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1. Introduction

Zadeh [13] introduced the concept of a fuzzy set (FS). Also, he discussed the
concept of interval-valued FS (IVFS) [14]. The concept of intuitionistic FS (IFS),
a generalization of FS was introduced by Attanassov [2]. Later, Atanassov and
Gargov [3] presented the notion of interval-valued intuitionistic FS (IVIFS) to
deal with uncertainty in a broader perspective than FS. Yager [12] introduced the
concept of Pythagorean F'S with a condition that the square sum of its membership
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value and non-membership value is less than or equal to one. The concept of
interval-valued PFS, a generalization of PFS and IVIFS was presented by Peng
and Yang [9]. The notion of complex FS (CFS), a tool for providing membership
value in terms of complex numbers was introduced by Ramot et al. [10]. Greenfield
et al. [7] extended the notion of CFS to interval-valued CFS (IVIFS). Alkouri and
Salleh [1] introduced the notion of complex IFS (CIFS) by adding the degree of
non-membership and discussed some of its properties. Garg and Dimple [8] coined
the definition of complex IVIFS (CIVIFS) to deal with time-periodic problems.
Ullah et al. [11] presented the concept of complex PFS (CPFS) and its properties.
Chinnadurai et al. [6] discussed the notion of a complex cubic set (CSS), complex
cubic IFS (CCIFS) [4] and complex interval-valued Pythagorean FS (CIVPyFS)[5].

In this manuscript, we present the notion of complex cubic Pythagorean FS
(CCPFS), a combination of complex interval-valued Pythagorean FS (CIVPyFS)
and complex Pythagorean FS (CPyFS).

2. Preliminaries

In this section, we present the basic concepts of CFS, CPFS and CIVPFS.
Through out the discussion U represents universal set.

Definition 2.1. [10] A CFS A; represented as Ay = {(x, Py,(z))|z € U} where
Pp(z):U—A{a:a€C:la| <1} is a membership function which assigns a grade
of membership. The degree of membership value Py, () is deceive unit circle in

the compler plane and given as (). where i = /—1,y(x) € [0,1] and
9%( ) [Oa 27]

Definition 2.2. [11] A CPFS F; represented as

Fi = {(x, Pr,(2),QF (z))|x € U}, where Pr, : U — {z1: 21 € C: |z21] <1}, QF, -
U — {22: 20 € C: |2 <1} provided that 0 < |21]* + |22]* < 1 or Pr(x)
V(7). @) and Qr, (v) = k(). @) satisfying the condition 0 < v2(x)
ki(z) <1 and 0 < 62 (x )+ 0% (r) < 1. The degree of hesitancy functz’on H,
ne(x).e2™0n @) " such that n,(z) = /1 -2 () — k7 (z) and b, \/1 — — 62, (z).
Then Fy = (ry,.€20 /it.eﬂ”a“t) is called C’PyFN

Definition 2.3. [10] A CIVPyFS represented as

F = {x [Py, (2), Pr(z)] [th(x),éft(a:)] Jz € U} where [P (x), Pr, ()] : U -
oz 25 € Folal 2] <1} and [Q,(0).Q5(@)] 1 U = {207 20,7 €
Fi |2y, 22| £ 1}. Have Py (v) = 2, = f_yt(x) e’z’TQw(x), Pr(z) =7 = (x).e 270+, (z)
and Qﬂ(m) = 2y = @(m).eihgﬁtm, @ft(x) = Zy = /-Tt(x).eﬁﬂéw( , satisfying the

I+ 1
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condition 0 < (%;(z))? + (F7(z))> < 1 and 0 < (0, (2))* + (0.,(x)? < 1. The hesi-
tancy function is given by Ht = [Vi(2), 9s(2)] e2mls, (@), (@)]

where 9 (« w—% NP = @), Vi2) = /1- (0@)? = (e(2))? and

6y,(x %1 = (0 (2)2,00,(2) = /1= (€, (2)) + (€, (). There-
fore, mathematzcally C]VPyFS Fi defined on U can be represented as

T, = {J, (@), 72(x)] €2 @D [, (), oy ()] €27 Cns @O @)] oy U} The
amplitude terms [y(z), 7i(2), ki(z), Fe(x)] C [0 1] and the real valued phase terms

lie within the interval [0, (2),0,,(2),0,,(2),0.,(x)] C [0,1] subject to the con-
dition, (W(D)? + (@) < 1,80(2) + Bu(@))? < 1. Furthermore, F; =
O

<[&, 7] &2 0] [ i2mlfx > is called CIVPyFN.

S L

3. Complex cubic Pythagorean fuzzy set (CCPyFS)

In this section, we define a new concept CCPyFS and discuss some of its prop-
erties.

Definition 3.1. Let U be the universal set. A Complex cubic Pythagorean fuzzy
set(CCPyFS) represents as

Fo= {2 (([Pr(2), Pe ()], [ @, (. Qe (9)] ) (P (), Qe (2))) : £ € U},
Have the degrees of CIVPyFS are gwen by, Pg,(2) = v,(2)e e P (2) =
T2 and Q (2) = p,()e e QM)—w()ma”-M%HMd&

grees of CPyFS are PFt( ) = vy(2)e?m ) Qp,(3) = @i(2)e?™ (). Therefore,
mathematically CCPyFS F, defined on U can be represent as

Fo= (([(2), ()] €200, g (2), ()| €27 D),
<vt(z)ei27r9%(z')’ 01(3)e200 () ) '
satisfying the condition 0 < (04(2))2+ (7,(2))? < 1, 0 < (O 2))* + (0,(2))* < 1 and

0 < (@W(2))* + (@(2))* £ 1, 0 < (Ouy)* + (Opu2)* < 1. (1)
Then the indeterminacy function can be represented as,

H, = < [19 200, (3) 9, ¢i2m00, (2 ] W, 622”9ﬂt(z)> such that the amplitude terms

T @A) U=) = 1= Wl2))? ~ (,(2))* and
2 — (¢¢(2))? and the phase terms are

8,(2) = /1= (Bu(2)? = (), B0, (2) = /1= (0,(2))? — 8, (2),

09, (2) = /1 — (6,(2))? — 0,,(2). Furthermore

VSL
ﬁ
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F, = ( < [0, 4] 1200, O] [ft’@} eizw[ﬁw7§¢t}> <v 200 (%)e 12w0¢t>)
is called CCPyFN.

Example 3.2. Let us consider an example in CIVIFS form
Fy:(<UyLozhﬁﬂmﬂﬂ,msgpqa%W204><04&%®2h058%@@>)lfmcmm
that 0 < 0.24+0.4<1,0<0.24+0.4 <1 and the fuzzy values are 0 < 0.4+0.5 <1,
0 < 0.2+ 0.6 < 1 which satisfy condition (1). Another example is CIVIFS form

Fy = (([0.6,0.7] 2703041, [0.5,0.6] 270507, (0.4¢2707), 082709} ). Now 0.7+
06#1,04+0.7+#1and 0.440.8 # 1, 0.7+0.5 # 1. This set does not satisfy the
given condition of CIVIF'S. This proves that the given number is not CIVPyFS, but
it is a CCPyFS an it satisfies the condition. However, it is evident that CCPyFS
can satisfy the condition 0.72 4+ 0.62 < 1, 0.4> + 0.7 < 1 and 0.4%2 + 0.8 < 1,
0.7 +0.5%< 1.

Deﬁnition 3 3. Let F, =

<< (v, T €2 (0ur: Bu,] [tp ’a} ¢i27l0,, W]> <U 12ty ¢t6i2”9¢t>> F, =

<< Uly_ 1271'[Qv1 [@1’ :| 1270, w1]> <U1€i27r0v179016’i271'9w1 >> and F2 _
<< v, U2 Z27T[QU276’L)2 : |:9027 ()02} i2m[0 0., 9¢2]> <112@7;27"9U2’g026i27"9w2 >> be CCPyFNS, then

Z)FC (< [Sot790ti| 127'-[9% 0,,] [Qt;ﬁt] 61271'[9 O, }> <90 €i27r9‘Pt,Ut€i27r9“t>>

“)Fl AFy = < [mln[’UlUQ] min[Ul,Eg]]eZ%[mm(evl U2)min(gvl,§v2)]7

]:| zZﬂ[maz(le ,sz ),ma:v(@p1 ,§¢2 )] >

Y

mmw%7mm%%

<mln vy, U ei2mmin(6yy 0, )] ,max [pq, po] € i2m[maz (0, 0, )]

i11)F1 V Fy = << maz|v,v,), maz[vy, Ty)] €27z, By )imaz(Ouy 0u)]

|:TTL’LTL 90 QO mm[gpl, 902]] z27r[mm(0¢1 0”) mzn(0¢1,0¢2)}>’

<ma:1:' vy, U z?ﬁ[max(@vl,GUQ)] ,man [901 @2] eiQW[min(9¢l,9¢2)}>>

iv)F1 @Fy = < [\/U1+U2—U1U2,\/U1+U2—’U1U2:|

m{ 02 +02, 02 02, .\/0,, +0,, 0,0,
(&

] |:[901<l02j|7 [@1@2]] 2271—[(@591 502) (0 1§¢2)}>7
(VoT+ 8 = ge VR TII [ p]eml0n00a) ) )

v)F1 QF2 = (< [[v10s], [01T5]] €271 bea): (5”1%)17
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i2r| /02 62 —0% 02_.\/0° +0°. —6- 0. }
2 2 2, .2 —2 —2 —2-—=2 [ =p1 T2 =p1=w? ®1 '] P17 P2
[\/glJrgQ—flgz,\/<Pl+s02—901902} e >

; 2m /02 +62,—02 02
<[U1’U2]el2ﬂ-[9v19v2]7 \/gp% + SD2 90190%61 u P11 P17P2 >>

e <[\/1_ A= 02P, /1= m{w (1—2) \/1-(1-0° A]
(. (] ePrle 07T, <\/1— R AN >ei2ﬂ<9w>*>),

A > 0.

vi)* = ({ [P, @] e*1¢ [\/f = (1-7)]
G VEEERGTy ) < T (T = e/ ).

Definition 3.4. For any CCPyFN,

F = (< [v, 7] €270 00], (¢, 7] e”ﬂgv’a*"]>, <Uei2”9”,g0tei2“6¢>> we define the score
function (Q) as

0F) = ¢ [ 472402~ (2 4+ 7 + o0 + o (@ + T +03) - @2 + 7 +83)] .

It is clear that Q(F) € [—1,1] , and the accuracy function S of F is defined as

§(F) = é [(22+62+v2)+(£2+¢2+902)+% [(Qﬁ+§i+05)+(ﬁ’i;+@i+939)H.

Based on these function, a comparison method for any two CCPyFNs Fq,Fy is de-
fined as follows.

Definition 3.5. Let F{,Fy be two CCPyFNs corresponding to CCPyFs, then the
compression between the CCPyFNs is done as follows : if Q(F1) < Q(Fs) then Fy
is inferior to Fy and if Q(F1) = Q(F2) then, if S(F1) < S(Fa) then Fy is inferior
to Fy and if S(F1) = S(Fy) then Fy and Fy have the same information indicted by
Fi ~ Fs.

Theorem 3.6. All the operational results in Definition 3.2 are in CCPyFN forms.
Proof. (i) Since

F, — < < [, 7] €27 ) [ fﬁat} 270, ,EW]>’ <Ut 2o o, €i27r0¢t>> is an CCPyFN,
so it is satisfies the equation (1) and hence

F¢ — (< [ﬁ“@t} e2mloy 00l Ty, 1, e””[gvt’(’”t]>, <gptei2”9¢t,vtei2“9vt>> also satisfies
this condition. Thus F¢ is CCPyFN

(¢4) Since Fy and Fy are CCPyFNs, so Fy, Fy satisfy the condition (1), i.e., min[oy, Uz]+
maz (1, P2) < 1, min[f,,, 0.,] + maz(f,,,0,,] <1 and minfuy, vs] +max]pq, pa] <
1, min[0,,, 0.,,]

+max[fy,,0,,] < 1. Then Fi AF; satisfy the condition (1),i.e.,F;AFy is an CCPyFN.
(474) Similar to (ii), we can prove that F; V Fq is an CCPyFN.



132 South FEast Asian J. of Mathematics and Mathematical Sciences

(iv) Since both F; and F; satisfy the condition (1), it follows that, \/v? + v3 — viv3 =
Vol —v3) + 03 > /v3 > v, > 0 and ¢, > 0 and the lower phase terms
VO 0, — 0202, = \/9 (1—02)+ 02 > /0%, > 0,, > 0and 02,62, > 0.
Also v1+v2—v1v2—l—cp1902 < vl—l—v2—vlv2+(1 Ul)(l v3) = 1 and the upper phase
terms 0., +0., 6U19v2+9 19@2 <8, +0, —emew +(1-0°)(1—0) = 1. Then
the fuzzy values are v+ v§— vivs + golgpg < vit vl —vivi4 (1—v?)(1—v3) =1
and the fuzzy upper phase terms 67 + 607, — 02 62 + 07 62 < 67 + 07, — 02 62, +

(1 —-62)(1—62) = 1. Therefore, the value of F, @Fg satlsfy the condition of
equation (1) and hence it is a CCPyFN. In the similar way (v) can be proved.

(vi) Since /1 — (1 —v2)* > 0,4/1 — (1 —=0?)* >0, 02 > 0,
(4,0) (®)*, (¢)* > 0 and the phase terms /1 — 1—02/\>(),/1_ 1—0 N >

0,/1—(1—62)*>0,(8,)* (0,)*, (6, )’\>Oand1—(1—v N+ @) <1—(1-
72+ (1 —72)* = 1 and the phase terms 1 — (1 —0)* (Ow))‘ <1-(1-0)+(1-
gi))‘ = 1. Always satisfy the fuzzy values 1 — (1 —v?)*+ (¢*)* < 1—(1—0vH) +(1—
v?)* = 1 and the phase terms 1—(1—67)*+(62)* (1-62)*+(1—62)* = 1.Thus,
the value of A\.F is a CCPyFN.
(vii) Can be proved similarly.

Theorem 3.7. Let A\, \{, Ay > 0. Then

Z)Fl@FQ = FQ@Fl ZZ)F1®F2 - F2®F1
i) \.(F1 @Fs) = \F1 P AF vi)(F1 @ F2) = FL @ Fy
VAN F@ N F= (A + ). F vi)FM @ FA2 = FAith
Proof. Straight forward.

4. Complex cubic Pythagorean fuzzy aggregation operators
In this section, we discuss some operators for aggregating CCPyFNs.

Definition 4.1. Let F, =

[0y, 7] €270 o] 0. P 200, il Ut€i2ﬂ9ut7¢t€i2w0¢t>)’ (t=1,2,..n) a col-
lection of CCPyFNs and let CCPyFWA, : X" — N,
[f CCPyFWAX(Fl, Fg, ...... Fn) = Xl-Fl @ XQ.Fl @, ...... @ X’nFn (2)

where N is the collection of all CCPyFNs, x; is the weight of Fi(t = 1,2,..n),
x: € [0,1] and th = 1 then the function CCPyFWA is called an CCPyF

t=1
weighted averaging operator. In particular, if x; = % for all j then CCPyFWA, op-
erator reduces to CIVPyF averaging operator(CCPyFA) CCPyFA(Fy,Fy, ...... F,) =

LFPFP.....PF,)
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Theorem 4.2. Let F; = )
<< (v, 4] ei2mlly, Bur] [ft’@] 6i27r[Q(Pt,€w]>7 <Ut€i27r6?ut7g0t€i27r9<pt>)7 (t=1,2,..n) be a

collection of CCPyFNs then the aggregated value by using equation (2) is also an
CCPyFNs denoted as

CCPyFWAy (F1,Fa,...... Fn) = << [\j 1-— ﬁ(l — US)M’J 1— ﬁ(l — U%)Xt|
\Jl ﬁ( - 02 )X, Jl ﬁu 93,)X"J {

27

e t=1

(3)

~ [T —wpyxe

where x; 18 the weight of Fy(t = 1,2,..n), x¢ € [0,1] and th =1

t=1
Proof. We prove equation (3), when n = 2. CCPyFWA, Fy,F2) = x1F1 @ x1F1.
According to Theorem (3.1), we can see that both y;F; and x;F; are CCPyFNs,
and the value of x1F; @ x1F1 is an CCPyFN. By definition (3.2) (vi), we have

NLF1 = (< [ 11— oi2)x (I — w2, /1o [ 7WQ)X1] ez‘27r[\/1—(1—gﬁl)><1,\/1—(1—§il)x1]7
[(ﬂ)’ﬁ,(ﬁ)m] eiQw(ﬁwl)m,(@m)m >7< 1—(1— u%)Xlei% [1-(1-62 )X1 7 ((pl)meﬂﬂ(@m)m >)7

xa o = (( [/T= (0 mapve, T = (o] 27000

[(ﬂ)’@, (@)m] /27 (02032 >7< 1-(1- v%)mem"\/w, (p2)x2eir(0ea)? >)
Then CCPyFWA, (F1,F2) = x1F1 @ x1Fa.

= (V- 0 i R -

ei2w{\/17(17Q%1)X1 (17Q52)X2,\/17(179v1) (179%) 2} [

(= (=) (1) iz f1- (102, ) (1-02,) " Py ORI
Thus, result n = 2 is true.
Equation (3) holds, then the result is true for n =, i.e.,

CCPyFVVAX(FLFQ7 ...... Fr) = << |:J 1— ﬁ(l _yf)Xt7 \j 1— ﬁ(l _ U%)Xt|
t=1 t=1
Jl ﬁ(l—Qit)th 1- ﬁ(l—eit)XtJ { - - } i27r|:1_[9§i711‘[95§t:|
; [ e t=1 >’

X1 X2, @Xltpxz] i2n [} 653), ("ﬁieég)b

t=1 t=1

3
3

- i2m |1— H(l—th)Xf r iszQféi
< 1,H(1,Ut2)><te t=1 71_[%66 t=1 >>

t=1 t=1

Then, when n = r + 1, by using Definition 3.2 (iv) and (vi) we get,
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CCPyFWAX (F1, Fo,...... Fr+1)=CCPyFWA X(Fh Fo,...... Fr) @ Xr4+1-Fr41 =

T

: r e flo o - flo-tor]
(e i e

t=1 t=1

,
” ” i2w{H6W,H0W - i2r |1— H(lfagf
t=1 t=1
T
r isz%;
H‘P?te t=1 >> EB << [\/1_(1_Qz+l)xr+17\/l_(1_UE+1)XT+1]
t=1
1 I3 _(1-92 s r r
61277[ /1—(1—Q3,,‘+1)x‘+1, [1—(1 0y )1 [ Xr+1 7x7+1] 127r[(9 )le (9w)f+fl]>7

507"-9—1 ’507-9—1

11— o2 s 21O T iy iam(0,))71
< 1_(1_U%+1)XT+1’6 Tl 7997"-7""-41» m( LP)T+1 >

r+1 r+1
r+1 r+1 iam |:J 1= H(l 71)1 ’\J 1- }
= (< Nln(lvf)x“\jln@l’z)’“}e =1 =t
t=1

t=1
r+1

r+1 r=+1 r+1
X Xt - 2
H Qwi’ H 0%} r+1 i2m |1 H(l Gu,
t=1 t=1 , 1— 1 _ Ut Xf e =
o el

H pXte t=1 >> i.e., when n = r + 1, equation (3) also holds.

Next in need to show CCPyWA, is an CCPyFN. As

F, — (< [v,, T 20y, Bur] [gpt’ gpti| 622“@%’9%}> <’Ut6227r9“f 0y 612”9%>>f0r all ¢ is an
CCPyFN, thus 0 < v,, Uy, p,, @y, Ur, ¢ < 1 then satisfy the condition Ui+ s <1,
0 < v? 4+ ¢? < 1 and the phase terms are 0 < 6,,,0.,,0.,,0,,,0u,,0, < 1 and

ZLug Lo

the condition@vt + 9% <1,0<62 +62, <1 Andhenceo< |1~ H(1—g§)><t <1,
t=1

T ™
e <tland0< [1-[Ja-02)¢ <1,0< H 9xt <1. and o < H(1— 2y < 1 and
1 t=1 t=1 t=1

e

r+1 r+1 i2m
t=1 t=1

0

IN
’:]:

-
Il

s T
7y <1 and the phase terms are, 0< |1 [J(1-8;,)% <1,0< []#% <1. Similarly,
t=1 t=1 t=1

the fuzzy values are 0 < [1- ﬁ(lfvf)m <1 and o< ﬁgai“ <1 then the fuzzy phase
t=1 t=1
1 B < T + n

1- ﬁ(1 — Xt 4 (ﬁﬁ’“) < <ﬁ2m> (ﬁﬁ’“) =1 and the phase terms are,

t=1

o
IN
=
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n 2 n 2 n n n
(\Jl H<19u,>’“) + (H@iﬁ) —1-Jla-g) + [0 <1- (H e?Xf> (H e%)

t=1 t=1 t=1 t=1

n 2 n 2 n
Hence, also satisfy the fuzzy results <W) + (H goi“) =1-[Ja-vi)x+
t=1 t=1 t=1

2
(H f) <1-— (H w?"t> <H @2Xt> =1 and the phase terms are, (J 1-JJa- eﬁt)xf) +
t=1

<ﬁ 0 ) =1- ﬁ(l —62 )Xt 4 H 62Xt <1 (H 92><t> (H 92><f> =1 Hence, CCPyWA, is a
CCPyFN and therefore proof is completed.
Definition 4.3. Let CCPyFWG, : X" — N, If

CCPyFWG,(F1,Fa,...F,) =FF' QFF ), ...... Q) Fxn (4)
then the function CCPyFWG, is called an CCPyF weighted geometric operator.
In particular, if x = (%, %, ....... , %)T then the CCPyFWG, operator reduces to an

complex cubic Pythagorean fuzzy geometric operator CCPyFWG, (Fy,Fa, ...... F,) =
1
FIQRFQ,...... QF,)»

Theorem 4.4. The aggregated value by using equation (4) is also an CCPyFN,

n 27 |:H Qg:, H9§E:|
and CCPyFWGy (F,Fa,.....Fp) = (< {Hv HXt] t=1 t=1 ,

n n i2ﬂ-|:J lﬁ(l—eit)Xt’Jl ﬁ(l—@it)m}
N - Ilo wf)xndl ~Tla s@?)’“| A = >
t=1

t=1

n i2r ﬁ 0%t n i2r |1— ﬁ(1 — eit)m
< [Terre =1 . 1-J[a-¢dxe i=1 >>
t=1

t=1

Proof: The proof of this theorem is similar to Theorem (4.1).

(5)

5. Multi-criteria Decision Making(MCDM) using Complex Cubic
Pythagorean Fuzzy Numbers(CCPyFNs)

Let F = {Fy,Fs....F, } be alternatives and C = {Cy, Cs......C, } be the parameters.

Each alternative can be represented in CCPyFNs form as F, = << [V, Ty 2, ’g“t],

[£t7 @t} ei%[gw’%t]>, <Utei2“9“t im0 >), where < [V, Ty el ’g“t], Utei2“9“t> rep-
resents the membership value given by the decision maker(DM) of the alternative
F, corresponding to the parameter C;. Similarly, < [ft’@] e””[gvt’@%],<ptei2”9“’t>
represents the non-membership value given by the DM for the alternative F; corre-

sponding to the parameter C;. The values given by the DM are tabulated. So based
on this, we apply the aggregated operators CCPyFWA and CCPyFWG. Finally,
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rank the alternatives by using score value definition and select the best alternatives.
Let us summarize the steps for computing MCDM as below.

Step 1. Let F, = {Fy,F....F,,} be alternatives and let C; = {Cy,Cs......C,,} be pa-
rameters.

Step 2. By using Definitions 4.1 and 4.2 of CCPyFWA or CCPyFWG, we aggre-
gate the values.

Step 3. Compute the score value by using Definition 3.3.

Step 4. Rank all the alternatives in descending order and select the best alterna-
tive.

Case studies. In this section, we discuses two case studies. In case-I, we study
the selection of best cotton by using CCPyFWA operator and in case-1I, we use
CCPyFWG operator.

Case 1. The aim of this study is to select the best quality cotton to make fabrics.
Let the expert check the quality of cotton received from various cotton vendors
Fi, (t = 1,2,3,4). Let the parameters be e; = staple length, e; = grade, e3 =
micronaire and ey = strength. Let us assume the weight of ey, es,e3 and ey be
(0.2,0.4,0.3,0.1)respectively.

The Method. To find out the best quality cotton, we use the following method.
Step 1. The decision maker provides the information for the alternative as below

(< 0.8, 0.9] 2706071 [0.2,0.3] 127r0103> <04ez27r05 0.3¢i27(031) >>
P | (([05,0.6 20607 [0.3,0.4) c2rl0509]),
({107,0.9] 20508 0.1, 0.3] 20407
<<O4 0.8] e2710-5:06] 0.3, 0.5] 227T0105]>

<0 7¢127(05) () Gei2n(0. 3)>>
<0 361277(04 O 26227r 03)>>

0. 6€Z27T(0 5) O 46127r (0.4)

F, << [0.5,0.6] €2710.809] [0.4,0.5] z27r[0102]> <O 8¢i27(06) () 36127r(04)>>
Fy << [0.3,0.5] 27106071 10.1,0.15] 127r[0203]> <0 7¢127(08) (). 16127r(05)>>

Fs << [0.4,0.7] 2710305 [0.1,0.2] z27r015021> <0 5ei2m(0.7) (). 26127r(03)>>
(< [0.6,0.71] 2707091 [0.3, 0.4] 127r[0203]> < 0.8¢127(0:9) () 21 ¢i2w(0. 2)>>
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€3
0 6 0. 7 127[0.5,0.6] [037 04] €i277[0.1,0.2}> <0 861271'(0 5) 0 367,271' (0.4) >

Fy << 0 4 0. 5 2277[0.8,0.9]’ [01’ 02] 6i27r[0.3,0.4}> <O 56127r(0 6) 0 262277 (0.3) )
F, << [0.8,0.91] 270708 0.3, 0.4] ez‘27r[0.15,0.7}> <0 4¢227(06) () 3i2m(0. 5)>)
F, << [0.35, 0.4] 27106071 [0 15, .2] 2710204 > <0 7¢127(05) () 4¢i2m(0. 2)>>

€4
Fy << O 5 0. 7 127[0.4,0.5] [O 15 0. 21] z27r[0304]> <O 86227r (0.7) 0 56227r(03 >>

Fy (< [O 3,0. 4 127[0.6,0.7] [O 11,0. 24} i2m[0. 0501]> 0. 56127r (0.4) 0 4i27(0.2) >>
Fy < (0.4, 0.5] 2710708 10.3,0.39] Z27r[0405> < 60i27(0.5) 026127r03>>
<< 0.6, 0.8] ¢271050.7] (0.4, 0.5] 7,27r0304> <O 0ei27(0.7) 066227r05>>

Step 2. By using Definition 4.1 of CCPyFWA, we aggregate the values. The
overall values corresponding to each alternative F, are given below.

F1 = (( [0.64,0.81] ¢127(0:56,0.66] .19, 0.35] ¢?2710-28,0.48] 0.56i27(0-47) () 36¢i27(0-31)

Fy = é [0.41,0.61] €#2710-61,0.75] [0.14,0.22] £#27([0-15,0. 24]§ g i

F3 = ( [0.61,0.74] £#2710-71,0:82) [0.18, 0.28] £#27[0-18,0-41]) () 50¢i27(0-57) () 26¢#27(0-35)

Fy = << [0.41, 0.56] ¢127[0.59,0.7] [0.17,0.29] ei27r[0.15,0.24]>, <0.67€i27r(0.54),0.356127r(0.26)>>

Step 3. By using Definition 3.3, we find score value

Q(F1) = 0.28, Q(Fy) = 0.42, Q(F3) = 0.39, Q(F4) = 0.33.

Step 4. Rank the alternatives based on score value, Q(Fy) > Q(F3) > Q(F4) >
Q(F1) and the best alternative is Q(F3).

Case-11

Step 1. Same as in Case-I

Step 2. By using Definition 4.2 of CCPyFWG, we aggregate the values. The over
all values corresponding to each alternative F, are listed below.

Fp = (< [0.59,0.75] i27[0-55,0.65] [0.23, 0.36] ez‘27r[0.39,0.51]>7 <0'47ei2w(0.46),0_45e¢2w(0.31)>>

Fy = << [0.38, 0.59] £#2710-52,0.68] [0.22,0.3] eizﬂ[o.16,0.25]>7 <0.65ei27r(0473)7 0.196i27r(0.4)>)

Fs = ( [0.52, 0.62] £727[0-67.0.78] [0.22,0.31] ei27r[0.22,0.31]>7 <O.536i27r(0A56)’0.27611271'(0.38)>

Fy—= ( [0.38, 0.51] £#27[0-56,0.68] [0.23 0.32] ei27r[0‘27,0A36]>7 <0.61ei27r(05),0.4lei27r(029)>>

Step 3. By using Definition 3.3, we evaluate score value

Q(F1) = 0.2, Q(Fy) = 0.33, Q(F3) = 0.32, Q(F4) = 0.22.

Step 4. Rank the alternatives based on score value, Q(F2) > Q(F3) > Q(F4) >
Q(F1) and the best alternative is Q(F3).

0.69¢%27(0.76) () 16?27 (0-37)
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It is clear from Case-I and Case-II that the alternative Q(F2) provides best quality
cotton to making fabrics.

6. Conclusion

In this article, we have studied the concept of CCPyFS. We have discussed two
aggregation operators namely CCPyFWA and CCPyFWG. Also, we have discussed
score value to facilitate the ranking of the alternatives. Finally, a MCDM method
is illustrated with case studies.
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