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1. Introduction
The theory of covering spaces is one of the important topic in Algebraic Topol-

ogy. This is common stage for the development of various branches of mathematics.
Such as Differential geometry, The theory of Lie groups, and the theory Riemann
surfaces [4]. In which the base space is an arbitrary topological space. For any
even subspace of Rn has a trivial fundamental group. One of the most useful tool
for some fundamental groups that are not trivial [3]. Let B be a topological space,
a covering space of B consists of a space A and a continuous map φ of A onto B
which satisfies a certain requirement [4]. Covering space is a pair of topological
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space φ : A → B, where A and B are having a simple relation to each other. The
basic concepts with theorem, problems and examples for the covering space and
non-covering space are discussed in this paper.

2. Preliminaries
In this section, some definitions, examples and remarks are discussed.

Definition 2.1. (Homeomorphism) A homeomorphism is called a continuous
transformation, is an equivalence relation and 1-1 correspondence between the two
topological spaces that is continuous in both directions. Homeomorphism is a func-
tion φ : A → B that is bijective, continuous and has a continuous inverse. If
homeomorphism exists then A and B are homeomorphic.

Figure 1

Remarks 2.2.

1. Continuous: Preimage of open set is open.

2. Equivalence relation: are topologically equivalent A ≈ B.

Definition 2.3. (Evenly Covered) Let A and B be topological spaces. Let φ : A
→ B be a continuous and surjective map. The open set λ of B is said to be evenly
covered by φ. If the image φ−1(λ) is a union of disjoint open sets µα in A, for each
α the restriction of φ to µα is a homeomorphism of µα onto λ by φ.

Definition 2.4. (Covering Space) The map φ is a covering map. If φ is con-
tinuous maps A onto B. (i.e.) φ : A → B. If every pointβ of B has an open
neighborhood λ that is evenly covered by φ. (i.e.) φ−1(λ) ⊆ A is a disjoint union
spaces, each one is homeomorphic to λ under φ. And A is said to be a covering
space of B. (OR) (A, φ) is covering space. It’s simply called cover.
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Figure 2

Remark 2.5. If φ : A → B is a covering map then φ is open map for each β ∈ B.
The subspace φ−1(β) of A has the discrete topology for each µα is open in A and
intersects the set φ−1(β) in a single point. This point is open in φ−1(β).

Examples 2.6. (Covering Spaces)

1. Every space trivially covers itself.

2. Consider the map φ : R2→ S1×S1 plane projection to the tours. Taking any
two points (x, y) in R2, the equation (x, y) → (exp(2πix), exp(2πiy)). Now
taking the inverse image, the inverse image of this tours would be infinitely
many rectangles, but call the would be countable. Covering projection always
has φ−1(λ), where φ is projection. So we have the inverse image is countably
many infinite rectangles.

3. Standard trivial example, should take the identity map from (A × A),
let (i : A → A), let A be any space, then i is a covering map.

4. The infinite spiral is projecting down onto a circle.

Figure 3
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Examples 2.7. (Non-Covering Spaces)

1. The finite spiral to the circle, this is not a covering spaces. Because the end
points create a problem, end points do not have a neighborhood. If take it’s
an inverse image λ in the space B. This is not a homeomorphic in the covering
space. So inverse image is not a homeomorphism.

Figure 4

2. The rectangle to the line, take an open interval λ on the real line and cor-
responding to the inverse image φ−1(λ) is forms a rectangle. Also it’s not a
covering space, because we do not have a homeomorphism from the open set
λ to φ−1(λ)

Figure 5
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Definition 2.8. (Local Homeomorphism) If φ : A → B is a covering map,
then φ is a local homeomorphism of A with B. That is each point of α of A has a
open neighborhood that is mapped homeomorphically by φ onto an open subset λ of
B.

3. Representation of Covering Spaces
In this section, theorem, lemmas and some problems are discussed.

Theorem 3.1. The map φ : S2 → P 2, sphere to the projective plane is covering
map.
Proof. φ : S2 → P 2 is defined by a pair of antipodal points α and ᾱ, that’s φ(α)
= (α, ᾱ);α, ᾱ ∈ S2. Thus φ(α) is one dimensional subspace containing α. This is
going to be a two to one map, because the image of α is equals to the image of
ᾱ. (i.e.) φ(α) = φ(ᾱ). Both α and ᾱ gets to same pair of points in the projective
plane P 2. By the covering condition, we have, any elements in the projective plane.
Take antipodal points are α and ᾱ of P 2 exists in the neighborhood λ then around
it’s inverse image φ−1(λ) under the projection consist of two same around α and
ᾱ in S2. And each them individually in S2 looks exactly original neighborhood in
the projection plane. So it’s covering map.

Figure 6

Lemmas 3.2.

1. The composition of two local homeomorphism is a local homeomorphism.

2. Every homeomorphism is also a local homeomorphism.

3. All local homeomorphisms are need not be covering maps.
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4. Every local homeomorphism is a continuous and open map.

5. Products of covering spaces are covering spaces.

6. Every covering map is a local homeomorphism.

Problem 3.3. Show that φ : (A× B)→ A is map on the first co-ordinate. Let B
have the discrete topology, then φ is a covering map, also φ is a local homeomor-
phism.
Solution. We know that, φ is continuous, for any open set λ ∈ B, φ−1(λ) =
(λ× µ | µ ⊆ B). Since B has a discrete topology, then all µ ⊆ B are open and
φ−1(λ) is open. Thus φ is continuous surjective map. So we will show that A, itself
is evenly covered, to prove φ is a covering map. We can write φ−1(A) as the disjoint
union of open sets µβ = (A × B) for all β ∈ B. φ is restricted to µβ is already
surjective continuous map. φ−1 is continuous for each µβ to get homeomorphism.
Let (α1, β) (α2, β) ∈ (A × B) with φ(α1, β) = φ(α2, β) ⇒ (α1 = α2). This
gives us (α1, β) = (α2, β) finally for any open set we have the pre-image to be the
open set λ. So φ−1 is continuous the restriction of φ to µβ is a homeomorphism of
µβ onto A. The collection of {µβ} will be called a partition of φ−1(A). So φ is a
covering map. By the definition, if φ : (A×B) → A is a covering map, then φ is
a local homeomorphism of (A×B) has a neighborhood with A. That is each point
of (α×β) of (A×B) has a neighborhood, that is mapped homeomorphically by φ
onto an open subset of A. So the map φ is local homeomorphism.

Problem 3.4. Let φ1 : A → B and φ2 : B → Γ be the covering maps, let φ = (φ2

◦ φ1) . Show that φ−1
2 (Γ) is finite for each γ ∈ Γ then φ is a covering map.

Solution. Given that φ1 and φ2 be the covering maps, let φ = (φ2 ◦ φ1). We have
to prove that, φ−1

2 (Γ) is finite for each γ ∈ Γ then φ is a covering map. Let A, B
and Γ be the topological spaces.

Figure 7

By the definition, φ1 and φ2 and are continuous and surjective maps. If every
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points of both β ∈ λ and γ ∈ µ that is evenly covered by φ1 and φ2. The inverse
image of φ−1

1 (λ) and φ−1
2 (µ) as the union of disjoint open sets φ1 to αi and φ2 to βi

is a homeomorphisms of φ1 onto λ and φ2 onto µ.Now we have to show that, φ is a
covering map. It’s enough to prove that, φ−1

2 (Γ) is finite for each γ ∈ Γ. As φ2 is a
covering map, let choose γ ∈ Γ be an open neighborhood Γ of γ. Such that φ−1(Γ)
union of disjoint open sets (βi) is a homeomorphism of βi onto λ. Define βi to be
the single element of (φ−1(γ) ∩ βi) for each i. Also φ1 is a covering map, we can find
an open neighborhood (αi) of (βi), such that φ−1

1 (αi) =
⋃
i νin, we need common

open set τ . So define τ =
⋂n
i=1 φ2 (αi ∩ βi), each (αi ∩ βi) is a neighborhood B

which is evenly covered by φ1 and has φ2 (αi ∩ βi) ⊆ Γ. τ So is open and evenly
covered by φ2 (every partition is finite (αi ∩ βi)). Next define, ψin = φ−1(αi ∩ βi)
∩ νin is open. If every point γ ∈ Γ has a neighborhood τ that is evenly covered by
φ for which the inverse image φ−1(τ) is union of disjoint open sets. ψin And the
restriction of φ to ψin is a homeomorphism of ψin. Hence ψ is covering map.

Problem 3.5. Show that the map φ : S1 → S1 given by the equation φ(Z) = Z2

is a covering map. Generalize to the map φ(Z) = Zn.
Solution. Given map φ : S1 → S1 given by the equation φ(Z) = Z2 is a covering
map. Here we consider S1 ⊂ C, |Z| =1. The unit circle can be considered as the
set of complex numbers Z. The function Z = eiθ for θ = arg(Z) ∈ [0, 2π);Z ∈ S1.
Let Z = eiθ, φ(Z) = Z2 = (eiθ)2 = ei2θ, φ is continuous and surjective function.
Let λ be the image of (θ− π

2
, θ+ π

2
), under the map θ → eiθ. So that λ is the open

semicircle centered at Z and λ is an open neighborhood of Z, φ−1(λ) =
⋃2
i=1 µi

where the intersection of µi’s are empty and µ1, µ2 are open. Now φ−1(λ) consist
of the quarter circle with centered at (Z) ⇒ µ1 = exp(θ − π

2
, θ + π

2
), Centered at

(-Z) ⇒ µ2 = exp(−θ + π
2
,−θ − π

2
). Clearly, λ = (µ1 ∪ µ2). Since the functions are

continuous in C at everywhere, except at Z = 0. But the space S1 does not contain
the point Z at 0. By the definition, the restriction of φ to µ1 and µ2 are homeo-
morphisms of µ1 and µ2 onto λ. (i.e.), λ is homeomorphic µ1 and µ2 to by Z = Z2,
therefore φ is covering map. In general, φ−1(λ) = (µ1 ∪ µ2 ∪ µ3... ∪ µn), n disjoint
open sets. Here the intersection of µi’s are empty and open. The restriction of φ
to

⋃n
i=1 µi is homeomorphism of

⋃n
i=1 µi onto λ by Z = Zn, therefore φ is covering

map.

4. Conclusion

In this paper, the basic definitions required to slove the problem and theorems
are mentioned. It is also discussed with samples for the covering space and non-
covering space. Following this, the covering space is represented by some problems
and theorem using the basic definitions.
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