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1. Introduction and Preliminaries

As a generalisation of closed sets, Levine [14] developed generalised closed sets
( g-closed sets) in general topology. Introducing and analysing g-closed maps by
Malghan in 1984 [15] and g-continuous maps by Balachandran et al. [2] in 1991
enhanced various results in general topology by applying the notions of g-closed
sets in general topological spaces. Gnanambal [11] proposed and explored gener-
alised preregular closed sets and generalised preregular continuous maps for generic
topological spaces in 1997.

(U, ) or simply U refers to fuzzy topological space (abbreviated as fts) in this
study. Here we recall various definitions from these papers, “fuzzy 6-closure of A [9],
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fuzzy semi-0-closure of A\ [18], fuzzy 6-closed (briefly, f6c) [9], fuzzy semi-6-closed
(briefly, fsOc) [18], fuzzy regular (resp. 6, semi, semi 6 & «)-open (briefly, fro [1]
(resp. fOo [9], fso [1], fsBo [18] & fao [5])), fuzzy generalized (resp. generalized
semi, f-generalized & 6 generalized semi) closed (in short, fgc [3] (resp. fgsc [17],
fOgc [9] & fOgsc [12])), fuzzy semi (resp. O-semi) generalized closed (in short, fsge
[4] (resp. fOsgc [18))), fuzzy ¢" (resp. g*s & g')-closed (briefly, fg"c [13] (resp.

fg*sc [13] & fg”c [13])), fuzzy generalized (resp. generalized semi, #-generalized,

[e%
semi generalized, #-semi generalized, ¢, g*s, g & 6 generalized semi) open set

(in short, fgo [3] (vesp. fgso [17], fOgo [9], fsgo [4], fOsgo [18], fg"o [13], fg"so
[13], fg20 [13] & fOgso [12])), fuzzy 09" (resp. Og*s, "0, g*s6 & g/'8)-closed [6, 7]
(briefly, f0g"c (vesp. fOg*sc, fg"0c, fg*sOc & fg/'0c)) set, fuzzy continuous [8] (in
short fctats), fuzzy g (resp. 6 & 0gs )-continuous (in short fgCts [3] (resp. fOCts
[18] & fOgsCts [12])) function, fuzzy 0g" (resp. ¢"6, g8 & 60g*s)-continuous [6,

7] (briefly, f0g"Cts (resp. fg"0 Cts, fg”0Cts & fOg*sCts)), fuzzy 0g" (resp.
g"0)-irresolute [6, 7| (briefly, f0g” Irr (resp. fg"'0Irr)), fuzzy contra continuous
[10] (in short fcCts), fuzzy Tyym-space (briefly fTy,ms ) [6, 7], fuzzy Tyme-space
(briefly fT,mgs) [6, 7], fuzzy contra 8g" (resp. g0, g8 & 8g*s)-continuous (briefly,

fetafg" Cts (resp. fctag”0Cts, fctag”0Cts & fctalg*sCts), fuzzy contra 6g"

o

(resp. ¢"'0)-irresolute (briefly, fcta@g” Irr (vesp. fctag”0Irr”)).
2. Fuzzy Contra fg”-closed and fg”-open maps

Definition 2.1. A function k : U — V is said to be a fuzzy contra closed (in short
fetaC') map if k(X\) is a fcta in V, ¥V fo set X in U.

Definition 2.2. A function k : U — V is said to be a fuzzy contra 0g" (resp.
g"0)-closed (in short fctafg” C (resp. fctag”0C )) map if k(X) is a f0g"c (resp.
fg"0c) in' V.,V fo set A inU.

Definition 2.3. A function k : U — V is said to be a fuzzy contra 09" (resp.
g"8)-open (in short fctaBg" O (resp. fctag”00)) map if the image of every fo
set in U is a f0g"c (resp. fg"0c) in V.

Example 2.1. Let U = {a} = V and the fs’s L & M are defined by L(a) = 0.4,
M(a) = 0.8. Consider 7 = {0, L,1} and ¢ = {0, M,1}. Then i: (U,7) = (V,0) is
both fctalg"C & fctag”0C.

Theorem 2.1. A function k : U — V is a fcta0g"C (resp. fctag”0C) iff V fs

S of V and for each fcta set U containing k=(S) 3 a f0g"o (resp. fg"0o) set V
of Vo S<Vand k1(V)<U.

Theorem 2.2. Ifk:U — V is a fctabdg”C map and V is a fTygns, then k is a
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feC.

Theorem 2.3. Ifk:U — V is a fctag”0C map and V is a fTyngs, then k is a
fectaC'.

Definition 2.4. A function k : U — V is called fuzzy contra Ogs-irresolute (briefly,
fetabgsIrr) if k=1(n) is a fOgsc in U N fOgson in V.

Theorem 2.4. Ifk: U — V is both fctabgslrr and fctadg”C (resp. fctag”0C ).
Nis a fOg"0 (resp. fg"00) of U, then k(X\) is a f0g"o (resp. fg"0o) in V.

Example 2.2. Let U = {a} = Q = R and the fs’s A, B, D, K & E are defined
by A(a) = 0.7; B(a) = 0.6; D(a) = 0.6; K(a) = 0.3; E(a) = 0.8. Consider
T=40,A,1}, 0o = {0,B,1} & v = {0,D,E, H,1}. Then i; : (U,7) = (V,0) &
i : (Vo) — (R,7) as identity functions. Clearly both i; and iy are fctafg”C
(resp. fctag"@C') functions but ip o iy : (X, 7) — (Z,7) is not a fctalg”C' (resp.
fetag"0C') function.

Theorem 2.5. Let k : (U,7) — (V,0) be a fctadg”C (resp. fctag"0C) &
g:(V,o) = (R,7) be both fctabg"C (resp. fctag"0C) & fctalgsIrr, then goh :
(U, 7) = (R,7) is a fcta@g”C (resp. fctag”0C).

Theorem 2.6. Let k : (U,t) — (V,0), g : (V,0) = (R,7) be fctadg"C (resp.
fetag”0C) functions and (V, o) be a fTygns (resp. fLymgs). Then goh: (U, T) —
(R,v) is a fctaBg"C (resp. fctag”0C).

Theorem 2.7. Let k : (U,7) — (V,0) be a fctaC and g : (V,0) = (R,7) be a
fetabg"'C (resp. fctag”0C), then go h : (U, T) — (R,7) is a fcta8g”C (resp.
fetag"oC).

Remark 2.1. Ifk: (U1) = (V,0) be a fctalg"C and g : (V,0) — (R,7) be a
fctaC', then g o h need not be a fctafg"C'.

Example 2.3. Let U = {a} =V = R and the fs’s A, B, K and FE are defined
by A(a) = 0.7; B(a) = 0.6; K(a) = 0.3; E(a) = 0.8. Consider 7 = {0, 4,1},
o ={0,B,1} and v = {0,B,E,H,1}. Then (U,7) & (V,0) are fts. Then i :
(U, ) — (Vo) is a fcta@g” C (resp. fctag”0C) and iy : (V,0) — (R,7) is a fctaC
map but iy0iy : (U, 7) — (R,7) is not a fctafg”C (resp. not fctag”fC') function.
Theorem 2.8. The map goh : (U,7) — (R,7), where k : (U,7) — (V,0) and
g: (V,o) = (R,v), is a fctalg"C (resp. fctag”0C).

(i) If k is surjective fctaCts, then g is a fcta0g"C (resp. fctag”0C).

(i1) If g is injective fctaBg" Irr (resp. fctag”0Irr), then k is a fctalg”C (resp.
fetag"oC ).
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Proof. (i) Let A be a fcta in (V,0). Then k~'()\) is a fcta in (U,7), as k
is a fctaCts. Since g o h is both fctafg”C (resp. fctag”0C) and surjective,
(gok)(k~1(N\)) = g()\) is a f0g"c (resp. fg"0c) in R. Hence g is a fctafg"” C (resp.
fetag"oC).

(ii)Let A be a fctain (U, 7). Then (gok)(A)isa f0g"c (resp. fg"”0c) in R. Since
g is both fctalg” Irr (resp. fctag”@Irr) and injective g~ (g o k)(k~1(N\)) = k(X\)
is a f0g"c (resp. fg"”0c) in V. Hence k is a fctafg” C (resp. fctag"0C).

Theorem 2.9. If k: (U,7) — (V,0) is a bijection then (i) k™' is a fctafg" Cts.
(11) k is a fctalg”O. (iii) k is a fctabg”C. are equivalent. And (iv) k™' is a
fetag"0Cts, (v) k is a fctag” 00, (vi) k is a fctag”0C, are equivalent.

Theorem 2.10. A function k : U — V is a fctalg” O (resp. fctag”00) iff for

each fs S of V and for each fcta set X containing k=1(S) 3 a f0g"c (resp. fg"0c)
set K of V containing S 3 k™'(K) < F.

Definition 2.5. A function k : U — V is said to be a fctafg""C (resp. fctag"60C)
if k(X) is a f0g"c (resp. fg"0c) in V¥ fOg"c (resp. fg"0c) set X in U.
Remark 2.2.

1=

(i) Since every fcta set is a fg"0c, we have every fctag” 0C function is a

fetag"oC'.

(11) Since every fctafg" C map is a fctag”0C, we have every fctafg™”C function
is a fctag" 0C.

Theorem 2.11. A function k : U — V is a fctafg""C (resp. fctag”0C) iff
fOq" Int(k(N)) < k(f0g"Int(N)) (resp. fg"0 Int(k(N)) < k(fg"0Int(N)) VY fs A
of U.

Theorem 2.12. For any bijection mapping k : (U,7) — (V,0),
(i) k=% is a fcta@g" Irr (resp. fctag"OIrr),

(ii) k is a fctaBg"" O (resp. fctag" 60),

(iii) k is a fctaBg""C (resp. fctag" 0C),

are equivalent.
Proof. (i) — (ii) Let U be a f0g"0 set in U. Assume that k=1 is a fctafg” Irr,
thus we have (k=1)"(U) = k(U) is a f0g"oin V.

(i7) — (ii) and

(7i1) — (i) are similar.
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Theorem 2.13. Ifk : U — V is both fctabgslrr and fcta@g”C, then k is a
fetafg" C.

Proof. Suppose k is both fctafgslrr and fctafg”C. By Theorem 2.4, k() is a
f0g"cin Y,V f0g”c \in U. Then by definition k is a fctalg”" C.

Theorem 2.14. If k : U — V is both fctabgslrr and fctag”0C, then k is a
fetag" 0C.

3. Fuzzy Contra 0g¢"”-homeomorphism in Fuzzy Topological Space

Definition 3.1. A function k : U — V is called fuzzy contra homeomorphism (in
short fcta-Hom) if k and k=1 are fctaCts.

Definition 3.2. A function k : U — V s called fuzzy contra g0 (resp. 0¢" and

g0 )-homeomorphism ( in short fctag”0-Hom (resp. fctalg"”-Hom and fctagl'0-
Hom)) if k and k=" are fctag”0Cts (resp. fctafg”Cts and fctag!”0Cts).

FCG"0-k(U,7) (resp. FCOG"-k(U,T) and FCGY0-k(U,T)) denote the family of
all fetag”9-Hom (resp. fctalqg”-Hom and fctag!'0-Hom) of a fts (U, T) onto itself.

Theorem 3.1. FEvery fcta-Hom (resp. fctalg”-Hom and fctag”0-Hom) is a
fetag"8-Hom (resp. fctag”0-Hom and fctag)'0-Hom).
Proof. (i) Let k : U — V be a fcta-Hom. Then k and k~! are fctaCts. By
Theorem 3.8 [16], k and k~! are fctag”0Cts. Hence k is a fctag”f-Hom.

(ii) Let k : U — V be a fctafg”-Hom. Then k and k=' are fctafg”Cts. By
Theorem 3.8 [16], k and k~! are fctag”0Cts. Hence k is a fctag”f-Hom.

(iii) Let k: U — V be a fctag”f-Hom. Then k and k™! are fctag”6-Cts. By
Theorem 3.8 [16], k and k~! are fctag!”0Cts. Hence k is a fctag!”6-Hom.

Example 3.1. Let X = {r,s} = Y and the fs’s U,Q,R and S are defined

byU():06U()—O6Q() 0.5,Q(s) = 0.6; R(r) = 0.6,R(s) = 0.5;
S(r) = 0.4,5(s) = 0.4. Consider 7 = {0,U,Q,1} and ¢ = {0,R,1}. Then k :
(X,7) = (Y,0) sk()—s k(s) = r, is a fctag"f-Hom but not a fcta-Hom as

a
Ucisa fcin X, (k1)U = Sisnot a fcin (Y,0). k=1 : (Y,0) = (X, 7) is not
a fctaCts.

Example 3.2. Let X = {r,s} = Y and the fs’s U,Q,R and S are defined
by U(r) = 0.6,U(s) = 0.6;Q(r) = 0.5,Q(s) = 0.6;R(r) = 0.6,R(s) = 0.5 &
S(r) = 0.5,5(s) = 0.4. Consider 7 = {0,U,Q,1} and ¢ = {0,R,1}. Then k :
(X,7) = (Y,0) as k(r) = s,k(s) = r, is a fctag”f-Hom but not a fctafg”-Hom
as R¢isa fcin Y, k71 (R¢) = S is not a fOg”c. k is not a fctalg"Cts.
Example 3.3. Let X = {p} and the fs’s U,V and R are defined by U(p) =
0.5;Q(p) = 0.7; R(p) = 0.6. Consider 7 = {0, P,Q,1} and ¢ = {0, R,1}. Then
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i:(X,7) = (Y,0) is a fctag”0-Hom but not a fctag”d-Hom, since for a fc set R°
inY,i"'(R°) = R°is not a fg”fc. Hence k : (X, 7) — (Y,0) is not a fctag”0C'ts.

From the Examples 3.1 to 3.3, we get

fcta-Hom

\
fetafg"-Hom = fctag”#-Hom — fctag!'6-Hom

Theorem 3.2. Ifk:U — V is a fctag”0-Hom and U and V' are fTymgs then k
15 a fcta-Hom.
Proof. Let k : U — V be a fctag”f-Hom. Then k and k=1 are fctag”0Cts. To
prove that k and k' are fctaCts. Let F,in V, be a fc. Then k~'(F), in U, is
a fg"fc, since k is a fctag”§Cts. Also since U is fTymgs, k™' (F), in U, is a fe.
Hence k is a fctaC'ts.

Now, let F, in U, be a fc. Then (k=17 }(F) =
k~'is a fctag”Cts. Also, since V is a fTymps, k(F
is a fctaCts, thus k is a fcta-Hom.

Theorem 3.3. Ifk:U — V is a fctadg”-Hom and U and V are fTyyns then k
s a fcta-Hom.

Proof. Let k : U — V be a fctafg”-Hom. Then k and k=1 are fctafg”Cts. To
prove that k& and k=1 are fctaCts. Let F, in V, be a fc. Then k~1(F), in U, is a
f0g"¢c, since k is a fctafg”Cts. Also since U is a fTyyms, k™'(F), in U, is a fc.
Hence k is a fctaCts. Now, let F, in U, be a fc. Then (k™" "Y(F) = k(F) is a
f0g"c set in V, since k™! is a fctafg” Cts. Also, since V' is a fTpyms, k(F) is a fc
set in V. Hence k=1 is a fctaCts, thus k is a fcta-Hom.

Theorem 3.4. Let k: U — V' be a bijective function,

E(F),in V, is a fg"fc, since
)is a fcset in V. Hence k™1

i) kis a fctaBg"-Hom
(1) fctafyg :
(i1) k is both fctaBg"Cts and fctadg” O maps,
(11i) k is both fctabg”Cts and fctafg” C maps,

are equivalent.
Proof. (i) = (ii): Let k be a fctafg”-Hom. Then k and k~! are fctafg” Cts. To
prove that k is a fctafg™ O map. Let U be a fo set in U. Since k™ : Q — U is a
fctabBg"Cts, (k=1)"Y(U) = k(U) is a f0g" 0 in V. Hence k is a fctafg” O maps.
(i) = (i): Let k be both fctaflg”O and fctafg”Cts map. To prove that
“1:Q — Uis a fctalg"Cts. Let V be a fo set in U. Then k(U), in V, is a
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f0g" 0. Since k is a fctafg”O. Now (k~1)"1(U) = k(U) is a f0g" 0 in V. Therefore
E~1:Q — Pis a fctafg"Cts. Hence k is fctafg”-Hom.

(ii) = (ili): Let k be both fctafg”Cts and fctafg”O map. To prove that k
is a fcta@g”C map. Let F, in U, be a fc, then 1 — F, in U, is a fo. Since k is a
fetabg"O, k(1 — F), in V, is f0g"o. Now k(1 — F) = 1 — k(F). Therefore k(F),
inV,isa f0g”c. Hence k is a fctabq"C.

(iii) = (i): Let k be both fctafg”Cts and fctafg”C maps. To prove that k is
a fcta@g”-Hom. Let F, in U, be a fc. Then k(F), in V, is a f0g"c, since k is a
fctaBg"C. Now k(F) = (k1) 7Y(F) is a f0g"c set in V. Therefore k™' : Q — U
is a fctafg"' Cts. Hence k is a fctafg”-Hom.

Theorem 3.5. Let k: U — V be a bijective function.
(1) k is a fctag”6-Hom,

(ii) k is both fctag"0Cts and fctag” 00 maps,

(111) k is both fctag”0Cts and fctag”0C maps,

are equivalent.
Proof. (i) = (ii): Let k be a fctag”0-Hom. Then k and k~' are fctag”0Cts. To
prove that k is a fctag”0O map, let U be a fo set in U. Since k™' : Q — U is a
fctag”0Cts, (k=) "1 (U) = k(U) is a fg"0o in Q. Hence k is a fctag”fO maps.

(ii) = (i): Let k be both fctag”0O and fctag”0Cts map. To prove that
k=1 Q — Uisa fctag”0Cts, let V be a foset in U. Then k(U), in V, is a fg"0o.
Since k is a fctag”00. Now (k=1)"YU) = k(U) is a fg"0o in V. Therefore

fetag ( ) fg

E~1:Q — Uis a fctag”0Cts. Hence k is a fctag”6-Hom.

(ii) = (ili): Let k be both fctag”0Cts and fctag”#O map. To prove that k
is a fctag”OC map, let F, in U, be a fc, then 1 — F, in U, is a fo. Since k is a
fetag"00, k(1 —F),in V,isa fg"0o. Now k(1 — F') = 1 — k(F). Therefore k(F),
inV,isa f¢g"0c. Hence k is a fctag"0C.

(iii) = (i): Let k be both fctag”0Cts and fctag”0C maps. To prove that & is a

ctag”0-Hom, let F',in U, be a fc. Then k(F),in V,isa f¢"0cand k=1 : Q — U

fetag 7 ) : f (£), ,isa fg Q
is a fctag”0Cts. Hence k is a fctag”6-Hom.

Theorem 3.6. The map goh : U — R is a fctaBg”-Hom if both k : U — V' and
g:Q — R are fctaBg"-Hom with V is a fTygns.

Theorem 3.7. If both k : U — V and g : Q — R are fctag”0-Hom with V is a
fTymgs, then goh :U — R is a fctag"8-Hom.

Theorem 3.8. The map goh : U — R is a fctadg"Cts if k : U — V is a
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fetaBg"-Hom and g : Q — R is a fcta-Hom.

Theorem 3.9. The map goh : U — R is a fctag"0Cts if k : U — V is a
fetag"0-Hom and g : Q — R is a fc-Hom.

Theorem 3.10. The map (go k)™ : R — U is a fctalg"Cts ifk : U — V is a
feta-Hom and g : Q@ — R is a fctafg"”-Hom.

Proof. To show that (go k)™ is a fctafg”Cts, let U be a fo set in U, since
E71:Q — Uis a fctaCts, (k1)1 (U) is a foin V. Also since ¢! : R — V is a
fetabg"Cts, (=)~ (k(U)) = g(k(U)) = (g0 k)=")"'(U), in R, is a f0g"0.

Theorem 3.11. The map (go k)™ : R = U is a fctag"0Cts if k : U — V is a
fcta-Hom and g : Q — R is a fctag"0-Hom.

Proof. To show that (go k)~!is a fctag”0Cts. Let U be a fo set in U. Since
k™2 Q — Uis a fetaCts, (k™)1 (U) is a foin V. Also since g7' : R — V
is a fctag”0Cts, (g7")"Hk(U)) = g(k(U)) = ((go k)"~ HU) is a fg"fo in R.
Therefore (go k)™! is a fctag”0Cts.

Theorem 3.12. If a bijective function k : U — V is fctaBg” -Hom (resp. fctag”0-
Hom) then k(f0g" Int(\)) < Cl(k(X)) (resp. k(fg"0Int(N)) < ClU(k(N)))V fs A
i U.

Theorem 3.13. If a bijective function k : U — V is fctaBg” -Hom (resp. fctag”0-
Hom) then f0g"Int(k™'(n)) < k~1(Cl(n)) (resp. fg"0Int(k™"(n)) < k~1(Cl(n)))
V fsninU.

Theorem 3.14. If a bijective function k : U — V is fctaBg” -Hom (resp. fctag”0-
Hom) then k(f0g"CIL(N)) > Int(k(\)) (resp. k(fg"0CI(\)) > Int(k(\))V fs A
mn U.
Theorem 3.15. If a bijective function k : U — V is fctalg”-Hom then f0g"CI
(k~1U)) > k7Y (Int(U)) for every fs U in U.
Proof. Let k be a fctafg”-Hom.

Then k and k71 are fctafg”Cts. Let U be any fs in Q, now Int(U), in V, is
a fo. As k is fctalg"Cts k= (Int(U)), in U, is f0g"” 0. From Theorem 3.14,

E~t(Int(U)) < f0q"ClLE™ (Int(U)))
< fOg"Cl(k~1(U)).
Hence f0q”Cl(k~Y(U)) > k=1 (Int(U)).

Theorem 3.16. If a bijective function k : U — V is fctag”0-Hom then fg"0CI
(k=Y (U)) > k=Y (Int(U)) for every fs U in U.
Proof. Let k be a fctag”9-Hom. Then both & and k7! are fctag”0Cts. Let U
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be any fsin Q, now Int(U),in V,is a fo. As k is a fctag”0Cts, k=1 (Int(U)), in
U,is a fg"0o. From Theorem 3.14,

k7 (Int(U)) < fg"0CI (int(U)))
< fg"0CI(k~H(U)).

Hence f¢"0CI(k=Y(U)) > k=1 (Int(U)).

Theorem 3.17. The set fctabg”-Hom (U, T) (resp. fctag”0-Hom (U,T)) is a
group under the composition of functions.

Theorem 3.18. Let k: (U,7) — (Y,0) be a fctabg”-Hom (resp. fctag”0-Hom).
Then k induces an isomorphism from the group FCOG"-k(U,T) (resp. FCG"0-
k(U,T)) on to the group FCOG"-k(U,T) (resp. FCG"0-k(U,T)).

4. Conclusion

In this paper, we have discussed about fcfg"”-closed maps, fcfg”-open maps,
feg"B-closed maps, fcg”0-open maps and fcg”f-homeomorphism in fts’s. Also,
some of their properties have been investigated.

"
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