South East Asian J. of Mathematics and Mathematical Sciences Vol. 17, Proceedings (2021), pp. 109-118

ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

FUZZY CONTRA $\theta g'''$ -CLOSED MAPS, $\theta g'''$ -OPEN MAPS AND $\theta g'''$ -HOMEOMORPHISM IN FUZZY TOPOLOGICAL SPACES

A. Saivarajan

Department of Mathematics, Rajah Serfoji Government College, Thanjavur - 613005, Tamil Nadu, INDIA

E-mail: saivam.a20@gmail.com

(Received: Aug. 08, 2021 Accepted: Oct. 01, 2021 Published: Nov. 30, 2021)

Special Issue

Proceedings of International Virtual Conference on "Mathematical Modelling, Analysis and Computing IC- MMAC- 2021"

Abstract: In this paper we introduce a new class of maps namely $fcta\theta g'''C$ maps, $fc\theta g'''O$ maps, $fcg'''\theta C$ maps, $fcg'''\theta O$ maps, $fc\theta g'''$ -homeomorphism and $fcg'''\theta$ -homeomorphism in fts's. Some of their properties have been investigated.

Keywords and Phrases: $fcta\theta g'''C$, $fctag'''\theta C$, $fcta\theta g'''O$, $fctag'''\theta O$, $fctag''''\theta O$, $fctag'''''\theta O$, $fctag'''''\theta O$, $fctag'''''\theta O$, fctag''''' O, fctag'''' O, fctag''''' O, fctag'''' O, fctag''''' O, fctag'''' O, fctag'''' O, fctag'''' O, fctag'''' O,

2020 Mathematics Subject Classification: 54C05.

1. Introduction and Preliminaries

As a generalisation of closed sets, Levine [14] developed generalised closed sets (g-closed sets) in general topology. Introducing and analysing g-closed maps by Malghan in 1984 [15] and g-continuous maps by Balachandran et al. [2] in 1991 enhanced various results in general topology by applying the notions of g-closed sets in general topological spaces. Gnanambal [11] proposed and explored generalised preregular closed sets and generalised preregular continuous maps for generic topological spaces in 1997.

 (U, τ) or simply U refers to fuzzy topological space (abbreviated as fts) in this study. Here we recall various definitions from these papers, "fuzzy θ -closure of λ [9],

fuzzy semi- θ -closure of λ [18], fuzzy θ -closed (briefly, $f\theta c$) [9], fuzzy semi- θ -closed (briefly, $fs\theta c$) [18], fuzzy regular (resp. θ , semi, semi $\theta \& \alpha$)-open (briefly, fro [1] (resp. $f\theta o$ [9], fso [1], $fs\theta o$ [18] & $f\alpha o$ [5])), fuzzy generalized (resp. generalized semi, θ -generalized & θ generalized semi) closed (in short, fgc [3] (resp. fgsc [17], $f\theta gc$ [9] & $f\theta gsc$ [12])), fuzzy semi (resp. θ -semi) generalized closed (in short, fsgc[4] (resp. $f\theta sgc$ [18])), fuzzy g''' (resp. $g^*s \& g''''_{\alpha}$)-closed (briefly, fg'''c [13] (resp. fg^*sc [13] & $fg'''_{\alpha}c$ [13])), fuzzy generalized (resp. generalized semi, θ -generalized, semi generalized, θ -semi generalized, g''', g^*s , g'''_{α} & θ generalized semi) open set (in short, fgo [3] (resp. fgso [17], $f\theta go$ [9], fsgo [4], $f\theta sgo$ [18], fg'''o [13], fg^*so [13], $fg_{\alpha}^{"'}o$ [13] & $f\theta gso$ [12])), fuzzy $\theta g^{"'}$ (resp. θg^*s , $g^{"'}\theta$, $g^*s\theta$ & $g_{\alpha}^{"'}\theta$)-closed [6, 7] (briefly, $f\theta g'''c$ (resp. $f\theta g^*sc$, $fg'''\theta c$, $fg^*s\theta c \& fg'''\theta c$)) set, fuzzy continuous [8] (in short fctats), fuzzy g (resp. $\theta \& \theta gs$)-continuous (in short fgCts [3] (resp. $f\theta Cts$ [18] & $f\theta gsCts$ [12])) function, fuzzy $\theta g'''$ (resp. $g'''\theta$, $g'''\theta$ & θg^*s)-continuous [6, 7] (briefly, $f\theta g'''Cts$ (resp. $fg'''\theta Cts$, $fg'''\theta Cts$ & $f\theta g^*sCts$)), fuzzy $\theta g'''$ (resp. $g'''\theta$)-irresolute [6, 7] (briefly, $f\theta g'''Irr$ (resp. $fg'''\theta Irr$)), fuzzy contra continuous [10] (in short fcCts), fuzzy $T_{\theta q'''}$ -space (briefly $fT_{\theta q'''}s$) [6, 7], fuzzy $T_{q'''\theta}$ -space (briefly $fT_{q'''\theta}s$) [6, 7], fuzzy contra $\theta g'''$ (resp. $g'''\theta$, $g_{\alpha}'''\theta \& \theta g^*s$)-continuous (briefly, $fcta\theta g'''Cts$ (resp. $fctag'''\theta Cts$, $fctag'''\theta Cts$ & $fcta\theta g^*sCts$), fuzzy contra $\theta g'''$ (resp. $g'''\theta$)-irresolute (briefly, $fcta\theta g'''Irr$ (resp. $fctag'''\theta Irr$ ")).

2. Fuzzy Contra $\theta g'''$ -closed and $\theta g'''$ -open maps

Definition 2.1. A function $k: U \to V$ is said to be a fuzzy contra closed (in short fctaC) map if $k(\lambda)$ is a fcta in V, \forall fo set λ in U.

Definition 2.2. A function $k: U \to V$ is said to be a fuzzy contra $\theta g'''$ (resp. $g'''\theta$)-closed (in short $fcta\theta g'''C$ (resp. $fctag'''\theta C$)) map if $k(\lambda)$ is a $f\theta g'''c$ (resp. $fg'''\theta c$) in V, \forall fo set λ in U.

Definition 2.3. A function $k: U \to V$ is said to be a fuzzy contra $\theta g'''$ (resp. $g'''\theta$)-open (in short $fcta\theta g'''O$ (resp. $fctag'''\theta O$)) map if the image of every fo set in U is a $f\theta g'''c$ (resp. $fg'''\theta c$) in V.

Example 2.1. Let $U = \{a\} = V$ and the fs's L & M are defined by L(a) = 0.4, M(a) = 0.8. Consider $\tau = \{0, L, 1\}$ and $\sigma = \{0, M, 1\}$. Then $\mathfrak{i} : (U, \tau) \to (V, \sigma)$ is both $fcta\theta g'''C \& fctag'''\theta C$.

Theorem 2.1. A function $k: U \to V$ is a $fcta\theta g'''C$ (resp. $fctag'''\theta C$) iff \forall fs S of V and for each fcta set U containing $k^{-1}(S) \exists$ a $f\theta g'''o$ (resp. $fg'''\theta o$) set V of $V \ni S \le V$ and $k^{-1}(V) \le U$.

Theorem 2.2. If $k: U \to V$ is a $fcta\theta g'''C$ map and V is a $fT_{\theta g'''}s$, then k is a

fcC.

Theorem 2.3. If $k: U \to V$ is a $fctag'''\theta C$ map and V is a $fT_{g'''\theta}s$, then k is a fctaC.

Definition 2.4. A function $k: U \to V$ is called fuzzy contra θgs -irresolute (briefly, $fcta\theta gsIrr$) if $k^{-1}(\eta)$ is a $f\theta gsc$ in $U \forall f\theta gso \eta$ in V.

Theorem 2.4. If $k: U \to V$ is both $fcta\theta gsIrr$ and $fcta\theta g'''C$ (resp. $fctag'''\theta C$). λ is a $f\theta g'''o$ (resp. $fg'''\theta o$) of U, then $k(\lambda)$ is a $f\theta g'''o$ (resp. $fg'''\theta o$) in V.

Example 2.2. Let $U = \{a\} = Q = R$ and the fs's A, B, D, K & E are defined by A(a) = 0.7; B(a) = 0.6; D(a) = 0.6; K(a) = 0.3; E(a) = 0.8. Consider $\tau = \{0, A, 1\}$, $\sigma = \{0, B, 1\}$ & $\gamma = \{0, D, E, H, 1\}$. Then $\mathfrak{i}_1 : (U, \tau) \to (V, \sigma)$ & $\mathfrak{i}_2 : (V, \sigma) \to (R, \gamma)$ as identity functions. Clearly both \mathfrak{i}_1 and \mathfrak{i}_2 are $fcta\theta g'''C$ (resp. $fctag'''\theta C$) functions but $\mathfrak{i}_2 \circ \mathfrak{i}_1 : (X, \tau) \to (Z, \gamma)$ is not a $fcta\theta g'''C$ (resp. $fctag'''\theta C$) function.

Theorem 2.5. Let $k:(U,\tau)\to (V,\sigma)$ be a $fcta\theta g'''C$ (resp. $fctag'''\theta C$) & $g:(V,\sigma)\to (R,\gamma)$ be both $fcta\theta g'''C$ (resp. $fctag'''\theta C$) & $fcta\theta gsIrr$, then $g\circ h:(U,\tau)\to (R,\gamma)$ is a $fcta\theta g'''C$ (resp. $fctag'''\theta C$).

Theorem 2.6. Let $k:(U,\tau) \to (V,\sigma)$, $g:(V,\sigma) \to (R,\gamma)$ be $fcta\theta g'''C$ (resp. $fctag'''\theta C$) functions and (V,σ) be a $fT_{\theta g'''}s$ (resp. $fT_{g'''\theta}s$). Then $g \circ h:(U,\tau) \to (R,\gamma)$ is a $fcta\theta g'''C$ (resp. $fctag'''\theta C$).

Theorem 2.7. Let $k: (U, \tau) \to (V, \sigma)$ be a fctaC and $g: (V, \sigma) \to (R, \gamma)$ be a fcta $\theta g'''C$ (resp. fcta $g'''\theta C$), then $g \circ h: (U, \tau) \to (R, \gamma)$ is a fcta $\theta g'''C$ (resp. fcta $g'''\theta C$).

Remark 2.1. If $k:(U,\tau)\to (V,\sigma)$ be a $fcta\theta g'''C$ and $g:(V,\sigma)\to (R,\gamma)$ be a fctaC, then $g\circ h$ need not be a $fcta\theta g'''C$.

Example 2.3. Let $U = \{a\} = V = R$ and the fs's A, B, K and E are defined by A(a) = 0.7; B(a) = 0.6; K(a) = 0.3; E(a) = 0.8. Consider $\tau = \{0, A, 1\}$, $\sigma = \{0, B, 1\}$ and $\gamma = \{0, B, E, H, 1\}$. Then (U, τ) & (V, σ) are fts. Then $\mathfrak{i}_1: (U, \tau) \to (V, \sigma)$ is a $fcta\theta g'''C$ (resp. $fctag'''\theta C$) and $\mathfrak{i}_2: (V, \sigma) \to (R, \gamma)$ is a fctaC map but $\mathfrak{i}_2 \circ \mathfrak{i}_1: (U, \tau) \to (R, \gamma)$ is not a $fcta\theta g'''C$ (resp. not $fctag'''\theta C$) function.

Theorem 2.8. The map $g \circ h : (U, \tau) \to (R, \gamma)$, where $k : (U, \tau) \to (V, \sigma)$ and $g : (V, \sigma) \to (R, \gamma)$, is a $fcta\theta g'''C$ (resp. $fctag'''\theta C$).

- (i) If k is surjective fctaCts, then g is a fcta θ g'''C (resp. fctag''' θ C).
- (ii) If g is injective $fcta\theta g'''Irr$ (resp. $fctag'''\theta Irr$), then k is a $fcta\theta g'''C$ (resp. $fctag'''\theta C$).

- **Proof.** (i) Let λ be a fcta in (V, σ) . Then $k^{-1}(\lambda)$ is a fcta in (U, τ) , as k is a fctaCts. Since $g \circ h$ is both $fcta\theta g'''C$ (resp. $fctag'''\theta C$) and surjective, $(g \circ k)(k^{-1}(\lambda)) = g(\lambda)$ is a $f\theta g'''c$ (resp. $fg'''\theta c$) in R. Hence g is a $fcta\theta g'''C$ (resp. $fctag'''\theta C$).
- (ii) Let λ be a fcta in (U, τ) . Then $(g \circ k)(\lambda)$ is a $f\theta g'''c$ (resp. $fg'''\theta c$) in R. Since g is both $fcta\theta g'''Irr$ (resp. $fctag'''\theta Irr$) and injective $g^{-1}(g \circ k)(k^{-1}(\lambda)) = k(\lambda)$ is a $f\theta g'''c$ (resp. $fg'''\theta c$) in V. Hence k is a $fcta\theta g'''C$ (resp. $fctag'''\theta C$).
- **Theorem 2.9.** If $k:(U,\tau)\to (V,\sigma)$ is a bijection then (i) k^{-1} is a $fcta\theta g'''Cts$. (ii) k is a $fcta\theta g'''O$. (iii) k is a $fcta\theta g'''C$. are equivalent. And (iv) k^{-1} is a $fctag'''\theta Cts$, (v) k is a $fctag'''\theta O$, (vi) k is a $fctag'''\theta C$, are equivalent.
- **Theorem 2.10.** A function $k: U \to V$ is a $fcta\theta g'''O$ (resp. $fctag'''\theta O$) iff for each fs S of V and for each fcta set λ containing $k^{-1}(S) \exists$ a $f\theta g'''c$ (resp. $fg'''\theta c$) set K of V containing $S \ni k^{-1}(K) \le F$.

Definition 2.5. A function $k: U \to V$ is said to be a $fcta\theta g'''^*C$ (resp. $fctag'''^*\theta C$) if $k(\lambda)$ is a $f\theta g'''c$ (resp. $fg'''\theta c$) in $V \forall f\theta g'''c$ (resp. $fg'''\theta c$) set λ in U.

Remark 2.2.

- (i) Since every fcta set is a $fg'''\theta c$, we have every $fctag'''^*\theta C$ function is a $fctag'''\theta C$.
- (ii) Since every $fcta\theta g'''C$ map is a $fctag'''\theta C$, we have every $fcta\theta g'''^*C$ function is a $fctag'''^*\theta C$.
- **Theorem 2.11.** A function $k: U \to V$ is a $fcta\theta g'''^*C$ (resp. $fctag'''^*\theta C$) iff $f\theta g'''Int(k(\lambda)) \le k(f\theta g'''Int(\lambda))$ (resp. $fg'''\theta Int(k(\lambda)) \le k(fg'''\theta Int(\lambda))) \forall fs \lambda$ of U.

Theorem 2.12. For any bijection mapping $k:(U,\tau)\to (V,\sigma)$,

- (i) k^{-1} is a $fcta\theta q'''Irr$ (resp. $fctaq'''\theta Irr$),
- (ii) k is a $fcta\theta q'''^*O$ (resp. $fctaq'''^*\theta O$),
- (iii) k is a $fcta\theta g'''^*C$ (resp. $fctag'''^*\theta C$),

are equivalent.

Proof. (i) \to (ii) Let U be a $f\theta g'''o$ set in U. Assume that k^{-1} is a $fcta\theta g'''Irr$, thus we have $(k^{-1})^{-1}(U) = k(U)$ is a $f\theta g'''o$ in V.

- $(ii) \rightarrow (iii)$ and
- $(iii) \rightarrow (i)$ are similar.

Theorem 2.13. If $k: U \to V$ is both $fcta\theta gsIrr$ and $fcta\theta g'''C$, then k is a $fcta\theta g'''^*C$.

Proof. Suppose k is both $fcta\theta gsIrr$ and $fcta\theta g'''C$. By Theorem 2.4, $k(\lambda)$ is a $f\theta g'''c$ in Y, $\forall f\theta g'''c$ λ in U. Then by definition k is a $fcta\theta g'''^*C$.

Theorem 2.14. If $k: U \to V$ is both $fcta\theta gsIrr$ and $fctag'''\theta C$, then k is a $fctag'''^*\theta C$.

3. Fuzzy Contra $\theta g'''$ -homeomorphism in Fuzzy Topological Space

Definition 3.1. A function $k: U \to V$ is called fuzzy contra homeomorphism (in short fcta-Hom) if k and k^{-1} are fctaCts.

Definition 3.2. A function $k: U \to V$ is called fuzzy contra $g'''\theta$ (resp. $\theta g'''$ and $g''''\theta$)-homeomorphism (in short $fctag'''\theta$ -Hom (resp. $fcta\theta g'''$ -Hom and $fctag''''\theta$ -Hom)) if k and k^{-1} are $fctag'''\theta Cts$ (resp. $fcta\theta g'''Cts$ and $fctag'''\theta Cts$).

 $FCG'''\theta$ - $k(U,\tau)$ (resp. $FC\theta G'''$ - $k(U,\tau)$ and $FCG'''_{\alpha}\theta$ - $k(U,\tau)$) denote the family of all $fctag'''\theta$ -Hom (resp. $fcta\theta g'''$ -Hom and $fctag'''\theta$ -Hom) of a $fts(U,\tau)$ onto itself.

Theorem 3.1. Every fcta-Hom (resp. $fcta\theta g'''$ -Hom and $fctag'''\theta$ -Hom) is a $fctag'''\theta$ -Hom (resp. $fctag'''\theta$ -Hom and $fctag'''\theta$ -Hom).

Proof. (i) Let $k: U \to V$ be a fcta-Hom. Then k and k^{-1} are fctaCts. By Theorem 3.8 [16], k and k^{-1} are $fctag'''\theta Cts$. Hence k is a $fctag'''\theta$ -Hom.

- (ii) Let $k:U\to V$ be a $fcta\theta g'''$ -Hom. Then k and k^{-1} are $fcta\theta g'''Cts$. By Theorem 3.8 [16], k and k^{-1} are $fctag'''\theta Cts$. Hence k is a $fctag'''\theta$ -Hom.
- (iii) Let $k:U\to V$ be a $fctag'''\theta$ -Hom. Then k and k^{-1} are $fctag'''\theta$ -Cts. By Theorem 3.8 [16], k and k^{-1} are $fctag'''\theta$ -Cts. Hence k is a $fctag'''\theta$ -Hom.

Example 3.1. Let $X = \{r, s\} = Y$ and the fs's U, Q, R and S are defined by U(r) = 0.6, U(s) = 0.6; Q(r) = 0.5, Q(s) = 0.6; R(r) = 0.6, R(s) = 0.5; S(r) = 0.4, S(s) = 0.4. Consider $\tau = \{0, U, Q, 1\}$ and $\sigma = \{0, R, 1\}$. Then $k : (X, \tau) \to (Y, \sigma)$ as k(r) = s, k(s) = r, is a $fctag'''\theta$ -Hom but not a fcta-Hom as U^c is a fc in X, $(k^{-1})^{-1}(U^c) = S$ is not a fc in (Y, σ) . $k^{-1} : (Y, \sigma) \to (X, \tau)$ is not a fctaCts.

Example 3.2. Let $X = \{r, s\} = Y$ and the fs's U, Q, R and S are defined by U(r) = 0.6, U(s) = 0.6; Q(r) = 0.5, Q(s) = 0.6; R(r) = 0.6, R(s) = 0.5 & S(r) = 0.5, S(s) = 0.4. Consider $\tau = \{0, U, Q, 1\}$ and $\sigma = \{0, R, 1\}$. Then $k : (X, \tau) \to (Y, \sigma)$ as k(r) = s, k(s) = r, is a $fctag'''\theta$ -Hom but not a $fcta\theta g'''$ -Hom as R^c is a fc in $Y, k^{-1}(R^c) = S$ is not a $f\theta g'''c$. k is not a $fcta\theta g'''Cts$.

Example 3.3. Let $X = \{p\}$ and the fs's U, V and R are defined by U(p) = 0.5; Q(p) = 0.7; R(p) = 0.6. Consider $\tau = \{0, P, Q, 1\}$ and $\sigma = \{0, R, 1\}$. Then

 $\mathfrak{i}:(X,\tau)\to (Y,\sigma)$ is a $fctag_{\alpha}^{\prime\prime\prime}\theta$ -Hom but not a $fctag^{\prime\prime\prime}\theta$ -Hom, since for a fc set R^c in $Y,\mathfrak{i}^{-1}(R^c)=R^c$ is not a $fg^{\prime\prime\prime}\theta c$. Hence $k:(X,\tau)\to (Y,\sigma)$ is not a $fctag^{\prime\prime\prime}\theta Cts$.

From the Examples 3.1 to 3.3, we get

$fcta\text{-}\mathbf{Hom} \\ \downarrow \\ fcta\theta g'''\text{-}\mathbf{Hom} \Longrightarrow fctag'''\theta\text{-}\mathbf{Hom} \Longrightarrow fctag'''\theta\text{-}\mathbf{Hom}$

Theorem 3.2. If $k: U \to V$ is a $fctag'''\theta$ -Hom and U and V are $fT_{g'''\theta}s$ then k is a fcta-Hom.

Proof. Let $k: U \to V$ be a $fctag'''\theta$ -Hom. Then k and k^{-1} are $fctag'''\theta Cts$. To prove that k and k^{-1} are fctaCts. Let F, in V, be a fc. Then $k^{-1}(F)$, in U, is a $fg'''\theta c$, since k is a $fctag'''\theta Cts$. Also since U is $fT_{g'''\theta}s$, $k^{-1}(F)$, in U, is a fc. Hence k is a fctaCts.

Now, let F, in U, be a fc. Then $(k^{-1})^{-1}(F) = k(F)$, in V, is a $fg'''\theta c$, since k^{-1} is a $fctag'''\theta Cts$. Also, since V is a $fT_{g'''\theta}s$, k(F) is a fc set in V. Hence k^{-1} is a fctaCts, thus k is a fcta-Hom.

Theorem 3.3. If $k: U \to V$ is a $fcta\theta g'''$ -Hom and U and V are $fT_{\theta g'''}s$ then k is a fcta-Hom.

Proof. Let $k: U \to V$ be a $fcta\theta g'''$ -Hom. Then k and k^{-1} are $fcta\theta g'''Cts$. To prove that k and k^{-1} are fctaCts. Let F, in V, be a fc. Then $k^{-1}(F)$, in U, is a $f\theta g'''c$, since k is a $fcta\theta g'''Cts$. Also since U is a $fT_{\theta g'''s}$, $k^{-1}(F)$, in U, is a fc. Hence k is a fctaCts. Now, let F, in U, be a fc. Then $(k^{-1})^{-1}(F) = k(F)$ is a $f\theta g'''c$ set in V, since k^{-1} is a $fcta\theta g'''Cts$. Also, since V is a $fT_{\theta g'''s}$, k(F) is a fc set in V. Hence k^{-1} is a fctaCts, thus k is a fcta-Hom.

Theorem 3.4. Let $k: U \to V$ be a bijective function,

- (i) k is a $fcta\theta g'''$ -Hom,
- (ii) k is both $fcta\theta g'''Cts$ and $fcta\theta g'''O$ maps,
- (iii) k is both $fcta\theta g'''Cts$ and $fcta\theta g'''C$ maps,

are equivalent.

- **Proof.** (i) \Rightarrow (ii): Let k be a $fcta\theta g'''$ -Hom. Then k and k^{-1} are $fcta\theta g'''Cts$. To prove that k is a $fcta\theta g'''O$ map. Let U be a fo set in U. Since $k^{-1}:Q\to U$ is a $fcta\theta g'''Cts$, $(k^{-1})^{-1}(U)=k(U)$ is a $f\theta g'''o$ in V. Hence k is a $fcta\theta g'''O$ maps.
- (ii) \Rightarrow (i): Let k be both $fcta\theta g'''O$ and $fcta\theta g'''Cts$ map. To prove that $k^{-1}: Q \to U$ is a $fcta\theta g'''Cts$. Let V be a fo set in U. Then k(U), in V, is a

- $f\theta g'''o$. Since k is a $fcta\theta g'''O$. Now $(k^{-1})^{-1}(U) = k(U)$ is a $f\theta g'''o$ in V. Therefore $k^{-1}: Q \to P$ is a $fcta\theta g'''Cts$. Hence k is $fcta\theta g'''-Hom$.
- (ii) \Rightarrow (iii): Let k be both $fcta\theta g'''Cts$ and $fcta\theta g'''O$ map. To prove that k is a $fcta\theta g'''C$ map. Let F, in U, be a fc, then 1-F, in U, is a fo. Since k is a $fcta\theta g'''O$, k(1-F), in V, is $f\theta g'''o$. Now k(1-F)=1-k(F). Therefore k(F), in V, is a $f\theta g'''c$. Hence k is a $fcta\theta g'''C$.
- (iii) \Rightarrow (i): Let k be both $fcta\theta g'''Cts$ and $fcta\theta g'''C$ maps. To prove that k is a $fcta\theta g'''$ -Hom. Let F, in U, be a fc. Then k(F), in V, is a $f\theta g'''c$, since k is a $fcta\theta g'''C$. Now $k(F) = (k^{-1})^{-1}(F)$ is a $f\theta g'''c$ set in V. Therefore $k^{-1}: Q \to U$ is a $fcta\theta g'''Cts$. Hence k is a $fcta\theta g'''$ -Hom.

Theorem 3.5. Let $k: U \to V$ be a bijective function.

- (i) k is a $fctag'''\theta$ -Hom,
- (ii) k is both $fctag'''\theta Cts$ and $fctag'''\theta O$ maps,
- (iii) k is both $fctag'''\theta Cts$ and $fctag'''\theta C$ maps,

are equivalent.

- **Proof.** (i) \Rightarrow (ii): Let k be a $fctag'''\theta$ -Hom. Then k and k^{-1} are $fctag'''\theta Cts$. To prove that k is a $fctag'''\theta O$ map, let U be a fo set in U. Since $k^{-1}:Q\to U$ is a $fctag'''\theta Cts$, $(k^{-1})^{-1}(U)=k(U)$ is a $fg'''\theta o$ in Q. Hence k is a $fctag'''\theta O$ maps.
- (ii) \Rightarrow (i): Let k be both $fctag'''\theta O$ and $fctag'''\theta Cts$ map. To prove that $k^{-1}:Q\to U$ is a $fctag'''\theta Cts$, let V be a fo set in U. Then k(U), in V, is a $fg'''\theta o$. Since k is a $fctag'''\theta O$. Now $(k^{-1})^{-1}(U)=k(U)$ is a $fg'''\theta o$ in V. Therefore $k^{-1}:Q\to U$ is a $fctag'''\theta Cts$. Hence k is a $fctag'''\theta$ -Hom.
- (ii) \Rightarrow (iii): Let k be both $fctag'''\theta Cts$ and $fctag'''\theta O$ map. To prove that k is a $fctag'''\theta C$ map, let F, in U, be a fc, then 1-F, in U, is a fo. Since k is a $fctag'''\theta O$, k(1-F), in V, is a $fg'''\theta o$. Now k(1-F)=1-k(F). Therefore k(F), in V, is a $fg'''\theta c$. Hence k is a $fctag'''\theta C$.
- (iii) \Rightarrow (i): Let k be both $fctag'''\theta Cts$ and $fctag'''\theta C$ maps. To prove that k is a $fctag'''\theta$ -Hom, let F, in U, be a fc. Then k(F), in V, is a $fg'''\theta c$ and $k^{-1}: Q \to U$ is a $fctag'''\theta Cts$. Hence k is a $fctag'''\theta$ -Hom.
- **Theorem 3.6.** The map $g \circ h : U \to R$ is a $fcta\theta g'''$ -Hom if both $k : U \to V$ and $g : Q \to R$ are $fcta\theta g'''$ -Hom with V is a $fT_{\theta g'''}s$.
- **Theorem 3.7.** If both $k: U \to V$ and $g: Q \to R$ are $fctag'''\theta$ -Hom with V is a $fT_{g'''\theta}s$, then $g \circ h: U \to R$ is a $fctag'''\theta$ -Hom.
- **Theorem 3.8.** The map $g \circ h : U \to R$ is a $fcta\theta g'''Cts$ if $k : U \to V$ is a

 $fcta\theta g'''$ -Hom and $g:Q\to R$ is a fcta-Hom.

Theorem 3.9. The map $g \circ h : U \to R$ is a $fctag'''\theta Cts$ if $k : U \to V$ is a $fctag'''\theta$ -Hom and $g : Q \to R$ is a fc-Hom.

Theorem 3.10. The map $(g \circ k)^{-1} : R \to U$ is a $fcta\theta g'''Cts$ if $k : U \to V$ is a fcta-Hom and $g : Q \to R$ is a $fcta\theta g'''-Hom$.

Proof. To show that $(g \circ k)^{-1}$ is a $fcta\theta g'''Cts$, let U be a fo set in U, since $k^{-1}: Q \to U$ is a fctaCts, $(k^{-1})^{-1}(U)$ is a fo in V. Also since $g^{-1}: R \to V$ is a $fcta\theta g'''Cts$, $(g^{-1})^{-1}(k(U)) = g(k(U)) = ((g \circ k)^{-1})^{-1}(U)$, in R, is a $f\theta g'''o$.

Theorem 3.11. The map $(g \circ k)^{-1} : R \to U$ is a $fctag'''\theta Cts$ if $k : U \to V$ is a fcta-Hom and $g : Q \to R$ is a $fctag'''\theta$ -Hom.

Proof. To show that $(g \circ k)^{-1}$ is a $fctag'''\theta Cts$. Let U be a fo set in U. Since $k^{-1}: Q \to U$ is a fctaCts, $(k^{-1})^{-1}(U)$ is a fo in V. Also since $g^{-1}: R \to V$ is a $fctag'''\theta Cts$, $(g^{-1})^{-1}(k(U)) = g(k(U)) = ((g \circ k)^{-1})^{-1}(U)$ is a $fg'''\theta o$ in R. Therefore $(g \circ k)^{-1}$ is a $fctag'''\theta Cts$.

Theorem 3.12. If a bijective function $k: U \to V$ is $fcta\theta g'''$ -Hom (resp. $fctag'''\theta$ -Hom) then $k(f\theta g'''Int(\lambda)) \leq Cl(k(\lambda))$ (resp. $k(fg'''\theta Int(\lambda)) \leq Cl(k(\lambda))) \forall fs \lambda$ in U.

Theorem 3.13. If a bijective function $k: U \to V$ is $fcta\theta g'''$ -Hom (resp. $fctag'''\theta$ -Hom) then $f\theta g'''Int(k^{-1}(\eta)) \le k^{-1}(Cl(\eta))$ (resp. $fg'''\theta Int(k^{-1}(\eta)) \le k^{-1}(Cl(\eta))$) $\forall fs \eta \text{ in } U$.

Theorem 3.14. If a bijective function $k: U \to V$ is $fcta\theta g'''$ -Hom (resp. $fctag'''\theta$ -Hom) then $k(f\theta g'''Cl(\lambda)) \geq Int(k(\lambda))$ (resp. $k(fg'''\theta Cl(\lambda)) \geq Int(k(\lambda))) \forall fs \lambda$ in U.

Theorem 3.15. If a bijective function $k: U \to V$ is $fcta\theta g'''$ -Hom then $f\theta g'''Cl(k^{-1}(U)) \ge k^{-1}(Int(U))$ for every $fs\ U$ in U.

Proof. Let k be a $fcta\theta g'''$ -Hom.

Then k and k^{-1} are $fcta\theta g'''Cts$. Let U be any fs in Q, now Int(U), in V, is a fo. As k is $fcta\theta g'''Cts$ $k^{-1}(Int(U))$, in U, is $f\theta g'''o$. From Theorem 3.14,

$$k^{-1}(Int(U)) \le f\theta g'''Cl(k^{-1}(Int(U)))$$

$$\le f\theta g'''Cl(k^{-1}(U)).$$

Hence $f\theta g'''Cl(k^{-1}(U)) \ge k^{-1}(Int(U))$.

Theorem 3.16. If a bijective function $k: U \to V$ is $fctag'''\theta$ -Hom then $fg'''\theta Cl(k^{-1}(U)) \ge k^{-1}(Int(U))$ for every $fs\ U$ in U.

Proof. Let k be a $fctag'''\theta$ -Hom. Then both k and k^{-1} are $fctag'''\theta Cts$. Let U

be any fs in Q, now Int(U), in V, is a fo. As k is a $fctag'''\theta Cts$, $k^{-1}(Int(U))$, in U, is a $fg'''\theta o$. From Theorem 3.14,

$$k^{-1}(Int(U)) \le fg'''\theta Cl(k^{-1}(int(U)))$$

$$\le fg'''\theta Cl(k^{-1}(U)).$$

Hence $fg'''\theta Cl(k^{-1}(U)) \ge k^{-1}(Int(U))$.

Theorem 3.17. The set $fcta\theta g'''$ -Hom (U, τ) (resp. $fctag'''\theta$ -Hom (U, τ)) is a group under the composition of functions.

Theorem 3.18. Let $k:(U,\tau) \to (Y,\sigma)$ be a $fcta\theta g'''$ -Hom (resp. $fctag'''\theta$ -Hom). Then k induces an isomorphism from the group $FC\theta G'''$ - $k(U,\tau)$ (resp. $FCG'''\theta$ - $k(U,\tau)$) on to the group $FC\theta G'''$ - $k(U,\tau)$ (resp. $FCG'''\theta$ - $k(U,\tau)$).

4. Conclusion

In this paper, we have discussed about $fc\theta g'''$ -closed maps, $fc\theta g'''$ -open maps, $fcg'''\theta$ -closed maps, $fcg'''\theta$ -open maps and $fcg'''\theta$ -homeomorphism in fts's. Also, some of their properties have been investigated.

References

- [1] Azad K. K., On fuzzy semi continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl., 82 (1) (1981), 14-32.
- [2] Balachandran K., Sundaram P. and Maki H., On generalized continuous maps in topological spaces, Mem. Fac. Kochi. Univ. (Math.), 12 (1991), 5-13.
- [3] Balasubramanian G. and Sundaram P., On some generalizations of fuzzy continuous functions, Fuzzy Sets and Systems, 86 (1997), 93-100.
- [4] Balasubramanian G., On fuzzy-pre-separation axiom, Bull. Calcutta Math Soc., 90 (6) (1998), 427-434.
- [5] Balasubramanian G., and Chandrasekar V., Totally fuzzy semi continuous functions, Bull. Calcutta Math Soc., 92 (4) (2000), 305-312.
- [6] Chandrasekar V. and Anandajothi G., $\theta g'''$ -open sets in fuzzy topological spaces, Malaya Journal of Matematik, S (1) (2020), 524-529.
- [7] Chandrasekar V. and Anandajothi G., Another theta generalized closed sets in fuzzy topological spaces, International Journal of Mathematical Archive, 12 (1) (2017), 39-47.

- [8] Chang C. L., Fuzzy Topological Spaces, J. Math. Anal. Appl., 24 (1968), 182-190.
- [9] El-Shafei M. E. and Zakari A., θ -generalized closed sets in fuzzy topological spaces, The Arabian Journal for Science and Engineering, 31 (2A) (2006), 197-206.
- [10] Ekici E. and Kerre E., On fuzzy contra-continuities, Advances in Fuzzy Mathematics, 1 (2006), 35-44.
- [11] Gnanambal Y., On generalized preregular closed sets in topological spaces, Indian J. of Pure appl. Math., 28 (3) (1997), 351-360.
- [12] Hakeem A. and Othman, On fuzzy θ -generalized- semi-closed sets, Journal of Advanced Studies in Topology, 7 (2) (2016), 84-92.
- [13] Jeyaraman M., Rajalakshmi J. and Ravi O., Another generalization of closed sets in fuzzy topological spaces, International Journal of Mathematical Archive, 4 (8) (2013), 187-192.
- [14] Levine N., Generalized closed sets in topology, Rendiconti del Circolo. Matematico di Palermo, 19 (2) (1970), 89-96.
- [15] Malghan S. R. and Benchalli S. S., Open maps, closed maps and local compactness in fuzzy topological spaces, J. Math. Anal. Appl., 99 (1984), 338-349.
- [16] Saivarajan A., Fuzzy Contra $\theta g'''$ -Continuous and Irresolute Functions in Fuzzy Topological Spaces, Malaya Journal of Matematik, 9 (1) (2021), 515-518.
- [17] Saraf R. K., Khanna M., On gs-closed set in fuzzy topology, J. Indian Acad. Math., 25 (1) (2003), 133-143.
- [18] Salleh Zabidin and Wahab N. A. F. Abdul, θ -semi-generalized closed sets in fuzzy topological spaces, Bull. Malays. Math. Sci. Soc., 36 (4) (2013), 1151-1164.