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1. Introduction

Let S denote the class of functions

f(z) = z +
∞∑
n=2

anz
n (1)
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which are analytic in the open unit disk E = {z ∈ C : |z| < 1}. In [4], qth Hankel
determinant for q ≥ 1 and n ≥ 0 is defined by Noonan and Thomas as

Hq(n) =

∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1
an+1 an+2 . . . an+q
. . . . . . . . . . . .

an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣
Easily, one can observe that the Fekete and Szego functional is H2(1), Fekete and
Szego then further generalised the estimate |a3 − µa22|, where µ is real. For our
discussion in this paper, we consider the Hankel determinant in the case q = 2 and
n = 2,

H2(2) =

∣∣∣∣a2 a3
a3 a4

∣∣∣∣
The class S∗ and C are defined as follows.

2. Preliminaries

Definition 2.1. [1] Let f ∈ S be given by (1). Then f ∈ S∗ if and only if

Re

(
zf ′(z)

f(z)

)
> 0, z ∈ E (2)

Definition 2.2. [1] Let f ∈ S be given by (1). Then f ∈ C if and only if

Re

(
(zf ′(z))′

f ′(z)

)
> 0, z ∈ E (3)

It follows that f ∈ C if and only if zf ′(z) ∈ S∗.
Definition 2.3. [8] A function f ∈ S is called univalent starlike functions with
respect to symmetric points if and only if

Re

(
zf ′(z)

f(z)− f(−z)

)
> 0, z ∈ E (4)

and the class of functions satisfying (4) may be denoted by S∗S .
A function f ∈ S is said to be convex functions with respect to symmetric points
if and only if

Re

(
(zf ′(z))′

f(z)− f(−z)

)
> 0, z ∈ E (5)
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and the class of such functions is denoted by KS .
CS is the class of close to convex functions f ∈ S with respect to symmetric points
if there exists a function

g(z) = z +
∞∑
n=2

bnz
n ∈ S∗S (6)

such that

Re

(
zf ′(z)

g(z)− g(−z)

)
> 0 (7)

The class C1(S) consisting of functions f(z) in S with respect to symmetric points
is obtained by replacing g(z) by

h(z) = z +
∞∑
n=2

cnz
n ∈ KS (8)

in the condition (7). Obviously C1(S)⊂C∗S .
A function f in S belongs to S∗S(A,B) [7], if(

2zf ′(z)

f(z)− f(−z)

)
≺ 1 + Az

1 +Bz
, −1 ≤ B < A ≤ 1 (9)

The class KS(A,B) consists of functions f(z) in S which satisfying the condition(
2(zf ′(z))′

f(z)− f(−z)

)
≺ 1 + Az

1 +Bz
, −1 ≤ B < A ≤ 1 (10)

It is obvious that f(z) ∈ KS(A,B) =⇒ zf ′(z) ∈ S∗S(A,B).

Let α ≥ 0 and f(z)f ′(z)
z

6= 0. Then C∗S(α) is the class of functions f ∈ S with
respect to symmetric points if there exists a function g ∈ S∗S such that

Re

(
(1− α)f(z)

g(z)− g(−z)
+

αzf ′(z)

g(z)− g(−z)

)
> 0 (11)

If g is replaced by h in the condition (11) then the corresponding class may be
denoted by C∗1(S)(α).

The classes J ∗S (α) and J ∗1(S)(α) represent the subclasses of functions f ∈ S
which satisfy the following conditions, respectively

Re

(
zf ′(z)

g(z)− g(−z)
+

αz2f ′′(z)

g(z)− g(−z)

)
> 0, g ∈ S∗S (12)
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Re

(
zf ′(z)

h(z)− h(−z)
+

αz2f ′′(z)

h(z)− h(−z)

)
> 0, h ∈ KS (13)

We have the following observations
(i) f(z) ∈ C∗S(α) =⇒ zf ′(z) ∈ J ∗S (α)
(ii) f(z) ∈ C∗1(S)(α) =⇒ zf ′(z) ∈ J ∗1(S)(α)

Let 0 < δ ≤ 1, −1 ≤ D ≤ B < A ≤ C ≤ 1, g ∈ S∗S(A,B) and h ∈ KS(A,B).
Then we shall also deal with the following classes.

C∗S(α, δ, A,B,C,D) =

{
f ∈ S, 2(1− α)f(z)

g(z)− g(−z)
+

2αzf ′(z)

g(z)− g(−z)
≺
(

1 + Cz

1 +Dz

)δ}
(14)

C∗1(S)(α, δ, A,B,C,D) =

{
f ∈ S, 2(1− α)f(z)

h(z)− h(−z)
+

2αzf ′(z)

h(z)− h(−z)
≺
(

1 + Cz

1 +Dz

)δ}
(15)

J ∗S (α, δ, A,B,C,D) =

{
f ∈ S, 2zf ′(z)

g(z)− g(−z)
+

2αz2f ′′(z)

g(z)− g(−z)
≺
(

1 + Cz

1 +Dz

)δ}
(16)

J ∗1(S)(α, δ, A,B,C,D) =

{
f ∈ S, 2zf ′(z)

h(z)− h(−z)
+

2αz2f ′′(z)

h(z)− h(−z)
≺
(

1 + Cz

1 +Dz

)δ}
(17)

For δ = 1, we write
(i) C∗S(α, 1, A,B,C,D) ≡ C∗S(α,A,B,C,D)
(ii) C∗1(S)(α, 1, A,B,C,D) ≡C∗1(S)(α,A,B,C,D)

(iii) J ∗S (α, 1, A,B,C,D) ≡ J ∗S (α,A,B,C,D)
(iv) J ∗1(S)(α, 1, A,B,C,D) ≡ J ∗1(S)(α,A,B,C,D)
Throughout this paper we assume that
z ∈ E, 0 ≤ α, 0 < δ ≤ 1, −1 ≤ D ≤ B < A ≤ C ≤ 1

g(z) = z +
∑∞

n=2 bnz
n ∈ S∗S , h(z) = z +

∑∞
n=2 cnz

n ∈ KS
G(z) = g(z)−g(−z)

2
= z + bm+1z

m+1 + b3m+1z
3m+1 ,

H(z) = h(z)−h(−z)
2

= z + cm+1z
m+1 + c3m+1z

3m+1 ,

P (z) = 1 +
∑∞

k=1 pkmz
km , Q(z) = 1 +

∑∞
k=1 qkmz

km.
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Definition 2.4. [1] Let m ∈ N= {1, 2, 3, ...}. A domain E is said to be m-fold
symmetric if a rotation of E about the origin through an angle 2π

m
carries E on

itself. It follows that a function f(z) analytic in E is said to be m-fold symmetric
(m ∈ N) if

f(e
2πi
m z) = e

2πi
m f(z)

In particular, every f(z) is 1-fold symmetric and every odd f(z) is 2-fold symmet-
ric. We denote by Sm the class of m-fold symmetric univalent functions in E. A
simple argument shows that f ∈ Sm is characterized by having a power series of
the form

f(z) = z +
∞∑
k=1

amk+1z
mk+1. (18)

Lemma 2.1. [6] If p ∈ P, |pk| ≤ 2, k ∈ N, where the caratheodary class P is the
family of all functions p analytic in E for which

Re{p(z)} > 0, p(z) = 1 + p1z + p2z
2 + ....

Lemma 2.2. [2] Let p ∈ P, then

2p2 = p21 + x(4− p21). (19)

and
4p3 = p31 + 2(4− p21)p1x− p1(4− p21)x2 + 2(4− p21)(1− |x|2)t. (20)

for some x and t satisfying |x| ≤ 1 and |t| ≤ 1.

3. Main Results

Theorem 3.1. Let 0 ≤ α < 1, and f ∈ C∗S(α), then

|am+1a3m+1 − a22m+1| ≤
4

(1 + 2αm)2
(21)

Proof. Since, f ∈ C∗S(α) it follows that

(1− α)f(z) + αzf ′(z) = P (z)G(z) (22)

Identifying the terms in (22), we get
am+1 = 1

(1+αm)
[bm+1 + pm]

a2m+1 = 1
(1+2αm)

[pmbm+1 + p2m]

a3m+1 = 1
(1+3αm)

[p2mbm+1 + b3m+1 + p3m]

(23)
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As g ∈ S∗S , by definition
zg′(z) = P (z)G(z) (24)

=⇒ bm+1(m+ 1)zm+1 + b2m+1(2m+ 1)z2m+1 + b3m+1(3m+ 1)z3m+1

= bm+1z
m+1 + b3m+1z

3m+1 + pmz
m+1 + pmbm+1z

2m+1 + p2mz
2m+1

+ p2mbm+1z
3m+1 + p3mz

3m+1

Equating the coefficients in (24), we obtain
bm+1 = pm

m

b2m+1 = p2m+mp2m
m(2m+1)

b3m+1 = 1
3m

[p2mbm+1 + p3m]

(25)

from (23) and (25), we obtain

am+1 =
(1 +m)pm
m(1 + αm)

(26)

a2m+1 =
1

m(1 + 2αm)
[pmbm+1 + p2m] (27)

a3m+1 =
1

3m2(1 + 3αm)
[p2mbm+1 + b3m+1 + p3m] (28)

=⇒ |am+1a3m+1 − a22m+1| =
∣∣∣∣ 1

C(α)

{
(1 +m)(1 + 3m)(1 + 2αm)2

[
p2mp2m

+mpmp3m

]
− 3m(1 + αm)(1 + 3αm)

[
p4m + 2mp2mp2m +m2p22m

]}∣∣∣∣
where C(α) = 3m3(1 + αm)(1 + 2αm)2(1 + 3αm).
Using Lemma 2.2, we get

|am+1a3m+1 − a22m+1| ≤
1

C(α)

{
(1 +m)(1 + 3m)(1 + 2αm)2

[
p2m
2

(p2m + |x|(4− p2m))

]

+
mpm

4

[
p3m + 2(4− p2m)pm|x| − pm(4− p2m)|x|2 + 2(4− p2m)(1− |x|2)|z|

]
+3m(1 + αm)(1 + 3αm)[p4m +mp2[p2m + |x|(4− p2m)] +

m2

4

[
p2m + |x|(4− p2m)2

]}
.
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Assume |pm| = p and p ∈ [0, 2]. Using triangle inequality and |z| ≤ 1, we have

|am+1a3m+1 − a22m+1| ≤
1

C(α)

{
(1 +m)(1 + 3m)(1 + 2αm)2

[
p2

2

(
p2 + δ(4− p2)

)]

+
mp

4

[
p3 + 2(4− p2)pδ − p(4− p2)δ2 + 2(4− p2)(1− δ2)

]

+3m(1+αm)(1+3αm)

[
p4+mp(p2+δ(4−p2))

]
+
m2

4

[
p2+2p2δ2(4−p2)+δ2(4−p2)2

]}
.

=⇒ |am+1a3m+1 − a22m+1| ≤
1

C1(α)

{
(1 +m)(1 + 3m)(1 + 2αm)2

[
p4(m+ 2)

+ 2p2(m+ 1)(4− p2)δ −mp2(4− p2)δ2 + 2mp(4− p2)(1− δ2)
]

+3m(1+αm)(1+3αm)

[
4p4+4mp3+m2p2+

(
2m2p2+4mp+m2(4−p2)2δ

)
(4−p2)2δ

]}
.

≡ 1
C1(α)

F (δ), where δ = |x| ≤ 1.

where C1(α) = 4C(α).
Using fundamental theorem of calculus,
By elementary calculation, it is seen that, F (δ) is an increasing function.
Therefore max F (δ) =F (1).
Consequently

|am+1a3m+1 − a22m+1| ≤
1

C1(α)
G(p). (29)

where G(p) = (1 + m)(1 + 3m)(1 + 2αm)2(8mp) + 3m(1 + αm)(1 + 3αm)(16m2).
obviously G(p) ≤ 48m3(1 + αm)(1 + 3αm).

Theorem 3.2. Let 0 ≤ α < 1 and f ∈ C∗1(S)(α), then

|am+1a3m+1 − a22m+1| ≤
16

(1 + 2αm)2
(30)

Proof. Since, f ∈ C∗1(S)(α) it follows that

(1− α)f(z) + αzf ′(z) = P (z)H(z) (31)
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Identifying the terms in (31), we get
am+1 = 1

(1+αm)
[cm+1 + pm]

a2m+1 = 1
(1+2αm)

[pmcm+1 + p2m]

a3m+1 = 1
(1+3αm)

[p2mcm+1 + c3m+1 + p3m]

(32)

As h ∈ KS , by definition
(zh′(z))′ = P (z)H ′(z) (33)

Equating the coefficients in (33), we obtain
cm+1 = pm

(m+1)2

c2m+1 = p2m
(2m+1)2

c3m+1 = p3m
(3m+1)2

(34)

from (32) and (34), we obtain

am+1 =
pm(m2 + 2m+ 2)

(1 + αm)(m+ 1)2
. (35)

a2m+1 =
1

(1 + 2αm)

[
p2m

(1 +m)2
+ p2m

]
. (36)

a3m+1 =
1

(1 + 3αm)

[
p3m

(1 + 3m)2
+ p2m

pm
(1 +m)2

+ p3m

]
. (37)

=⇒ |am+1a3m+1 − a22m+1| =
∣∣∣∣ 1

C(α)

{
(m2 + 2m+ 2)(1 + 2αm)2

[
pmp3m(1 +m)2

+p2mp2m(1 + 3m)2 + pmp3m(1 + 3m)2(1 +m)2
]

− (1 + αm)(1 + 3αm)(1 + 3m)2
[
p4m + 2p2mp2m(1 +m)2 + p22m(1 +m)4

]}∣∣∣∣.
where C(α) = (1 + αm)(1 + 2αm)(1 + 3αm)(1 +m)4(1 + 3m)2

Using Lemma 2.2, we get

|am+1a3m+1 − a22m+1| =
1

C(α)

{
(m2 + 2m+ 2)(1 + 2αm)2

[
p3m + 2(4− p2m)pm|x|

− pm(4− p2m)|x|2 + 2(4− p2m)(1− |x|2)|z|
]
×



Hankel Determinant of Generalised Classes of Starlike Functions ... 71[
pm(1 +m)2

4
(9m2 + 6m+ 2) +

p2m(1 + 3m)2

2

(
p2m + x(4− p2m)

)]
+ (1 + αm)(1 + 3αm)(1 + 3m)2

[
p4m + p2m(1 +m)2(p2m + |x|(4− p2m))

]
+

(1 +m)4

4

(
p2m + |x|(4− p2m)

)2}
.

where C(α) = (1 + αm)(1 + 2αm)(1 + 3αm)(1 +m)4(1 + 3m)2

Assume |pm| = p and p ∈ [0, 2]. Using triangle inequality and |x| ≤ 1, we have

|am+1a3m+1 − a22m+1| ≤
1

C1(α)

{
(m2 + 2m+ 2)(1 + 2αm)2[(

p3 + 2(4− p2)pδ − p(4− p2)δ2 + 2(4− p2)(1− δ2)δ
)
×
(
p(1 +m)2

4
(9m2 + 6m+ 2)

)
+ 2p2(1 + 3m)2(p2 + (4− p2)δ)

]
+ (1 + αm)(1 + 3αm)(1 + 3m)2[

4p4 + 4(1 +m)2(p4 + p2(4− p2)δ) + (1 +m)4(p2 + 2pδ(4− p2) + (4− p2)2δ2)
]}
.

=⇒ |am+1a3m+1 − a22m+1| ≤
1

C1(α)

{
(m2 + 2m+ 2)(1 + 2αm)2

[(
p4 + 2(4− p2)p2δ

+ p2(4− p2)δ2 + 2pδ(4− p2)(1− δ2)
)
×
(
(1 +m)2(9m2 + 6m+ 2)

)
+ 2(1 + 3m)2(p4 + (4− p2)p2δ)

]
+ (1 + αm)(1 + 3αm)(1 + 3m)2[

4p4 + 4(1 +m)2(p4 + p2(4− p2)δ) + (1 +m)4(p2 + 2pδ(4− p2) + (4− p2)2δ2)
]}
.

≡ 1

C1(α)
F (δ)

where C1(α) = 4C(α).
Using fundamental theorem of calculus,
By elementary calculation, it is seen that, F (δ) is an increasing function.
Therefore max F (δ) =F (1).
Consequently

|am+1a3m+1 − a22m+1| ≤
1

C1(α)
G(p) (38)

where

G(p) = (m2 + 2m+ 2)(1 + 2αm)2
[
8p(1 +m)2(9m2 + 6m+ 2)

]
+
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(1 + αm)(1 + 3αm)(1 + 3m)2
[
16(1 + 3m)4

]
.

Obviously G(p) ≤ 16(1 + αm)(1 + 3αm)(1 +m)4(1 + 3m)2.
Thus, we have

|am+1a3m+1 − a22m+1| ≤
16

(1 + 2αm)2
.

Remark 3.1. Let f given by (1) be in the class C∗1(S)(α) and 0 ≤ α < 1. Putting
m = 1, we get

|a2a4 − a23| ≤
16

(1 + 2α)2
.
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