))
Re >0, ze E 2
(7 2
Definition 2.2. [1] Let f € S be given by (1). Then f € C if and only if
(Zf’(z))’)
Rel ————— | >0, z€ E 3
(56 9
It follows that f € C if and only if zf'(z) € S*.

Definition 2.3. [8] A function f € S is called univalent starlike functions with
respect to symmetric points if and only if

1)
Re(f(Z) ~ ()

and the class of functions satisfying (4) may be denoted by S%.
A function f € S is said to be convex functions with respect to symmetric points

if and only if
)Y ]
Rel ) >0 =< E ©)

)>O,zeE (4)
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and the class of such functions is denoted by Kgs.
Cs is the class of close to convex functions f € § with respect to symmetric points
if there exists a function

g(z) =2+ anz" € Ss (6)
n=2

such that

w5 a) ! g

The class Cy(s) consisting of functions f(z) in & with respect to symmetric points
is obtained by replacing g(z) by

hz) =2+ caz" €Ks (8)

n=2

in the condition (7). Obviously Cy(s)CC.
A function f in S belongs to S§(A, B) [7], if

22f'(2) 1+ Az

LRSI L _1<B<A<1 9

(o fim) < i B eAs o

The class Ks(A, B) consists of functions f(z) in & which satisfying the condition
2(zf"(2)) ) 1+ Az

==L E ) & L _1<B<A<1 10

(7 sim) < i B eAs 1o

It is obvious that f(z) € Ks(A,B) = zf'(z) € S§(A, B).
Let o > 0 and w # 0. Then C%(«) is the class of functions f € S with
respect to symmetric points if there exists a function g € S such that

L-a)f(z) | azf(2)
Re<g<z> ") 90 - g<—z>) =0 (1)

If g is replaced by h in the condition (11) then the corresponding class may be
denoted by Cj s)(c).

The classes J§(a) and Jy(s () represent the subclasses of functions f € S
which satisfy the following conditions, respectively

(2P 02 f(2)
i <g<z> 95 g —9(-2)

)>O,ge$§ (12)
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2f'(z az?f"(z
Re(h(z) —(h()—z) + ) = h<(—)z)> >0, he s (13)
We have the following observations
(1) f(2) € C5(e) = 2f'(2) € Ts(a)
(i) f(2) € Cs)(@) = 2f'(2) € Tys)(a)
Let 0<d<1,-1<D<B<ALSC<I1, geSiAB)and h € Ks(A, B).

Then we shall also deal with the following classes.

2(1 — a)f(2) 2z f'(2) 1+Cz\’
02 —g(=2) g2 —gl—2) (1 n Dz) }

Ci(a,8,A, B,C, D) = {f €S,
(14)

. B 2(1 —a)f(2) 2a2 f'(2) 1+Cz\°
Cits) (0,4, B,C, D) = {f €S WD k() T hE) - h(—2) (1 +D2> }
(15)

22f'(2) 2022 " (2) (1+C’z>5}

j;(a,d,A,B,C,D):{fES, pr s R e Bl € ey >

(16)

, B 22 f(2) 2022 f"(2) 1+Cz\°
Tis)(a,0,A,B,C, D) = {f €S, 7(z) — h(—2) T h(z) — h(—2) = (1 —|—Dz) }
(17)

For § = 1, we write

(i) Ci(a, 1, A, B,C, D) = Ci(, A, B,C, D)

(17) Ci“(s)(a, 1,A,B,C, D) ECT(S)(O(,A, B,C,D)

(1ii) J5(a, 1, A, B,C, D) = Jé(a, A, B,C, D)

(ZU) j1*(5')<a7 17.14’B’C7D) = j1*(5)<057A7Bac7 D)
Throughout this paper we assume that

2€E, 0<a,0<6<1,-1<D<B<A<C<I1
9(z)=z24+>7",b,2" €85, h(z) =2+ ", 2" €Ks
G(z) = —(72) = 2+ b1 2™ 4 by 2P

H(z) = —h(z) M2 = 2+ e 2™+ Cama 27

P(z) =143 00 pem2™ , Q(2) = 14+ 00, qem2z™™
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Definition 2.4. [1] Let m € N={1,2,3,...}. A domain E is said to be m-fold

symmetric if a rotation of E about the origin through an angle % carries E on

itself. It follows that a function f(z) analytic in E is said to be m-fold symmetric
(m e N) if
2mi 2mi
flemz)=em f(z)
In particular, every f(z) is 1-fold symmetric and every odd f(z) is 2-fold symmet-
ric. We denote by S,, the class of m-fold symmetric univalent functions in E. A
simple argument shows that f € S,, is characterized by having a power series of

the form
f(z)=z+ Z Ao 121 (18)

k=1
Lemma 2.1. [6] Ifp € P, |px| < 2, k € N, where the caratheodary class P is the
family of all functions p analytic in E for which

Re{p(2)} >0, p(2) =1+ p1z + p22”® + ...
Lemma 2.2. [2| Let p € P, then
2p2 = pi + (4 = pi). (19)

and

Aps = pi +2(4 — pi)pro — pr(4 — pi)a” + 2(4 = p)(1 — |2*)t. (20)
for some x and t satisfying |x| <1 and |t| < 1.
3. Main Results

Theorem 3.1. Let 0 < a < 1, and f € Ci(«), then

|1 @31 — G| <  — (21)
=1+ 2am)?
Proof. Since, f € C5(«) it follows that
(1= a)f(2) + azf'(z) = P(2)G(2) (22)
Identifying the terms in (22), we get
m41 = m[bm+l + pm]
A2m41 = m[pmbm+l + Pom] (23)

a3m41 = m[pmbmﬂ + b3mt1 + Pam]
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As g € 8%, by definition

(24)
= bpy1(m + 1)2™ by (2m + 1)22™ Y 4 b3 1 (3m + 1) 25
+ p2mbm+lz m + p3m23m+1

1 3 1 1 2 1 2 1
= bm+lzm+ + b3m+12 mE + pmzm+ + pmbm—l—lz mE + Domz mt
3

Equating the coefficients in (24), we obtain

b

— Pm
m—l—l—m

b _ p2Fmpom
2m+1

T m(2m+1)
b3m+1 = #[pZmberl + D3m]
from (23) and (25), we obtain

R O )
T (1 + am)
B 1
G2m1 = m(1 + 2am)
1
a3m+1 =

( )

(26)
[pmberl + sz]

(28)

T {(1 +m)(1+3m)(1 + 2am) [pmpgm

+ mpmp;;m} —3m(1 + am)(1+ 3am) [pfn + 2mp? pom + m2p§m} H

where C(a) = 3m3(1 + am)(1 + 2am)?(1 + 3am).
Using Lemma 2.2, we get

9 1
= U 103m 11 — oy 1| =

+—

P2,
Mppm
1

2%+ Lol - 72)
{i+%4—ﬁMMW%#M@—p$WF+%4—%M1—MWV@

+3m(1 + am)(1 + 3am)[p}, + mp*[p2, + |x|(4 — p2,)] +

1
(msstanes = Bl < g (L m)(L 4 3m)(1+ 202 |

m2

= it el - 2 |
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Assume |p,,,| = p and p € [0,2]. Using triangle inequality and |z| < 1, we have

amertines = @il £ s {0+ m)1+3m)0+ 2002 |2 (52400 -17))|

+ %[p3+2(4—p2)p5—p(4—p2)52 o4 — )1 _52)}

+3m(1+am)(1+3am) {p4+Tnp(p2+5(4—p2))} +m72 {p2+2p2(52(4—p2)+52(4—p2)2} }

= A 103m11 — Aoppi| < {(1 +m)(1 + 3m)(1 + 2am)? {p‘l(m +2)

b
Cl (CY)

+2p*(m + 1) (4 — p*)0 — mp*(4 — p*)6* + 2mp(4 — p*)(1 — 52)}

+3m(1+am)(1+3am) {4p4~|—4mp3+m2p2+ (2m2p2+4mp+m2(4—p2)2(5) (4—p2)2(5} }

= Cll(a)F(§), where § = |z| < 1.
where C}(a) = 4C(a).

Using fundamental theorem of calculus,

By elementary calculation, it is seen that, F'(§) is an increasing function.
Therefore max F(§) =F(1).

Consequently

1

|Gt 1G3m1 — a%m-ﬁ-l‘ < m

G(p)- (29)

where G(p) = (1 +m)(1 + 3m)(1 + 2am)?*(8mp) + 3m(1 + am)(1 + 3am)(16m?).
obviously G(p) < 48m3(1 + am)(1 + 3am).

Theorem 3.2. Let 0 < v < 1 and [ € Cj5)(c), then

(30)

9 < 16
|G +1Q3m41 — CL2m+1| > m

Proof. Since, f € Cjs)() it follows that

(1 —a)f(2) + azf'(z) = P(2)H(2) (31)
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Identifying the terms in (31), we get

Am+4+1 = m[cm—kl + pm]
Ao2m+1 = m[pmcm—i-l + p2m] (32)

1
A3m41 = m[mmcmﬂ + C3m+1 + D3m)

As h € Kg, by definition
(2h'(2))" = P(2)H'(2) (33)

Equating the coefficients in (33), we obtain

i Pm
Cm+1 = (m+1)2

Com+1 = (QZer)Q (34)

J— P3m
C3m+1 = (3m+1)2

from (32) and (34), we obtain

B Pm(m? +2m + 2)

(1 = (14 am)(m+1)% (35)
1 P
Aom+1 = (1 T 20(771) |:(1 T m)2 +p2m:| . (36)
1 DP3m Pm
m+1 — m73 N9 m | - 37
Wt = 3am) [(1+3m)2 TP Ty TP } (37)

1
= |amy103m 11 — Gop 4] = ‘w{(mQ +2m + 2)(1 + 2am)? [pmpgm(l +m)?
+p2p2m (1 + 3m)% + prpsn (1 + 3m)*(1 + m)ﬂ

— (14 am)(1 + 3am)(1 + 3m)? [pf‘n + 202 pam (1 +m)? + p3,, (1 + m)4] H

where C'(a) = (1 + am)(1 + 2am)(1 + 3am)(1 + m)*(1 + 3m)?

Using Lemma 2.2, we get

1
msstamss = sl = g {0+ 2m 4 2)(14 202 [y + 204 = Pl

(A= ) 4204 — ) (1 |x|2>\z|] Y
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i 1 2 2 1 3 2
{p—( Z_ m) (9m? + 6m + 2) + P(1F 3m)” —;_ m) (pzn +x(4— pfn))}

(14 am)(1 4+ 3am)(1 + 3m)? [pfn A0+ PR, + |l (4 —pfm]

P e i) )

where C(a) = (1 4+ am)(1 + 2am)(1 + 3am)(1 +m)*(1 + 3m)?
Assume |p,,| = p and p € [0,2]. Using triangle inequality and |z| < 1, we have

| 1103m 41 — @3] < Cll(a){(m2 +2m + 2)(1 + 2am)®
(v + 2000 gl 205+ 204 =0 - 5 ) (P L g7 1 6m+))
+2p(1+ 3m)*(p* + (4 — p2)5)} + (1 + am)(1 + 3am)(1 + 3m)?
5 A P )0) + (1 m) P 4 20— ) + (4= )] |

— |Ami103mi1 — Gomat| < Cll(a){(m2 +2m + 2)(1 + 2am)? (p +2(4 — p?)p?s
+p2(4 — p?)62 +2p6(4 — p*)(1 — 52)> X <(1 +m)%(9m? + 6m + 2))

+2(1+3m)*(p* + (4 — p2)p2(5)} + (14 am)(1 4 3am)(1 + 3m)?

1t A+ M P )9+ (L4 m) (2 + 24— ) + (4~ p2>262>] }

1
Ci(a)
where C (o) = 4C(«).
Using fundamental theorem of calculus,
By elementary calculation, it is seen that, F'(d) is an increasing function.

Therefore max F(§) =F(1).
Consequently

F(9)

1

|Gt 1G3mi1 — a§m+l| < m

G(p) (38)

where
G(p) = (m? + 2m + 2)(1 + 2am)? | 8p(1 + m)*(9Im* + 6m + 2)
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(14 am)(1+ 3am)(1 + 3m)? [16(1 + 3m)4} .

Obviously G(p) < 16(1 + am)(1 + 3am)(1 +m)*(1 + 3m)2.
Thus, we have

| 9 < 16
Amt103m41 — Q —_
1Ham 2m1 (1 + 2am)?

Remark 3.1. Let f given by (1) be in the class Cjg) (@) and 0 < o < 1. Putting

m =1, we get
16

2
— [
lagas — aj| < 17 20)°
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