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1. Introduction
Representation theory enables the study of a group as operators on certain vec-

tor spaces. Since last several years the search of non-degenerate invariant bilinear
forms has remained of great importance among researcher. Such types of studies
acquire an important place in quantum mechanics and other branches of physical
sciences.
Let G be a finite group and V, a vector space over a field F, then we have following.
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Definition 1.1. A homomorphism ρ : G → GL(V) is called a representation of
the group G. V is also called a representing space of G. The dimension of V over
F is called degree of the representation.

Definition 1.2. A bilinear form B on V is said to be invariant under the repre-
sentation ρ if

B(ρ(g)x, ρ(g)y) = B(x, y), ∀ g ∈ G and x,y ∈ V.

For the basic properties of a bilinear form one can refer to [7].
Let Ξ denotes the space of bilinear forms on the vector space V over F.

Definition 1.3. The space of invariant bilinear forms under the representation ρ
is given by

ΞG = {B ∈ Ξ |B(ρ(g)x, ρ(g)y) = B(x, y), ∀ g ∈ G and x,y ∈ V}.

It is easy to see that ΞG is a subspace of Ξ.
The representation (ρ, V) is irreducible of degree n if and only if {0} and V are
the only invariant sub-spaces of V under ρ. Let r be the number of conjugacy
classes of G. If F is algebraically closed and char(F) is 0 or relative prime to |G|,
by Frobenius (see [1], Theorem 5.9, p. 318) there are r irreducible representations
ρi (say), 1 ≤ i ≤ r of G and χi (say) is the corresponding character of ρi. Also by
Maschke’s theorem (see [1], Corollary 4.9, p. 316) every n degree representation of
G can be written as a direct sum of copies of irreducible representations. For ρ =
⊕ri=1kiρi an n degree representation of G, the coefficient of ρi is ki, 1 ≤ i ≤ r, so
that

∑r
i=1 diki = n, and

∑r
i=1 d

2
i = |G|, where di is the degree of ρi and di||G| with

di′ ≥ di when i′ > i. It is already well understood in the literature that the invariant
space ΞG under ρ can be expressed by the set Ξ′G = {X ∈ Mn(F) |Ct

ρ(g)XCρ(g) =

X, ∀g ∈ G} with respect to an ordered basis e of V, where Mn(F) is the set of
square matrices of order n with entries from F and Cρ(g) = [ρ(g)]e is the matrix
representation of the linear transformation ρ(g) with respect to e.

Definition 1.4 For Z3 the complete residue system (mod 3) in standard form, we
define the special linear group

SL2(3) =

{(
a b
c d

)
: a, b, c, d ∈ Z3 & ad− bc = 1

}
.

For more information about SL2(3) one can refer to a general text book of
Algebra by Serge Lang [9]. It is easy to see that ord(SL2(3)) = 24.
In this paper our investigation pertains to the following two questions.
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1. What is the dimension of ΞSL2(3) for degree n representation?

2. What are the necessary and sufficient conditions for the existence of a non-
degenerate invariant bilinear form?

These questions have been studied by many people in the distinct perspec-
tives. Gongopadhyay and Kulkarni [4] investigated the existence of T-invariant
non-degenerate symmetric (resp. skew-symmetric) bilinear forms. Kulkarni and
Tanti [8] investigated the dimension of the space of T-invariant bilinear forms.
Gongopadhyay, Mazumder and Sardar [6] investigated the case for an invertible
linear map T : V → V , when does the vector space V over F admit a T-invariant
non-degenerate c-hermitian form. Chen [2] discussed about the matrix representa-
tions of the real numbers. Sergeichuk [13] studied the systems of forms and linear
mappings by associating with them self-adjoint representations of a category with
involution. Frobenius [3] proved that every endomorphism of a finite dimensional
vector space V is self-adjoint for at least one non-degenerate symmetric bilinear
form on V. Later, Stenzel [11] determined when an endomorphism could be skew-
self adjoint for a non-degenerate quadratic form, or self-adjoint or skew-self adjoint
for a symplectic form on complex vector spaces. However his results were later gen-
eralized to an arbitrary field [5]. Pazzis [10] tackled the case of the automorphisms
of a finite dimensional vector space that are orthogonal (resp. symplectic) for at
least one non-degenerate quadratic form (resp. symplectic form) over an arbitrary
field of characteristics 2.
In this paper, we investigate the dimensions of the space of invariant bilinear forms
and establish a characterization criteria for the existence of a non-degenerate in-
variant bilinear form of SL2(3) over C. Our investigations are summarized in two
main theorems stated in section 5.

2. Preliminaries
The group SL2(3) is a subgroup of the general linear group GL2(3). The order

of it’s center is 2. SL2(3) contains cyclic subgroups of orders 1, 2, 3, 4 and 6. By
sylow’s theorem the quaternions form a normal subgroup and there are 4 subgroups
of order 3, thus 8 elements of order 3 and 6. It has one subgroup of order 1, one
of order 2, four of order 3, three of order 4, four of order 6, one of order 8 and one
of order 24. We noted that here all r irreducible representations of SL2(3), where
r is the number of conjugacy classes of SL2(3) ([12], Ch. 8, p. 61).

Definition 2.1. The character of ρ is a function χ : G → F, χ(g) = tr( [ρ(g)]e )
and is also called character of the group G.

Theorem 2.1. (Maschke’s Theorem): If char(F) does not divide |G|, then every
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representation of G is a direct sum of irreducible representations.
Proof. See [1], Corollary 4.9, p. 316.

Theorem 2.2. Two representations (ρ,V) and (ρ′,V) of G are isomorphic if and
only if their character tables are same i.e, χ(g) = χ′(g) for all g ∈ G.
Proof. See [1], Corollary 5.13, p. 319.

In the rest part of this section we take F = C.

2.1. Irreducible representations of SL2(3)
In this subsection (ρi,Vρi) stands for an irreducible representation of SL2(3) with
degree di = 1, 2 or 3 over C and Cρi(g) is the matrix representation of ρi(g), where
1 ≤ i ≤ 7. Since ρi is an homomorphism from SL2(3) to GL(Vρi)

∼= GL(di,C).
So by the fundamental theorem of homomorphism G

Ker(ρi)
∼= ρi(G). The possi-

ble order of Ker(ρi) is 1 or 2 or 8 or 24, thus order of ρi(SL2(3)) is 1 or 3 or
12 or 24. Note that the representation of SL2(3) has been well studied in the
literature (for detail see [12], Exercise 8.11, p. 67). Here we construct all irre-
ducible representations of SL2(3) induced from those of the quaternion group Q8

= 〈x, y, z | x2 = 1, y2 = x, y2 = z2, z−1yz = xy〉, where x = −1, y = −i and z = j.
We have the maximal subnormal series 1 /Z2 /Z4 /Q8 / SL2(3). The presentation
of SL2(3) is given as below.

SL2(3) =
〈
x, y, z, t | x2 = 1, y2 = x, y2 = z2, z−1yz = xy, t3 = 1, t−1yt = z−1, t−1zt = zy

〉
.

Since Q8 have five irreducible representations. Let σ1, σ2, σ3, σ4 of degree one
and σ5 of degree 2, there exists a sub-representation of dimension 2 under σ5. Let
Vσ5 = C⊕Cz. It is an irreducible sub-representation of C[Q8] of degree 2 with {1, z}
as an order basis. The action σ5 : Q8 × Vσ5 → Vσ5 is defined by σ5(g, w) = w(g)
and so we have

σ5(y, 1) = 1(−i)= -i.1 + 0.z, σ5(z, 1) = 1(z) = 0.1 + 1.z
σ5(y, z) = z(−i) = iz= 0.1 +i.z, σ5(z, z) = zz = −1 = −1.1 + 0.z.

Thus the matrix representations of linear operators σ5(y) and σ5(z) with respect
to the prescribed basis are

Cσ5(y) =

[
−i 0
0 i

]
and Cσ5(z) =

[
0 −1
1 0

]
.

With these discussions we record all the representation matrices for Q8 in the
following table.
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1 x y z yz y−1 z−1 (yz)−1

σ1 1 1 1 1 1 1 1 1

σ2 1 1 1 −1 −1 1 −1 −1
σ3 1 1 −1 −1 1 −1 −1 1

σ4 1 1 −1 1 −1 −1 1 −1

σ5

[
1 0
0 1

] [
−1 0
0 −1

] [
−i 0
0 i

] [
0 −1
1 0

] [
0 i
i 0

] [
i 0
0 −i

] [
0 1
−1 0

] [
0 -i
-i 0

]
.

Since t is an extension element to form SL2(3) from Q8, so we only need a
matrix representation of ρi at t. The matrix representation table of Q8 helps us to
construct representation of SL2(3).
For 2 ≤ i ≤ 4, the conjugate σsi (h) = σi(shs

−1), where h, shs−1 ∈ Q8 and
s ∈ SL2(3) − Q8, is not isomorphic to σi. From proposition and corollary [see
[12], Proposition 24, p. 61 and Corollary, p. 60], the induced representation

Ind
SL2(3)
Q8

(σ(h)) = σ2(h) ⊕ σ3(h) ⊕ σ4(h) is irreducible. Similarly σsi
∼= σi, for

i = 1, 5, as their character tables are same. The index of Q8 in SL2(3) is 3, there-
fore σ1 and σ5 extends to three irreducible representations of SL2(3). The values
at x, y, z of an extension representation remains same.
Let the representation ρi be an extension of σ1, also t is an extension element to
form SL2(3), so ρi(t), 1 ≤ i ≤ 3 assume the values at cube roots of unity, i.e, we
have

ρ1(t) = 1, ρ2(t) = ω and ρ3(t) = ω2,

where ω is a primitive cube root of unity.
Their matrix representations are as follows.

Cρ1(t) = 1, Cρ2(t) = ω and Cρ3(t) = ω2.

Cρ1(y) = 1, Cρ2(y) = 1 and Cρ3(y) = 1.

Cρ1(z) = 1, Cρ2(z) = 1 and Cρ3(z) = 1.

Cρ1(x) = 1, Cρ2(x) = 1 and Cρ3(x) = 1.

Similarly let the representation ρi, 4 ≤ i ≤ 6 be an extension of σ5, we have the
conditions ρi(t

−1yt) = ρi(z
−1) and ρi(t

−1zt) = ρi(zy). Also as ρi(t)
3 is the identity

operator, the three possible matrix representations are[−1+i
2

−1−i
2

1−i
2

−1−i
2

]
, ω

[−1+i
2

−1−i
2

1−i
2

−1−i
2

]
and ω2

[−1+i
2

−1−i
2

1−i
2

−1−i
2

]
.
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Utilising the other two conditions, we get the three induced irreducible represen-
tations of degree two as ρ4, ρ5 and ρ6, from σ5, whose matrix representations are
as follows.

Cρ4(x) =

[
−1 0
0 −1

]
, Cρ4(y) =

[
−i 0
0 i

]
, Cρ4(z) =

[
0 −1
1 0

]
and Cρ4(t) =

[−1+i
2

−1−i
2

1−i
2

−1−i
2

]
.

Cρ5(x) =

[
−1 0
0 −1

]
, Cρ5(y) =

[
−i 0
0 i

]
, Cρ5(z) =

[
0 −1
1 0

]
and Cρ5(t) = ω

[−1+i
2

−1−i
2

1−i
2

−1−i
2

]
.

Cρ6(x) =

[
−1 0
0 −1

]
, Cρ6(y) =

[
−i 0
0 i

]
, Cρ6(z) =

[
0 −1
1 0

]
and Cρ6(t) = ω2

[−1+i
2

−1−i
2

1−i
2

−1−i
2

]
.

Let ρ7 = Ind
SL2(3)
Q8

(σ), then the corresponding matrix representations at x, y, z ∈
Q8 are given by

Cρ7(x) =

1 0 0
0 1 0
0 0 1

 , Cρ7(y) =

1 0 0
0 −1 0
0 0 −1

 , Cρ7(z) =

−1 0 0
0 −1 0
0 0 1

 .
To evaluate Cρ7(t), we have homomorphic conditions, ρ7(t

−1yt) = ρ7(z
−1), ρ7(t

−1zt)
= ρ7(zy) and ρ7(t)

3 is the identity operator. Using these conditions, we get its
matrix representation as

Cρ7(t) =

0 0 1
1 0 0
0 1 0

 .
Remark 2.1. If p ≡ 1 (mod 12) is a rational prime number, then with γ a
primitive root (mod p), the representation of SL2(3) will be same if considered

over Fp a field of order p by substituting for i = γ
p−1
4 and ω = γ

p−1
3 .

Remark 2.2. The representation of SL2(3) is equally good when considered over
an algebraically closed field with characteristic 6= 2, 3.
Now as

ρ = k1ρ1 ⊕ k2ρ2 ⊕ · · · ⊕ k7ρ7, (2.1)

where for every 1 ≤ i ≤ 7, kiρi stands for the direct sum of ki copies of the
irreducible representation ρi.
Let χ be the corresponding character of the representation ρ, then

χ = k1χ1 + k2χ2 + · · ·+ k7χ7,
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where χi is the irreducible character of ρi, for every i, 1 ≤ i ≤ 7. Degree of the
character χ is being calculated at the identity element of a group. i.e,

deg(ρ) = χ(1) = tr(ρ(1)).

=⇒ d1k1 + d2k2 + · · ·+ d7k7 = n. (2.2)

3. Existence of Non-degenerate Invariant Bilinear forms under an n
Degree Representation

In this section we see degenerate and non-degenerate invariant bilinear forms.
An element in the space of invariant bilinear forms under representation of a finite
group is either non-degenerate or degenerate, it means ΞSL2(3) may consists both
type of invariant bilinear form. If all elements of the space is degenerate then the
space is called a degenerate invariant space. From subsection 2.1, for 1 ≤ i ≤ 7, the
association of ki’s with ρi’s are in a well defined manner. We discuss the existence
of non-degenerate invariant bilinear form and use it to prove the next lemmas.

Note 3.1. If B ∈ Mn(C) then B = [Bi,j], where Bi,j = [bijα,β] is a sub-matrix of
order diki × djkj, 1 ≤ i, j ≤ 7, 1 ≤ α ≤ diki, 1 ≤ β ≤ djkj. Thus

B =


B1,1 B1,2 · · · B1,7

B2,1 B2,2 · · · B2,7

...
...

. . .
...

B7,1 B7,2 · · · B7,7

 and Bi,j =


bij1,1 bij1,2 · · · bij1,djkj
bij2,1 bij2,2 · · · bij2,djkj

...
...

. . .
...

bijdiki,1 bijdiki,2 · · · bijdiki,djkj

 .
Theorem 3.1. If Ξ′SL2(3)

is the space of invariant bilinear forms under an n degree

representation ρ, then the (i,j)th block sub-matrix of X ∈ Ξ′SL2(3)
is given by

X i,j =

{
X ij
diki×djkj , if (i,j) ∈ A

0, if (i,j) /∈ A.

Where 0 represents the zero sub-matrix, A = {(1, 1), (2, 3), (3, 2), (4, 4), (5, 6),
(6, 5), (7, 7)} and for (i, j) = (1, 1), (2, 3), (3, 2) with di = dj = 1, we have

X ij
diki×djkj = X ij

ki×kj =


xij1,1 xij1,2 · · · xij1,kj
xij2,1 xij2,2 · · · xij2,kj

...
...

. . .
...

xijki,1 xijki,2 · · · xijki,kj

 ,



36 South East Asian J. of Mathematics and Mathematical Sciences

whereas for (i, j) = (4, 4), (5, 6), (6, 5) with di = dj = 2, we have

X ij
diki×djkj = X ij

2ki×2kj =


xij1,2I

−
2 xij1,4I

−
2 · · · xij1,2kjI

−
2

xij3,2I
−
2 xij3,4I

−
2 · · · xij3,2kjI

−
2

...
...

. . .
...

xij(2ki−1),2I
−
2 xij(2ki−1),4I

−
2 · · · xij(2ki−1),2kjI

−
2

 .

For (i, j) = (7, 7) with d7 = 3, it is

X ij
diki×djkj = X ij

3ki×3kj =


xij1,1I3 xij1,4I3 · · · xij1,(3kj−2)I3

xij4,1I3 xij4,4I3 · · · xij4,(3kj−2)I3
...

...
. . .

...

xij(3ki−2),1I3 xij(3ki−2),4I3 · · · xij(3ki−2),(3kj−2)I3

 ,

where I−2 =

[
0 1
−1 0

]
.

Proof. From the Definition 1.3, we have Ξ′SL2(3)
= {X ∈ Mn(C) |Ct

ρ(g)XCρ(g) =

X, ∀g ∈ SL2(3)} and Cρ(g) is the matrix representation of the linear operator
ρ(g) = ⊕7

i=1kiρi(g) with respect to the basis e, then we have

Cρ(g) =



Ck1ρ1(g) 0 · · · 0
0 Ck2ρ2(g) · · · 0
...

...
. . .

...

0 0 · · · Ck7ρ7(g)


, where for 1 ≤ i ≤ 7, Ckiρi(g) =



Cρi(g) 0 · · · 0
0 Cρi(g) · · · 0
...

...
. . .

...

0 0 · · · Cρi(g)


.

An element X ∈Mn(C) is invariant under ρ if and only if Ct
ρ(g)XCρ(g) = X, ∀g ∈ G,

i.e



Ctk1ρ1(g) 0 · · · 0
0 Ctk2ρ2(g) · · · 0
.
.
.

.

.

.
.
.
.

.

.

.

0 0 · · · Ctk7ρ7(g)




X1,1 X1,2 · · · X1,7

X2,1 X2,2 · · · X2,7

.

.

.

.

.

.
. .
.

.

.

.

X7,1 X7,2 · · · X7,7





Ck1ρ1(g) 0 · · · 0
0 Ck2ρ2(g) · · · 0
.
.
.

.

.

.
.
.
.

.

.

.

0 0 · · · Ck7ρ7(g)


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=


X1,1 X1,2 · · · X1,7

X2,1 X2,2 · · · X2,7

...
...

. . .
...

X7,1 X7,2 · · · X7,7

 .
The block sub-matrices are conformable partition among the above matrices



Ct
k1ρ1(g)

X1,1Ck1ρ1(g) Ct
k1ρ1(g)

X1,2Ck2ρ2(g) · · · Ct
k1ρ1(g)

X1,7Ck7ρ7(g)

Ct
k2ρ2(g)

X2,1Ck1ρ1(g) Ct
k2ρ2(g)

X2,2Ck2ρ2(g) · · · Ct
k2ρ2(g)

X2,7Ck7ρ7(g)
...

...
. . .

...
Ct
k7ρ7(g)

X7,1Ck1ρ1(g) Ct
k7ρ7(g)

X7,2Ck1ρ1(g) · · · Ct
k7ρ7(g)

X7,7Ck7ρ7(g)

 =


X1,1 X1,2 · · · X1,7

X2,1 X2,2 · · · X2,7

...
...

. . .
...

X7,1 X7,2 · · · X7,7

 .

Equating the corresponding sub-matrices, we have Ct
kiρi(g)

X i,jCkjρj(g) = X i,j,
∀g ∈ G& 1 ≤ i, j ≤ 7.

Case 1. When (i, j) /∈ A, i.e (ρi,Vρi) and (ρj,Vρj) are not isomorphic as well as
not dual to each other.

By Schur lemma [[1], Ch. 9, p. 326, [12], p. 13], any linear transformation φ be-
tween the representing spaces Vρi and Vρj for which ρj(g)◦φ = φ◦ρi(g), for all g ∈
SL2(3), we have φ is identically zero thus the corresponding invariant bilinear form
over the spaces Vρi and Vρj is also identically zero. Therefore for (i, j) /∈ A we

have X i,j =0.

Case 2. When (i, j) ∈ A and (ρi,Vρi) is self dual, (i, j) = (1, 1), (4, 4), (7, 7). By
Frobenius-Schur indicator [[12], Theorem 31, p. 106], if ρi is self dual then a non-
degenerate invariant bilinear form exists and it is unique up to homothety [see the
definition of homothety in [12], Proposition 38, p. 108]. Two cases arise

Case 2.1. If ρi is a real representation, (i, j) = (1, 1) and (7, 7).
Then non-degenerate symmetric invariant bilinear form exists and it is scalar mul-
tiple of Idi (which is unique up to homothety). Thus we have

X11 =


x111,1 x111,2 · · · x111,kj
x112,1 x112,2 · · · x112,kj
...

...
. . .

...
x11ki,1 x11ki,2 · · · x11ki,kj

 andX77 =


x771,1I3 x771,4I3 · · · x771,(3kj−2)I3
x774,1I3 x774,4I3 · · · x774,(3kj−2)I3

...
...

. . .
...

x77(3ki−2),1I3 x77(3ki−2),4I3 · · · x77(3ki−2),(3kj−2)I3

 .

Case 2.2. If ρi is a quaternionic representation, (i, j) = (4, 4).
Then non-degenerate skew-symmetric invariant bilinear form exists and it is scalar
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multiple of I−2 (which is unique up to homothety). Thus we have

X44 =


x441,2I

−
2 x441,4I

−
2 · · · x441,2kjI

−
2

x443,2I
−
2 x443,4I

−
2 · · · x443,2kjI

−
2

...
...

. . .
...

x44(2ki−1),2I
−
2 x44(2ki−1),4I

−
2 · · · x44(2ki−1),2kjI

−
2

 .

Case 3. When (i, j) ∈ A and (ρi,Vρi) are not self dual, (i, j) = (2, 2), (3, 3), (5, 5),
(6, 6).
Here representation ρi is complex and one of its character value is not real then ρi
does not exist non-zero invariant bilinear form [[12], Proposition 38, p. 108]. Thus

for (i, j) = (2, 2), (3, 3), (5, 5), (6, 6), we have X i,j =0.

Case 4. When (i, j) ∈ A, (ρi,Vρi) and (ρj,Vρj) are not isomorphic irreducible
representations but dual to each other, (i, j) = (2, 3), (3, 2), (5, 6), (6, 5).
By Schur lemma [[1], Theorem 9.6, p. 326] a linear transformation φ : Vρi → Vρj

for which ρj(g) ◦ φ = φ ◦ ρi(g), for all g ∈ SL2(3) is either an isomorphism or
φ = 0. Frobenius-Schur [[12], Proposition 38, p. 108] can not apply here due to the
fact that (ρi,Vρi) and (ρj,Vρj) are non-isomorphic and dual to each other. From
subsection 2.1, for (i, j) = (2, 3), (3, 2), (5, 6), (6, 5), we have a non-zero invariant
bilinear form corresponding to φ which is non-degenerate symmetric I1 and skew-
symmetric I−2 according as (i, j) = (2, 3), (3, 2) and (i, j) = (5, 6), (6, 5) respectively
(unique up to homothety).
Thus for (i, j) = (2, 3), (3, 2) it is

X ij =


xij1,1 xij1,2 · · · xij1,kj
xij2,1 xij2,2 · · · xij2,kj

...
...

. . .
...

xijki,1 xijki,2 · · · xijki,kj

 ,

and for (i, j) = (5, 6), (6, 5) we have

X ij =


xij1,2I

−
2 xij1,4I

−
2 · · · xij1,2kjI

−
2

xij3,2I
−
2 xij3,4I

−
2 · · · xij3,2kjI

−
2

...
...

. . .
...

xij(2ki−1),2I
−
2 xij(2ki−1),4I

−
2 · · · xij(2ki−1),2kjI

−
2

 .
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Combined all above cases if X ∈ Ξ′G then

X i,j =

{
X ij
diki×djkj , if (i, j) ∈ A

0, if (i, j) /∈ A.

This completes the proof of theorem.

Corollary 3.1. X ∈ Ξ′G, is invariant bilinear form under ρ if and only if X ij
diki×djkj =

Ct
kiρi(g)

X ij
diki×djkjCkjρj(g), ∀g ∈ G, for every (i, j) ∈ A.

Proof. This consequence is easy to see from the proof of Theorem 3.1.

3.1. Characterization of Invariant Bilinear forms under an n Degree
Representation of SL2(3)

Lemma 3.1. If X ∈ Ξ′SL2(3)
is non-singular then k2 = k3 and k5 = k6.

Proof. Suppose X is non-singular then rows or columns of X are linearly inde-
pendent, so sub-matrix X ij

diki×djkj is a non-singular for (i, j) ∈ (2, 3) & (5, 6), this
completes the proof.

Note that the converse part of Lemma 3.1 is not true as a square sub-matrix of
X may be singular.

Lemma 3.2. If X ∈ Ξ′G with k2 = k3, k5 = k6, then for (i, j) ∈ A, X ij
diki×djkj is a

non-singular sub-matrix, if and only if X is non-singular.
Proof. With reference to the Theorem 3.1, for every X ∈ Ξ′G, we have

X =



X11
k1×k1 0 0 0 0 0 0

0 0 X23
k3×k2 0 0 0 0

0 X32
k2×k3 0 0 0 0 0

0 0 0 X44
2k4×2k4 0 0 0

0 0 0 0 0 X56
2k5×2k5 0

0 0 0 0 X65
2k5×2k5 0 0

0 0 0 0 0 0 X77
3k7×3k7



.

Suppose X is non-singular then rows of X are linearly independent, as well as
k2 = k3 and k5 = k6, this shows X ij

diki×djkj is non-singular for (i, j) ∈ A.
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Converse part: Since k2 = k3, k5 = k6 and X ij
diki×djkj is non-singular for (i, j) ∈ A

this implies that rows (columns) of X are linearly independent.
For proving the next lemma we will choose only those X ∈ Mn(C) whose all

block sub-matrices X ij are zero except (i, j) ∈ A and from Theorem 3.1, the block
sub-matrix X ij = X ij

diki×djkj is non-singular.

Lemma 3.3. For n ∈ Z+, every n degree representation of SL2(3) has a non-
degenerate invariant bilinear form if and only if k2 = k3 and k5 = k6.
Proof. From equation (2.2) we have k1 + k2 + k3 + 2k4 + 2k5 + 2k6 + 3k7 = n and
X ∈Mn(C) such that

X =



X11
k1×k1 0 0 0 0 0 0

0 0 X23
k2×k3 0 0 0 0

0 X32
k3×k2 0 0 0 0 0

0 0 0 X44
2k4×2k4 0 0 0

0 0 0 0 0 X56
2k5×2k6 0

0 0 0 0 X65
2k6×2k5 0 0

0 0 0 0 0 0 X77
3k7×3k7



.

Suppose k2 = k3 & k5 = k6, then for every (i, j) ∈ A, the block sub-matrixX ij
diki×djkj

of X can be chosen (from the Theorem 3.1) to be non-singular with X ij
diki×djkj =

Ct
kiρi(g)

X ij
diki×djkjCkjρj(g), ∀g ∈ G. This implies that rows (columns) ofX are linearly

independent. Therefore X ∈ Ξ′G and is non-singular.
Converse part: Suppose X is a non-degenerate invariant bilinear form of n degree
representation of SL2(3), then from Lemma 3.1 we have k2 = k3 & k5 = k6.

Remark 3.1. Since C contains infinitely many non zero elements, hence if there is
one non-degenerate invariant bilinear form in the space ΞG, it has infinitely many.

Thus from Lemma 3.3, we find that n degree representation of SL2(3) consists
of a non-degenerate invariant bilinear form.

Lemma 3.4. Let G = SL2(3) and ρ = ⊕7
i=1kiρi be an n degree representation of

G, then ρ has only degenerate invariant bilinear forms if and only if either k2 6= k3
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or k5 6= k6.
Proof. Its proof is obvious and easy to see.

Definition 3.1. The space ΞG of invariant bilinear forms is called degenerate if
it’s all elements are degenerate.

4. Dimension of the Space of Invariant Bilinear forms under a Repre-
sentation of the Group SL2(3)

The space of invariant bilinear forms under an n degree representation is gen-
erated by the finitely many vectors so its dimension is always finite. In this section
we will give a formula for computation of this dimension over C.

Theorem 4.1. If ΞG is the space of invariant bilinear forms under an n degree
representation ρ = ⊕7

i=1kiρi of SL2(3), then dim(ΞG) = 2k2k3 +2k5k6 +
∑3

i=1 k
2
3i−2.

Proof. For every X ∈ Ξ′G, we have

X =



X11
k1×k1 0 0 0 0 0 0

0 0 X23
k2×k3 0 0 0 0

0 X32
k3×k2 0 0 0 0 0

0 0 0 X44
2k4×2k4 0 0 0

0 0 0 0 0 X56
2k5×2k6 0

0 0 0 0 X65
2k6×2k5 0 0

0 0 0 0 0 0 X77
3k7×3k7



.

withX ij
diki×djkj = Ct

kiρi(g)
X ij
diki×djkjCkjρj(g), ∀g ∈ G, for (i, j) ∈ A and to generate

these sub-matrices from Theorem 3.1 it needs kikj vectors from Mdiki×djkj(C). This
completes the proof.

Corollary 4.1. The space of invariant symmetric bilinear forms under an n degree
representation ρ = ⊕7

i=1kiρi of SL2(3) has dimension = k2k3 + k5k6 + k1(k1+1)
2

+
k4(k4−1)

2
+ k7(k7+1)

2
.

Proof. The proof is obvious from the Theorem 3.1 and proof of Theorem 4.1.

Corollary 4.2. The space of invariant skew-symmetric bilinear forms under an
n degree representation ρ = ⊕7

i=1kiρi of SL2(3) has dimension = k2k3 + k5k6 +
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k1(k1−1)
2

+ k4(k4+1)
2

+ k7(k7−1)
2

.
Proof. The proof is obvious from the Theorem 3.1 and the proof of Theorem 4.1.

5. Main Results
In this section, we are given the proofs of the two main theorems.

Theorem 5.1. For G = SL2(3), the space ΞG, under an n degree representation
(ρ,V) over C is isomorphic to the direct sum of the sub-spaces W(i,j)∈A of Mn(C),
i.e., Ξ′G =

⊕
(i,j)∈AW(i,j)∈A. Where A = {(i, j) | ρi and ρj dual to each other} and

W(i,j)∈A = {X ∈ Mn(C) | only non-zero sub-matrix is X ij of order diki × djkj
satisfying X ij = Ct

kiρi(g)
X ijCkjρj(g), ∀g ∈ SL2(3)}. Also over C, the dimension of

W(i,j)∈A = kikj.

Theorem 5.2. An n degree representation ρ = ⊕7
i=1kiρi of SL2(3) admits a non-

degenerate invariant bilinear form if and only if the multiplicity of irreducible rep-
resentation ρi having one of the values of its character is not real, and is equal to
its dual multiplicity.

Proof of Theorem 5.1. Let X be an element of Ξ′G then we have Ct
ρ(g)XCρ(g) =

X and

X =



X11
k1×k1 0 0 0 0 0 0

0 0 X23
k2×k3 0 0 0 0

0 X32
k3×k2 0 0 0 0 0

0 0 0 X44
2k4×2k4 0 0 0

0 0 0 0 0 X56
2k5×2k6 0

0 0 0 0 X65
2k6×2k5 0 0

0 0 0 0 0 0 X77
3k7×3k7



.

Existence:
Let X ∈ Ξ′G then for (i, j) ∈ A, there exists at least one X(i,j) ∈W(i,j)∈A, such that∑

(i,j)∈AX(i,j) = X.
Uniqueness:
For (i, j) ∈ A, suppose there exists Y(i,j) ∈ W(i,j)∈A, such that

∑
(i,j)∈A Y(i,j) =

X, then
∑

(i,j)∈AX(i,j) =
∑

(i,j)∈A Y(i,j) i.e., Y(i′,j′) − X(i′,j′)=
∑

(i,j) 6=(i′,j′)(X(i,j) −
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Y(i,j)). Therefore Y(i′,j′) −X(i′,j′) ∈
∑

(i,j) 6=(i′,j′) W(i,j)∈A hence Y(i′,j′) −X(i′,j′) = 0
or Y(i′,j′) = X(i′,j′) for all (i′, j′) ∈ A.
Thus we have

Ξ′G = ⊕(i,j)∈AW(i,j)∈A and dim(Ξ′G) =
∑

(i,j)∈A

dim(W(i,j)∈A). (5.1)

Now from Theorem 3.1, W(i,j)∈A = {X ∈ Mn(C) | the only non-zero block

sub-matrix X ij = X ij
diki×djkj satisfying X ij = Ct

kiρi(g)
X ijCkjρj(g), ∀g ∈ G and

rest blocks are zero}, also we see that for (i, j) ∈ A, the sub-matrices X ij =
X ij
diki×djkj in W(i,j)∈A have kikj free variables & W(i,j)∈A ∼= Mki×kj(C). Thus Ξ′G

∼=
⊕(i,j)∈AMki×kj(C) and dim(W(i,j)∈A) = kikj.

Thus substituting this in equation (5.1) we get the dimension of Ξ′G.

Proof of Theorem 5.2. From the subsection 2.1, for i = 2, 3, 5, 6 we see that one
of the values of χi of ρi is not real. Also we have the dual of ρ2 and ρ5 are ρ3 and ρ6
respectively, their corresponding well defined multiplicities in ρ are k2, k3, k5, k6, so
enough to prove ΞSL2(3) admits non-degenerate invariant bilinear form if and only
if k2 = k3 & k5 = k6. Hence, the proof is completes from Lemmas 3.1 to 3.3.

Remark 5.1. Thus we get the necessary and sufficient condition for the existence
of a non-degenerate invariant bilinear form under an n degree representation of a
SL2(3) group over C (in particular over the cyclotomic number field Q(ζ12), with
ζ12 = e2πi/12).

5.1. Space of Degenerate Invariant Bilinear forms
From Theorem 5.2 and Lemma 3.3, for every n ∈ Z+, an n degree representation
of SL2(3) has a non-degenerate invariant bilinear form if and only if k2 = k3 &
k5 = k6. Implies whenever k2 6= k3 or k5 6= k6 then every element in the invariant
space ΞSL2(3) is degenerate.

Thus here we have completely characterized the representations of SL2(3) to
admit a non-degenerate invariant bilinear form over complex field.

Remark 5.2. With reference to the Remarks 2.1 and 2.2, we expect that all the
results also hold equally good when considered over either an algebraically closed
field with characteristic 6= 2, 3 or a field of characteristic ≡ 1 (mod 12).
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