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Abstract: In 2018, N. Murru and F. M. Saettone proposed a novel RSA-like
cryptosystem with modulus N = pq and ed ≡ 1( mod (p2+p+1)(q2+q+1)) based
on a generalization of the Rédei Rational functions. In this paper, we give some
bounds on the deciphering exponent d = N δ, in which this RSA-like cryptosystem
is insecure. For the enciphering exponent e = Nα and p + q + 1 = Nβ, the attack
bound on d is δ < 2−(α+β)

3
in the case of α < 1 and δ < α−2β

2
when α > 1.

Furthermore, we describe the magnitude of the bounds in all cases of α and β.
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1. Introduction
RSA Cryptosystem [8] is the first public-key cryptosystem invented by Ronald

Rivest, Adi Shamir, and Leonard Adleman in 1977 and is widely used for secure
data transmission. RSA involves a public key and a private key. The public
key (enciphering exponent) can be shared with everyone, whereas the private key
(deciphering exponent) must be kept secret. The keys for the RSA algorithm are
generated in the following way:

� Choose two distinct prime numbers p, q, and compute N = pq, the RSA
modulus.
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� Choose an integer e such that 1 < e < ϕ(N) and gcd(e, ϕ(N)) = 1 where
ϕ(N) is Euler’s totient function. The exponent e is released as the public key
exponent.

� The private key exponent d is the multiplicative inverse of e modulo ϕ(N),
i.e., ed ≡ 1(mod ϕ(N)).

The security of RSA based on the practical difficulty of factoring the product of
two large prime numbers, the “factoring problem”.

In 1990, M.J. Wiener [15] was the first one to describe a cryptanalytic attack
on the use of short RSA decryption exponent d. The Wiener attack exploits the
properties of continued fractions. Indeed, this attack utilized the estimate of ϕ(N),
i.e., N − 3

√
N < ϕ(N) < N, and is used to create inequality

∣∣k
d
− e

N

∣∣ < 1
2d2

,
where k = ed−1

ϕ(N)
. This inequality discovered a sufficiently short secrete exponent,

i.e., d < N0.25. Wiener’s bound was later subsequently improved to d < N0.292 by
Boneh and Durfee [1] [2]. Their method is based on Coppersmith’s technique [4] for
finding small solutions of modular polynomial equations, which in turn is based on
the LLL lattice reduction algorithm [11]. In particular, they applied this technique

for the modular equations k(A + s) ≡ 1(mod e), where k = ed−1
ϕ(N)

, s = −(p+q)
2

and

A = N+1
2

.

In 2018, N. Murru and F. M. Saettone presented a novel RSA-like cryptosystem
based on a generalization of the Rédei Rational functions [12]. In this cryptosystem
they considered modulo N = pq and the enciphering exponent e and the decipher-
ing exponent d are such that ed ≡ 1(mod (p2 + p+ 1)(q2 + q+ 1)). In this scheme,
the role of ϕ(N) in RSA is substituted by (p2 +p+1)(q2 +q+1)). So Wiener’s and
Boneh-Durfee’s attacks are not affected as the inequalities

∣∣k
d
− e

N

∣∣ < 1
2d2

and the
modular equation k(A+ s) ≡ 1(mod e) not hold in this case. Using the proposed
scheme, the deciphering exponent d could be less than the attack bounds on d,
given by Wiener and Boneh-Durfee without being affected by their attacks.

In this paper, we show that if d < N
2−(α+β)

3 for e < N and d < N
α−2β

2 for
e > N , where e = Nα and p + q + 1 = Nβ then this RSA-like cryptosystem is
insecure. This method makes use of Coppersmith’s technique for finding small
solutions of modular polynomial equations [4]. Applying this technique to the
modular equation ed ≡ 1 + t(p + q + 1)(N − 1) + t(2N − 1)(mod N2) in the case
of e < N and 1 + t((p + q + 1)2 + (p + q + 1)(N − 1) + (N − 1)2 ≡ 0(mod e)
when e > N , we get the first and second attack bounds for d respectively, where
t = ed−1

(p2+p+1)(q2+q+1)
. Later, we notice that for some values of α and β, our bounds

may reach or overcome the Wiener and Boneh-Durfee’s attack bounds on d.
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2. Preliminaries
In this section, we state basic results on lattice, lattice basis reduction, Copper-

smith’s method, and Howgrave-Graham theorem that are based on lattice reduction
techniques.

Definition 1. Let b1, b2, ..., bn ∈ Rm be a set of linearly independent vectors. The
lattice L generated by b1, b2, ..., bn is the set of linear combinations of b1, b2, ..., bn
with coefficients in Z.

A basis for L is any set of independent vectors that generates L. The dimension
of L is the number of vectors in a basis for L [6].

Let b1, b2, ..., bn ∈ Zmand {b1, b2, ..., bn} be a basis for L with n ≤ m. If L is a full
rank lattice, means n = m then the determinant of L is equal to the determinant

of the n× n matrix whose rows are the basis vectors b1, b2, ..., bn. If b =
n∑
i=1

λibi is

a vector of L, the Euclidean norm of b is ||b|| =
(

n∑
i=1

λ2i

) 1
2

.

A lattice has infinitely many bases with the same determinant and it is useful
to find a basis of small vectors. However, finding the shortest nonzero vector in a
lattice is very hard in general.

In 1982, A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovasz [9]invented the LLL
lattice-based reduction algorithm to reduce a basis and to solve the shortest vector
problem. The general result on the size of individual LLL-reduced basis vectors is
given in the following Theorem.

Theorem 1. (LLL) Let L be a lattice of dimension ω. In polynomial time, the
LLL-algorithm outputs a reduced basis b1, b2, · · · , bω that satisfy

||b1|| ≤ ||b2|| ≤ · · · ||bi|| ≤ 2
ω(ω−1)

4(ω+1−i) det(L)
1

ω+1−i ,

for all i = 1, · · · , ω. [11]
An important application of lattice reduction found by Coppersmith in 1996 [4]

is finding small roots of low-degree polynomial equations. This includes mod-
ular univariate polynomial equations and bivariate integer equations. In 1997
Howgrave-Graham [5] reformulated Coppersmith’s techniques and proposed the
following result and it shows that if the coefficients of h(x1, x2, ..., xn) are suffi-
ciently small, then the equality h(x0, y0) = 0 holds not only modulo N but also
over integers. The generalization of Howgrave-Graham result in terms of the Eu-
clidean norm of a polynomial h(x1, x2, ..., xn) =

∑
ai1...inx

i1
1 ...x

in
n is defined by the

Euclidean norm of its coefficient vector i.e., ||h(x1, x2, ..., xn)|| =
√∑

a2i1...in given
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as follows:

Theorem 2. (Howgrave-Graham’s Theorem): Let h(x1, x2, ..., xn) ∈ Z [x1, x2,
..., xn] be an integer polynomial that consists of at most ω monomials. Suppose that

1. h
(
x
(0)
1 , x

(0)
2 , ..., x

(0)
n

)
≡ 0 mod em for some m where |x(0)1 | < X1, |x(0)2 | <

X2 . . . |x(0)n | < Xn, and

2. ||h(x1X1, x2X2, ..., xnXn)|| < em√
ω
.

Then h(x1, x2, ..., xn) = 0 holds over the integers.

Definition 2. The resultant of two polynomials f(x1, x2, . . . , xn) and g(x1, x2, . . . ,
xn) with respect to the variable xi for some 1 ≤ i ≤ n, is defined as the determi-
nant of Sylvester matrix of f(x1, x2, . . . , xn) and g(x1, x2, . . . , xn) when considered
as polynomials in the single indeterminate xi, for some 1 ≤ i ≤ n.

Remark 1. If
(
x
(0)
1 , x

(0)
2 , . . . , x

(0)
n

)
is a common solution of algebraically inde-

pendent polynomials f1, f2, . . . , fm for m ≥ n, then these polynomials yield g1, g2,
. . . , gn−1 resultants in n − 1 variables and continuing so on the resultants yield a

polynomial t(xi) in one variable with xi = x
(0)
i for some i is a solution of t(xi).

Note the polynomials considered to compute resultants are always assumed to be
algebraically independent.

3. An Attack on RSA-like Cryptosystem with Modulus N = pq and
ed ≡ 1(mod ((p2 + p+ 1)(q2 + q + 1))

In this section, we propose the given scheme is insecure for specific bounds on
d, which depends on the range of e. In paper [12], N. Murru and F. M. Saettone
presented an RSA-like cryptosystem, in which the enciphering e and deciphering d
exponents satisfying the modular equation ed ≡ 1(mod (p2 + p + 1)(q2 + q + 1)),
where the modulus N = pq. If the deciphering exponent d is sufficiently small,
then it can be effectively recovered by using attacks like Wiener [15], Boneh-Durfee
[2], Wegar [14] and Sarkar-Maitra [10] on RSA and these attacks depending on
ϕ(N). However, those kinds of attacks fail in this strategy, as they replaced (p2 +
p+ 1)(q2 + q+ 1) instead of ϕ(N). In that context, this section describes an attack
on the system by giving bounds on d using Coppersmith’s techniques.

3.1. An Attack Bound on d when e > N

In this section, for the case of e > N we present the procedure for finding the
bound on d where this cryptosystem is insecure.
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As ed ≡ 1(mod (p2 + p + 1)(q2 + q + 1)), there exists t, t = ed−1
(p2+p+1)(q2+q+1)

such that ed = 1 + t((p2 + p + 1)(q2 + q + 1)). This can be rewrite as ed−1
t

=
N2 +N(p+ q + 1) + (p+ q + 1) + p2 + q2. Now add and subtract with (p+ q + 1)2

to the R.H.S of the above equation. After that, we obtain an equation ed =
1 + t((p+ q+ 1)2 + (p+ q+ 1)(N − 1) + (N − 1)2). This leads a modular equation

1 + t((p+ q + 1)2 + (p+ q + 1)(N − 1) + (N − 1)2) ≡ 0(mod e). (1)

Take t = x, p+ q + 1 = y, then (1) becomes

1 + (N − 1)2x+ (N − 1)xy + xy2 ≡ 0(mod e). (2)

Consider the polynomial f(x, y) = 1+(N−1)2x+(N−1)xy+xy2. Then (x0, y0) =
(t, p+ q + 1) is a root modulo e. Define

e = Nα, p+ q + 1 = Nβ and d = N δ.

We have t = ed−1
(p2+p+1)(q2+q+1)

≈ ed
(p2+p+1)(q2+q+1)

. Since e < (p2 + p + 1)(q2 + q + 1),
ed

(p2+p+1)(q2+q+1)
< d.

So t < N δ.
Let X = N δ and Y = Nβ, then the bounds for x0 and y0 are X and Y , respectively.

To apply Coppersmith’s method [4] to find the small modular roots of the
equation f(x, y) ≡ 0 ( mod e), we first use the basic strategy of Jochemsz and May
[7]. For k ∈ {0, · · · ,m}, define the set

Mk = {xiyj;xiyj is a monomial of fm and
xiyj

(xy2)k
is a monomial of fm−k},

where xy2 is a leading monomial of f , with coefficient 1. Observe that

xiyj ∈ fm if i = 0, · · · ,m, j = 0, · · · , 2i and
xiyj

(xy2)k
∈ fm−k if xi−kyj−2k ∈ fm−k.

That is

xiyi ∈Mk if i = 0, · · · ,m, j = 0, · · · , 2i and i = k, · · · ,m, j = 2k, · · · , 2i.

For k = 0, · · · ,m, we obtain xiyj ∈Mk if i = k, · · · ,m, j = 2k, · · · , 2i and xiyj ∈
Mk+1 if i = k + 1, · · · ,m, j = 2k + 2, · · · , 2i.
From this, we deduce

xiyj ∈Mk \Mk+1 if i = k, j = 2k and i = k + 1, · · · ,m, j = 2k, 2k + 1.
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Next, we define the following shift polynomials:

gk,i,j(x, y) =
xiyj

(xy2)k
(f(x, y))kem−k, for k = 0, · · ·m and xi, yj ∈Mk \Mk+1.

These polynomials can be altered as the following two different forms, i.e.,

Gk,i,j(x, y) =
xiyj

(xy2)k
(f(x, y))kem−k, for k = 0, · · ·m and i = k, j = 2k.

Hk,i,j(x, y) =
xiyj

(xy2)k
(f(x, y))kem−k, for k = 0, · · ·m

and i = k + 1, · · · ,m, j = 2k, 2k + 1.

Define the lattice L spanned by the coefficients of the vectors Gk,i,j(xX, yY ) and
Hk,i,j(xX, yY ). Notice that the matrix M of (L) is lower triangular. For k =
0, · · · ,m, the coefficient of the leading monomial in Gk,i,j(xX, yY ) is X iY j, i = k,
j = 2k and in Hk,i,j(xX, yY ) is X iY j, i = k + 1, · · · ,m, j = 2k, 2k + 1 and these
coefficients are the diagonal elements of the matrix M , so the determinant is

det (L) = en(e)Xn(X)Y n(Y ), (3)

where n(e), n(X), n(Y ) are the number of e’s, X’s, Y ’s in all diagonal elements
respectively, and

n(e) =
m∑
k=0

∑
i=k

∑
j=2k

(m− k) +
m∑
k=0

m∑
i=k+1

2k+1∑
j=2k

(m− k)

=
m

6
(4m+ 5)(m+ 1),

n(X) =
m∑
k=0

∑
i=k

∑
j=2k

i+
m∑
k=0

m∑
i=k+1

2k+1∑
j=2k

i

=
m

6
(4m+ 5)(m+ 1),

n(Y ) =
m∑
k=0

∑
i=k

∑
j=2k

j +
m∑
k=0

m∑
i=k+1

2k+1∑
j=2k

j

=
m

6
(4m+ 5)(m+ 1), and the dimension ω of (L) is

ω =
m∑
k=0

∑
i=k

∑
j=2k

1 +
m∑
k=0

m∑
i=k+1

2k+1∑
j=2k

1

= (m+ 1)2.
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For sufficiently large m, the exponents n(e), n(X), n(Y ) and the dimension ω reduce
to

n(e) =
2

3
m3 + o(m2),

n(X) =
2

3
m3 + o(m2),

n(Y ) =
2

3
m3 + o(m2), and

ω = m2 + o(m)

Apply the LLL algorithm to the basis vectors of the lattice L , i.e., coefficient
vectors of the shift polynomials. Then from the Theorem 1, we get a LLL-reduced
basis say b1, b2, ..., bω and we have

||b1|| ≤ ||b2|| ≤ 2
ω(ω−1)
4(ω−1) det (L)

1
ω−1 ,

In order to apply the generalization of Howgrave-Graham result in Theorem 2, we
need the following inequality

2
ω(ω−1)
4(ω−1) det (L)

1
ω−1 <

em√
ω
.

This implies

det (L) <
em(ω−1)(

2
ω(ω−1)
4(ω−1)

√
ω
)ω−1

≈ emω(
2
ω(ω−1)
4(ω−1)

√
ω
)ω−1 .

As the dimension ω is not depending on the public encryption exponent
e, 1(

2
ω(ω−1)
4(ω−1)

√
ω

)ω−1 is a fixed constant.

So we need the inequality det (L) < emω. Using (3), we get the inequality

en(e)Xn(X)Y n(Y ) < emω.

Substitute all values and taking logarithms, neglecting the lower order terms and
after simplifying by m3 we get

2

3
α +

2

3
δ +

2

3
β < α.
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From this inequality, the bound for δ is

δ <
α

2
− β. (4)

Now, we analyze the outcome of the attack on the size of the deciphering exponent
d that going through the extended strategy [7].

Define the set

M ′
k =

⋃
0≤j′≤t′

{xiyj+j′ ;xiyj is a monomial of fm and
xiyj

(xy2)k
is a monomial of fm−k},

where xy2 is the leading monomial of f and define the shift polynomials as

g′k,i,j(x, y) =
xiyj

(xy2)k
(f(x, y))kem−k, for k = 0, · · · ,m and xi, yj ∈M ′

k \M ′
k+1.

and xi, yj ∈M ′
k \M ′

k+1 if


k = 0, · · · ,m− 1

i = k,

i = 2k

(or)


k = 0, · · · ,m− 1,

i = k + 1, · · · ,m, · · · ,m+ t′,

i = 2k, 2k + 1

(or)


k = m,

i = m, · · · ,m+ t′

i = 2m.

Consequently, these polynomials g′k,i,j(x, y) are in one of the following forms

G′k,i,j(x, y) = xi−kyj−2kfkem−k, for k = 0, · · · ,m− 1, i = k, j = 2k,

H ′k,i,j(x, y) = xi−kyj−2kfkem−k, for k = 0, · · · ,m− 1, i = k + 1, · · · ,m+ t′, j = 2k, 2k + 1,

I ′k,i,j(x, y) = xi−kyj−2kfkem−k, for k = m, i = m, · · · ,m+ t′, j = 2m.

Let L′ be the lattice spanned by the three vectors G′k,i,j(x, y), H ′k,i,j(x, y), and
I ′k,i,j(x, y) and M ′ be the matrix of L′.
Then note that M is lower triangular and the coefficient of the leading mono-
mial of three vectors are X iyj, for k = 0, · · · ,m − 1, i = k, j = 2k,, X iyj, for
k = 0, · · · ,m − 1, i = k + 1, · · · ,m + t′, j = 2k, 2k + 1, and X iyj for k = m, i =
m, · · · ,m+ t′, j = 2m respectively. Accordingly, the determinant is

det (L′) = en(e)Xn(X)Y n(y), (5)
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where

n(e) =
m−1∑
k=0

∑
i=k

∑
j=2k

(m− k) +
m−1∑
k=0

m+t∑
i=k+1

2k+1∑
j=2k

(m− k) +
∑
k=m

m+t∑
i=m

∑
j=2m

(m− k)

=
2

3
m3 +

3

2
m2 + (m2 +m)t+

5

6
m

n(X) =
m−1∑
k=0

∑
i=k

∑
j=2k

i+
m−1∑
k=0

m+t′∑
i=k+1

2k+1∑
j=2k

i+
∑
k=m

m+t′∑
i=m

∑
j=2m

i

=
2

3
m3 +mt2 +

3

2
m2 + (2m2 +m)t+

1

2
(2m+ 1)t′ +

1

2
t′2 +

5

6
m

n(Y ) =
m−1∑
k=0

∑
i=k

∑
j=2k

j +
m−1∑
k=0

m+t′∑
i=k+1

2k+1∑
j=2k

j +
∑
k=m

m+t′∑
i=m

∑
j=2m

j

=
2

3
m3 +

3

2
m2 + (2m2 −m)t′ + 2mt′ +

5

6
m

dimension ω′ =
m−1∑
k=0

∑
i=k

∑
j=2k

1 +
m−1∑
k=0

m+t′∑
i=k+1

2k+1∑
j=2k

1 +
∑
k=m

m+t′∑
i=m

∑
j=2m

1

= m2 + 2mt′ + 2m+ t′ + 1

Take t′ = τm, then for sufficiently large m, the exponents n(e), n(X), n(Y ), n(Z)
and the dimension ω reduce to

n(e) =

(
2

3
+ τ

)
m3 + o(m3)

n(X) =

(
2

3
+ τ 2 + 2τ

)
m3 + o(m3)

n(Y ) =

(
2

3
+ 2τ

)
m3 + o(m3)

ω = (1 + 2τ)m2 + o(m2)

(6)

By employing the preceding argument to the lattice L′, the generalization of
Howgrave-Graham result holds if det (L′) < emω.
Using (5) as well as the values (6) and neglecting the lower order terms, we get the
inequality

N(α(( 2
3
+τ)m3))+δ(( 2

3
+τ2+2τ)m3)+β(( 2

3
+2τ)m3)) < N(α((1+2τ)m2))m.
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From this, we deduce

α

(
−1

3
− τ
)

+ δ

(
2

3
+ τ 2 + 2τ

)
+ β

(
2

3
+ 2τ

)
< 0

and the left hand side is minimized with the value τ0 = α−2δ−2β
2δ

.
Substitute τ = τ0 in the inequality, we get the bound for δ, i.e.,

δ <
α

2
− β (7)

Observe that the value τ0 > 0 as t′ = τm > 0 and τ0 > 0 if α > 1.
Thus, in this approach, the Howgrave-Graham result applicable if

δ <
α

2
− β and α > 1. (8)

Proposition 1. Let d = N δ, the deciphering exponent. The attack bounds for δ
obtained via implementing both basic and extended strategy are the same, neverthe-
less the basic approach requires a smaller dimension than the extended technique.
Proof. From (4) and (7), we can conclude that the two approaches have the same
bounds on δ. We have ω = (m + 1)2 and ω′ = m2 + 2mt′ + 2m + t′ + 1, the
dimensions obtained in the basic and extended strategies, respectively. As t′ ≥ 1,
ω < ω′.

Note 1. In terms of dimension, it is advisable to choose the primary method for
this outcome.

Lemma 1. Let N = pq be the modulus of a given RSA-like cryptosystem. Then
the prime factors p and q satisfy the following properties

p+ q + 1 > N0.5 (or) p+ q + 1 ≈ N0.5

Proof. As N = pq, either p < N0.5 and q > N0.5 or vice versa. So, the inequality
p+ q + 1 > N0.5 contains in both cases.
If balanced primes are chosen like in RSA, that is, q < p < 2q with p > N0.5 and
q < N0.5, then the inequality p+ q + 1 ≤ 3N0.5 holds. Therefore, p+ q + 1 ≈ N0.5

for large prime factors p and q.

Note 2. From the preceding Lemma and (8), it follows that the bound for δ valid
only if α > 1 in both strategies.

Theorem 3. Let N = pq be the modulus of an RSA-like cryptosystem with ed ≡
1( mod ((p2 + p + 1)(q2 + q + 1))) where e, d are enciphering and deciphering
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exponents respectively. If d = N δ, e = Nα, and p + q + 1 = Nβ, then N can be
factorized in polynomial time if

δ <
α

2
− β

and this bound is efficient only if α > 1.
Proof. Take any of the previous methods to get

||b1|| ≤ ||b2|| <
em√
ω

when δ <
α

2
− β.

Suppose δ < α
2
− β. Then from the two vectors b1(xX, yY ) and b2(xX, yY ), we

obtain two polynomials h1(x, y) and h2(x, y) with the common root (x0, y0). Let
g(y) be the resultant polynomial of h1(x, y) and h2(x, y) with respect of x. From
the Remark 1, g(y) is not identically zero. If x0 < N δ and y0 < Nβ are small such
that δ < α

2
− β, then g(y) = 0 holds over the integers. Find the root y0 = p+ q+ 1

using the polynomial g(y). With the knowledge of p + q and pq, one can obtain
the values of p and q, factors of N .
The condition regarding the efficiency of the bound for δ is coming from Note 2.

3.2. An Attack Bound on d when e < N

In this section, we find an attack bound on d for small e, that is, e < N , by
changing the above modular equation.
In the previous section, consider the equation ed = 1 + t(N(p2 +p+ 1) +(p+ q+ 1)
+p2 + q2 +N). After adding and subtracting with (p+ q+ 1)2 to this equation, we
get

ed = 1 + t
(
(p+ q + 1)(N + 1− 2) + 1− 2N +N2

)
.

This can be written as the modular equation

ed ≡ 1 + t(p+ q + 1)(N − 1) + t(2N − 1)(mod N2).

Subsequently, the tuple (x, y, z, w) = (t, p+ q+ 1, d, e) is a solution to the modular
equation

1 + xy(N − 1) + x(2N − 1))− zw ≡ 0 (mod N2).

Define e = Nα, p+ q + 1 = Nβ, d = N δ, and t = Nγ.
Let X = N δ, Y = Nβ, and W = Nα, then X, Y,X, and W are the bounds of x, y, z
and w, respectively.
Directly implement the basic scheme presented in Section 3.1 to the above modular
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equation with the leading monomial zw. Consequently, we get the attack bound
on δ is

δ <
2− (α + β)

3
(9)

and the dimension ω of the corresponding lattice is 1
6
m3 +m2 + 11

6
m+ 1.

Now, define the setM ′
k =

⋃
0≤j′≤t′

{xi1yi2zi3+j′wi4 ;xi1yi2zi3wi4 is a monomial of fm

and
xi1yi2zi3wi4

(zw)k
is a monomial of fm−k},

where f(x, y, z, w) = 1 + xy(N − 1) + x(2N − 1)− zw with the leading monomial
zw
Employ an extended procedure similar to that in Section 3.1. After performing,
we obtain the attack bound on δ is

δ <
2− (α + β)

3
, (10)

and the corresponding lattice dimension ω′ is 1
6
m3 + m2 + 1

6
(m3 + 3m2 + 2m)t′ +

1
2
(m2 + 3m+ 2)t′ + 11

6
m+ 1.

Remark 2. The bounds in (9) and (10) obtained using the two schemes are iden-
tical and effective if α < 1 as Nβ = p+ q + 1 < N.

Remark 3. As t′ ≥ 1, ω < ω′. So regarding the dimension, it is preferable to
implement the basic method for this result.

Theorem 4. Let N = pq be the modulus of an RSA-like cryptosystem with
ed ≡ 1( mod ((p2 + p + 1)(q2 + q + 1))) where e, d are enciphering and deci-
phering exponents respectively. If d = N δ, e = Nα, and p + q + 1 = Nβ, then N
can be factorized in polynomial time if

δ <
2− (α + β)

3

and this bound is efficient if α < 1.
Proof. From (9) and using the process in the proof of Theorem 4, we get this
result.

4. Analysis of Attack Bounds on d
In the image above, we have depicted the x-axis, y-axis, and z-axis as α, β, and

’Bound for δ’ respectively. Take ∆1 = α
2
− β, then ∆1 is an attack bound to the δ

when α > 1, as shown in Figure (a). In Figure (a), we can see that the bound ∆1

at some points of the α and β is above the graph of δ = 0.25 (Weiner’s bound).



Cryptanalysis of RSA-Like Cryptosystem with modulus N = pq ... 13

Note that at some values of α and β, the fraction of the bound ∆1 is below the
graph of δ = 0, and for those values i.e., 2β > α, we can not find an attack bound
because here ∆1 < 0.

(a) Bound for δ when α > 1 (b) Bound for δ when α < 1

In Figure (b), we represented ∆2 = 2−(α+β)
3

, which is an attack bound to the δ
when α < 1. At each value of α and β, this bound is always greater than zero. It
can be viewed in Figure (b) that some portion of ∆2 is above the graph of δ = 0.25
in a few cases of α and β.

Note 4. If 2β > α and α > 1, then the bound ∆2 can be used when β < 2
3
. In that

context, the size of ∆2 is between 0 and 1
6
.

5. Conclusion

In this paper, we attack a novel RSA-like cryptosystem with modulus N = pq
and ed ≡ 1 ( mod (p2+p+1)(q2+q+1)) by giving bounds on deciphering exponent
d = N δ in both cases of enciphering exponent e = Nα less than and greater than
N . The method is based on transforming the key equation ed = 1 + t((p2 +
p + 1))(q2 + q + 1) into the two modular equations f(x, y) = 1 + (N − 1)2x +
(N − 1)xy + xy2 ≡ 0 (mod e) for α > 1 and f(x, y, z, w) = 1 + xy(N − 1) +
x(2N − 1) − zw ≡ 0 (mod N2) for α < 1 where (x0, y0) = (t, p + q + 1) and
(x0, y0, z0, w0) = (t, p+q+1, d, e) are the solution of the first and second equations,
respectively. Using Coppersmith’s technique and the LLL algorithm, we obtain the
attack bounds on δ, and within those bounds, we can find p + q + 1 = Nβ, which
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leads to the factorization of N . At some values of α and β, we later observe that our
attack bounds on δ could reach or overcome the Weiner and Bone-Durfee’s bound
in the RSA. In future, this method can be extended to implement lattice-based
attacks on the RSA given in [3] [10] [13] [14] for our polynomial congruences.
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