ON ALAN DAY'S DOUBLING CONSTRUCTION IN BOOLEAN ALGEBRA

D. Premalatha and Gladys Mano Amirtha V.
Department of Mathematics, Rani Anna Government College for Women, Tirunelveli - 627008, Tamil Nadu, INDIA
E-mail : lathaaedward@gmail.com, gladyspeter3@gmail.com

(Received: Aug. 08, 2021 Accepted: Oct. 01, 2021 Published: Nov. 30, 2021)
Special Issue
Proceedings of International Virtual Conference on
"Mathematical Modelling, Analysis and Computing IC- MMAC- 2021"
Abstract: In this paper, we prove that in a Boolean Algebra, doubling of an interval makes it distributive but not Boolean.

Keywords and Phrases: Lattices, boolean algebra, doubling construction in lattices.

2020 Mathematics Subject Classification: 44A99.

1. Introduction

G. Gratzer in his paper [4] introduced a new lattice L^{U} from a given lattice L by adding an element a^{U} called the double of $a \neq 0,1$ in L where $L^{U}=L \cup\left\{a^{U}\right\}$ with a new order denoted by \leq^{U}. Following that construction, A. Day [1] introduced a similar construction $L[I]$ by doubling an interval I of a given lattice L. After that it witnessed many developments, e.g. see [2], [3], [6]. In the paper [3] entitled 'Doubling Constructions in Lattice Theory', Alan Day mentioned the following result which appeared in [2]: Let L be a distributive lattice and take $I=[u, v]$ in $L, L[I]$ is again distributive if and only if $L=[u, 1] \cup[0, v]$. The proof there is implicit. For Boolean algebras, we give in this paper an explicit proof.

In this section, we give some preliminary definitions needed for the development of the paper. In section 2, we give the proof of the main result and in section 3, we give a counter-example to show that $B_{n}(I)$ is not distributive if I is an intermediate interval. In section 4, we give the conclusion of this paper.
Definition 1.1. [5] A lattice L satisfying the following identities

- $(x \wedge y) \vee z=(x \wedge y) \bigvee(x \wedge z)$
- $x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$
for all $x, y, z \in L$ is called a distributive lattice.
If not, it is a non-distributive lattice.
Definition 1.2. [5] A Boolean lattice is a complemented and bounded distributive lattice.

Definition 1.3. [4] Let L be a lattice and let $a \in L$ such that $a \neq 0,1$. Now, we construct a lattice $L^{U}=L \cup\left\{a^{U}\right\}$ by adding the double of a : the element a^{U}, using the order relation stated as follows:

For $x, y \in L$, let $x \leq^{U} y$ if $x \leq y$;
for $x \leq a$, let $x<^{U} a^{U}$;
for $a<x$, let $a^{U} \leq^{U} x$.
Definition 1.4. [4] Let $I=[a, b]$ be an interval of a lattice L. The set $I \times C_{2}$ is formed using the two-element chain $C_{2}=\{0,1\}$. The set $L[I]=(L \backslash I) \cup\left(I \times C_{2}\right)$ is a lattice given by the ordering for $x, y \in L$ and $i, j \in C_{2}$;
$x \leq y$ if $x \leq y$ in L;
$(x, i) \leq y$ if $x \leq y$ in L;
$x \leq(y, j)$ if $x \leq y$ in L;
$(x, i) \leq(y, j)$ if $x \leq y$ in L and $i \leq j$ in C_{2}
$L(I)$ is a lattice got by doubling of the interval I in L. This is Day's definition of doubling of intervals.

2. Main Results - Doubling in Boolean Algebras

Theorem 2.1. Doubling construction of a Boolean algebra by an interval containing 0 is always distributive.
Proof. Let B_{n} denote the Boolean algebra of rank n. Let $a_{1}, a_{2}, \ldots, a_{n}$ be the atoms of B_{n}. Let I be an interval of B_{n} containing 0 of B_{n}, denoted by 0_{L}. Then,

$$
I \simeq B_{k}, \text { for some } k \leq n
$$

Without loss of generality, let us assume that

$$
B_{k}=\left[0, a_{1} a_{2} \ldots a_{k}\right]
$$

which has $a_{1}, a_{2}, \ldots, a_{k}$ as its atoms and where we write $a_{1} a_{2} \ldots a_{k}$ for $a_{1} \vee a_{2} \vee \ldots \vee a_{k}$. When we double the interval B_{k}, we have $B_{k} \times C_{2} \simeq B_{k+1}$.
Now, $B_{n}(I)=\left(B_{n} \backslash I\right) \cup\left(I \times C_{2}\right)$ is the new lattice formed by doubling the interval I.

The elements of B_{k+1} are of the form $\left(a_{m 1} \ldots a_{m s}, 0\right)$ or $\left(a_{p 1} \ldots a_{p q}, 1\right)$, where $a_{m 1}, a_{m 2}, \ldots, a_{m s} \in\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ and $a_{p 1}, \ldots, a_{p q} \in\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$.
We claim that $B_{n}(I)$ is distributive.
Let $x, y, z \in B_{n}(I)$.
Let $x, y \in\left(B_{k} \times C_{2}\right)=B_{k+1}$ and $z \in B_{n} \backslash B_{k}$.

Case 1.

Let $x=\left(a_{m 1} \ldots a_{m s}, 0\right), y=\left(a_{p 1} \ldots a_{p q}, 1\right)$ and $z=\left(a_{p} \ldots a_{r}\right), p<r \leq n$, where $a_{m 1}, \ldots, a_{m s}$ and $a_{p 1}, \ldots, a_{p q}$ are distinct.

Subcase 1a.

Let $a_{m 1}, \ldots, a_{m s} \in\left\{a_{p}, \ldots, a_{r}\right\}, a_{p 1}, \ldots, a_{p q} \notin\left\{a_{p}, \ldots, a_{r}\right\}$
Now, $x \wedge(y \vee z)=\left(a_{m 1} \ldots a_{m s}, 0\right) \wedge\left[\left(a_{p 1} \ldots a_{p q}, 1\right) \vee\left(a_{p} \ldots a_{r}\right)\right]$
$=\left(a_{m 1} \ldots a_{m s}, 0\right) \wedge\left(a_{p 1} \ldots a_{p q} a_{p} \ldots a_{r}\right)$
$=\left(a_{m 1} \ldots a_{m s}, 0\right)$
$(x \wedge y) \vee(x \wedge z)=\left[\left(a_{m 1} \ldots a_{m s}, 0\right) \wedge\left(a_{p 1} \ldots a_{p q}, 1\right)\right] \vee\left[\left(a_{m 1} \ldots a_{m s}, 0\right) \wedge\left(a_{p} \ldots a_{r}\right)\right]$
$=\left(0_{L}, 0\right) \vee\left(a_{m 1} \ldots a_{m s}, 0\right)$, where 0_{L} denotes the lowest element of B_{n} to distinguish it from 0 of C_{2}.
$=\left(a_{m 1} \ldots a_{m s}, 0\right)$
Therefore, $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$.

Subcase 1a ${ }_{1}$.

Let $a_{m 1}=a_{p 1}, a_{m 2}=a_{p 2}, \ldots, a_{m t}=a_{p t}, t<s$,
$a_{m 1}, \ldots, a_{m s}, a_{p 1}, \ldots, a_{p q} \in\left\{a_{p}, \ldots, a_{r}\right\}$
Now, $x \wedge(y \vee z)=\left(a_{m 1} \ldots a_{m s}, 0\right) \wedge\left[\left(a_{p 1} \ldots a_{p q}, 1\right) \vee\left(a_{p} \ldots a_{r}\right)\right]$
$=\left(a_{m 1} \ldots a_{m s}, 0\right) \wedge\left(a_{p} \ldots a_{r}\right)$
$=\left(a_{m 1} \ldots a_{m t}, 0\right)$
$(x \wedge y) \vee(x \wedge z)=\left[\left(a_{m 1} \ldots a_{m s}, 0\right) \wedge\left(a_{p 1} \ldots a_{p q}, 1\right)\right] \vee\left[\left(a_{m 1} \ldots a_{m s}, 0\right) \wedge\left(a_{p} \ldots a_{r}\right)\right]$
$=\left(0_{L}, 0\right) \vee\left(a_{m 1} \ldots a_{m t}, 0\right)$
$=\left(a_{m 1} \ldots a_{m t}, 0\right)$
Therefore, $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$
Subcase 1b.
Let $a_{m 1}, \ldots, a_{m s} \notin\left\{a_{p}, \ldots, a_{r}\right\}$,
$a_{p 1}, \ldots, a_{p q} \in\left\{a_{p}, \ldots, a_{r}\right\}$
Now, $x \wedge(y \vee z)=\left(a_{m 1} \ldots a_{m s}, 0\right) \wedge\left[\left(a_{p 1} \ldots a_{p q}, 1\right) \vee\left(a_{p} \ldots a_{r}\right)\right]$
$=\left(a_{m 1} \ldots a_{m s}, 0\right) \wedge\left(a_{p} \ldots a_{r}\right)$
$=\left(0_{L}, 0\right)$
$(x \wedge y) \vee(x \wedge z)=\left[\left(a_{m 1} \ldots a_{m s}, 0\right) \wedge\left(a_{p 1} \ldots a_{p q}, 1\right)\right] \vee\left[\left(a_{m 1} \ldots a_{m s}, 0\right) \wedge\left(a_{p} \ldots a_{r}\right)\right]$
$=\left(0_{L}, 0\right) \vee\left(0_{L}, 0\right)$
$=\left(0_{L}, 0\right)$
Hence, $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$
Subcase 1c.
Let $a_{m 1}, \ldots, a_{m s} \in\left\{a_{p}, \ldots, a_{r}\right\}$,
$a_{p 1}, \ldots, a_{p q} \in\left\{a_{p}, \ldots, a_{r}\right\}$
Now, $x \wedge(y \vee z)=\left(a_{m 1} \ldots a_{m s}, 0\right) \wedge\left[\left(a_{p 1} \ldots a_{p q}, 1\right) \vee\left(a_{p} \ldots a_{r}\right)\right]$
$=\left(a_{m 1} \ldots a_{m s}, 0\right) \wedge\left(a_{p} \ldots a_{r}\right)$
$=\left(a_{m 1} \ldots a_{m s}, 0\right)$
$(x \wedge y) \vee(x \wedge z)=\left[\left(a_{m 1} \ldots a_{m s}, 0\right) \wedge\left(a_{p 1} \ldots a_{p q}, 1\right)\right] \vee\left[\left(a_{m 1} \ldots a_{m s}, 0\right) \wedge\left(a_{p} \ldots a_{r}\right)\right]$
$=\left(0_{L}, 0\right) \vee\left(a_{m 1} \ldots a_{m s}, 0\right)$
$=\left(a_{m 1} \ldots a_{m s}, 0\right)$
Hence, $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$

Subcase 1d.

Let $a_{m 1}, \ldots, a_{m s} \notin\left\{a_{p}, \ldots, a_{r}\right\}$,

$$
a_{p 1}, \ldots, a_{p q} \notin\left\{a_{p}, \ldots, a_{r}\right\}
$$

Now, $x \wedge(y \vee z)=\left(a_{m 1} \ldots a_{m s}, 0\right) \wedge\left[\left(a_{p 1} \ldots a_{p q}, 1\right) \vee\left(a_{p} \ldots a_{r}\right)\right]$

$$
\begin{aligned}
& =\left(a_{m 1} \ldots a_{m s}, 0\right) \wedge\left(a_{p 1} \ldots a_{p q} a_{p} \ldots a_{r}\right) \\
& =\left(0_{L}, 0\right)
\end{aligned}
$$

$(x \wedge y) \vee(x \wedge z)=\left[\left(a_{m 1} \ldots a_{m s}, 0\right) \wedge\left(a_{p 1} \ldots a_{p q}, 1\right)\right] \vee\left[\left(a_{m 1} \ldots a_{m s}, 0\right) \wedge\left(a_{p} \ldots a_{r}\right)\right]$

$$
=\left(0_{L}, 0\right) \vee\left(0_{L}, 0\right)
$$

$$
=\left(0_{L}, 0\right)
$$

Hence, $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$

Case 2.

Let $x=\left(a_{m 1} \ldots a_{m s}, 1\right), y=\left(a_{p 1} \ldots a_{p q}, 0\right)$ and $z=\left(a_{p} \ldots a_{r}\right), p<r \leq n$

Subcase 2a.

Let $a_{m 1}, \ldots, a_{m s} \in\left\{a_{p}, \ldots, a_{r}\right\}$,

$$
a_{p 1}, \ldots, a_{p q} \notin\left\{a_{p} \ldots a_{r}\right\}
$$

Now, $x \wedge(y \vee z)=\left(a_{m 1} \ldots a_{m s}, 1\right) \wedge\left[\left(a_{p 1} \ldots a_{p q}, 0\right) \vee\left(a_{p} \ldots a_{r}\right)\right]$

$$
=\left(a_{m 1} \ldots a_{m s}, 1\right) \wedge\left(a_{p 1} \ldots a_{p q} a_{p} \ldots a_{r}\right)
$$

$$
=\left(a_{m 1} \ldots a_{m s}, 1\right)
$$

$$
(x \wedge y) \vee(x \wedge z)=\left[\left(a_{m 1} \ldots a_{m s}, 1\right) \wedge\left(a_{p 1} \ldots a_{p q}, 0\right)\right] \vee\left[\left(a_{m 1} \ldots a_{m s}, 1\right) \wedge\left(a_{p} \ldots a_{r}\right)\right]
$$

$$
=\left(0_{L}, 0\right) \vee\left(a_{m 1} \ldots a_{m s}, 1\right)
$$

$$
=\left(a_{m 1} \ldots a_{m s}, 1\right)
$$

Hence, $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$

Subcase 2a ${ }_{1}$.

Let $a_{m 1}=a_{p 1}, a_{m 2}=a_{p 2}, \ldots, a_{m t}=a_{p t}, t<s$,

$$
a_{m 1}, \ldots, a_{m s}, a_{p 1}, \ldots, a_{p q} \in\left\{a_{p}, \ldots, a_{r}\right\}
$$

Now, $x \wedge(y \vee z)=\left(a_{m 1} \ldots a_{m s}, 1\right) \wedge\left[\left(a_{p 1} \ldots a_{p q}, 0\right) \vee\left(a_{p} \ldots a_{r}\right)\right]$

$$
\begin{aligned}
& =\left(a_{m 1} \ldots a_{m s}, 1\right) \wedge\left(a_{p} \ldots a_{r}\right) \\
& =\left(a_{m 1} \ldots a_{m s}, 1\right)
\end{aligned}
$$

$(x \wedge y) \vee(x \wedge z)=\left[\left(a_{m 1} \ldots a_{m s}, 1\right) \wedge\left(a_{p 1} \ldots a_{p q}, 0\right)\right] \vee\left[\left(a_{m 1} \ldots a_{m s}, 1\right) \wedge\left(a_{p} \ldots a_{r}\right)\right]$
$=\left(0_{L}, 0\right) \vee\left(a_{m 1} \ldots a_{m s}, 1\right)$
$=\left(a_{m 1} \ldots a_{m s}, 1\right)$
Therefore, $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$

Subcase 2b.

Let $a_{m 1}, \ldots, a_{m s} \notin\left\{a_{p}, \ldots, a_{r}\right\}$,

$$
a_{p 1}, \ldots, a_{p q} \in\left\{a_{p}, \ldots, a_{r}\right\}
$$

Now, $x \wedge(y \vee z)=\left(a_{m 1} \ldots a_{m s}, 1\right) \wedge\left[\left(a_{p 1} \ldots a_{p q}, 0\right) \vee\left(a_{p} \ldots a_{r}\right)\right]$
$=\left(a_{m 1} \ldots a_{m s}, 1\right) \wedge\left(a_{p} \ldots a_{r}\right)$
$=\left(0_{L}, 1\right)$
$(x \wedge y) \vee(x \wedge z)=\left[\left(a_{m 1} \ldots a_{m s}, 1\right) \wedge\left(a_{p 1} \ldots a_{p q}, 0\right)\right] \vee\left[\left(a_{m 1} \ldots a_{m s}, 1\right) \wedge\left(a_{p} \ldots a_{r}\right)\right]$
$=\left(0_{L}, 0\right) \vee\left(0_{L}, 1\right)$
$=\left(0_{L}, 1\right)$
Hence, $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$

Subcase 2c.

Let $a_{m 1}, \ldots, a_{m s} \in\left\{a_{p}, \ldots, a_{r}\right\}$,

$$
a_{p 1}, \ldots, a_{p q} \in\left\{a_{p}, \ldots, a_{r}\right\}
$$

Now, $x \wedge(y \vee z)=\left(a_{m 1} \ldots a_{m s}, 1\right) \wedge\left[\left(a_{p 1} \ldots a_{p q}, 0\right) \vee\left(a_{p} \ldots a_{r}\right)\right]$

$$
\begin{aligned}
& =\left(a_{m 1} \ldots a_{m s}, 1\right) \wedge\left(a_{p} \ldots a_{r}\right) \\
& =\left(a_{m 1} \ldots a_{m s}, 1\right)
\end{aligned}
$$

$(x \wedge y) \vee(x \wedge z)=\left[\left(a_{m 1} \ldots a_{m s}, 1\right) \wedge\left(a_{p 1} \ldots a_{p q}, 0\right)\right] \vee\left[\left(a_{m 1} \ldots a_{m s}, 1\right) \wedge\left(a_{p} \ldots a_{r}\right)\right]$
$=\left(0_{L}, 0\right) \vee\left(a_{m 1} \ldots a_{m s}, 1\right)$
$=\left(a_{m 1} \ldots a_{m s}, 1\right)$
Hence, $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$

Subcase 2d.

Let $a_{m 1}, \ldots, a_{m s} \notin\left\{a_{p}, \ldots, a_{r}\right\}$,

$$
a_{p 1}, \ldots, a_{p q} \notin\left\{a_{p} \ldots a_{r}\right\}
$$

Now, $x \wedge(y \vee z)=\left(a_{m 1} \ldots a_{m s}, 1\right) \wedge\left[\left(a_{p 1} \ldots a_{p q}, 0\right) \vee\left(a_{p} \ldots a_{r}\right)\right]$

$$
=\left(a_{m 1} \ldots a_{m s}, 1\right) \wedge\left(a_{p 1} \ldots a_{p q} a_{p} \ldots a_{r}\right)
$$

$$
\begin{aligned}
& \quad=\left(0_{L}, 1\right) \\
& (x \wedge y) \vee(x \wedge z)=\left[\left(a_{m 1} \ldots a_{m s}, 1\right) \wedge\left(a_{p 1} \ldots a_{p q}, 0\right)\right] \vee\left[\left(a_{m 1} \ldots a_{m s}, 1\right) \wedge\left(a_{p} \ldots a_{r}\right)\right] \\
& \quad=\left(0_{L}, 0\right) \vee\left(0_{L}, 1\right) \\
& \quad=\left(0_{L}, 1\right)
\end{aligned}
$$

Hence, $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$

Case 3.

Let $x=\left(a_{m 1} \ldots a_{m s}, 0\right), y=\left(a_{p 1} \ldots a_{p q}, 0\right)$ and $z=\left(a_{p} \ldots a_{r}\right), p<r \leq n$

Subcase 3a.

Let $a_{m 1}, \ldots, a_{m s} \in\left\{a_{p}, \ldots, a_{r}\right\}$,
$a_{p 1}, \ldots, a_{p q} \notin\left\{a_{p}, \ldots, a_{r}\right\}$
Now, $x \wedge(y \vee z)=\left(a_{m 1} \ldots a_{m s}, 0\right) \wedge\left[\left(a_{p 1 \ldots} \ldots a_{p q}, 0\right) \vee\left(a_{p} \ldots a_{r}\right)\right]$
$=\left(a_{m 1} \ldots a_{m s}, 0\right) \wedge\left(a_{p 1} \ldots a_{p q} a_{p} \ldots a_{r}\right)$
$=\left(a_{m 1} \ldots a_{m s}, 0\right)$

```
\((x \wedge y) \vee(x \wedge z)=\left[\left(a_{m 1} \ldots a_{m s}, 0\right) \wedge\left(a_{p 1} \ldots a_{p q}, 0\right)\right] \vee\left[\left(a_{m 1} \ldots a_{m s}, 0\right) \wedge\left(a_{p} \ldots a_{r}\right)\right]\)
    \(=\left(0_{L}, 0\right) \vee\left(a_{m 1} \ldots a_{m s}, 0\right)\)
    \(=\left(a_{m 1} \ldots a_{m s}, 0\right)\)
```

 Hence, \(x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)\)

Subcase 3a ${ }_{1}$.

Let $a_{m 1}=a_{p 1}, a_{m 2}=a_{p 2}, \ldots, a_{m t}=a_{p t}, t<s$,
$a_{m 1}, \ldots, a_{m s}, a_{p 1}, \ldots, a_{p q} \in\left\{a_{p}, \ldots, a_{r}\right\}$
Now, $x \wedge(y \vee z)=\left(a_{m 1} \ldots a_{m s}, 0\right) \wedge\left[\left(a_{p 1} \ldots a_{p q}, 0\right) \vee\left(a_{p} \ldots a_{r}\right)\right]$
$=\left(a_{m 1} \ldots a_{m s}, 0\right) \wedge\left(a_{p} \ldots a_{r}\right)$
$=\left(a_{m 1} \ldots a_{m s}, 0\right)$
$(x \wedge y) \vee(x \wedge z)=\left[\left(a_{m 1} \ldots a_{m s}, 0\right) \wedge\left(a_{p 1} \ldots a_{p q}, 0\right)\right] \vee\left[\left(a_{m 1} \ldots a_{m s}, 0\right) \wedge\left(a_{p} \ldots a_{r}\right)\right]$
$=\left(0_{L}, 0\right) \vee\left(a_{m 1} \ldots a_{m s}, 0\right)$
$=\left(a_{m 1} \ldots a_{m s}, 0\right)$
Therefore, $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$

Subcase 3b.

Let $a_{m 1}, \ldots, a_{m s} \notin\left\{a_{p}, \ldots, a_{r}\right\}$,
$a_{p 1}, \ldots, a_{p q} \in\left\{a_{p}, \ldots, a_{r}\right\}$
Now, $x \wedge(y \vee z)=\left(a_{m 1} \ldots a_{m s}, 0\right) \wedge\left[\left(a_{p 1} \ldots a_{p q}, 0\right) \vee\left(a_{p} \ldots a_{r}\right)\right]$
$=\left(a_{m 1} \ldots a_{m s}, 0\right) \wedge\left(a_{p 1} \ldots a_{p q} a_{p} \ldots a_{r}\right)$
$=\left(0_{L}, 0\right)$
$(x \wedge y) \vee(x \wedge z)=\left[\left(a_{m 1} \ldots a_{m s}, 0\right) \wedge\left(a_{p 1} \ldots a_{p q}, 0\right)\right] \vee\left[\left(a_{m 1} \ldots a_{m s}, 0\right) \wedge\left(a_{p} \ldots a_{r}\right)\right]$
$=\left(0_{L}, 0\right) \vee\left(0_{L}, 0\right)$
$=\left(0_{L}, 0\right)$
Hence, $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$
Subcase 3c.

Let $a_{m 1}, \ldots, a_{m s} \in\left\{a_{p}, \ldots, a_{r}\right\}$,

$$
a_{p 1}, \ldots, a_{p q} \in\left\{a_{p}, \ldots, a_{r}\right\}
$$

Now, $x \wedge(y \vee z)=\left(a_{m 1} \ldots a_{m s}, 0\right) \wedge\left[\left(a_{p 1} \ldots a_{p q}, 0\right) \vee\left(a_{p} \ldots a_{r}\right)\right]$
$=\left(a_{m 1} \ldots a_{m s}, 0\right) \wedge\left(a_{p} \ldots a_{r}\right)$
$=\left(a_{m 1} \ldots a_{m s}, 0\right)$
$(x \wedge y) \vee(x \wedge z)=\left[\left(a_{m 1} \ldots a_{m s}, 0\right) \wedge\left(a_{p 1} \ldots a_{p q}, 0\right)\right] \vee\left[\left(a_{m 1} \ldots a_{m s}, 0\right) \wedge\left(a_{p} \ldots a_{r}\right)\right]$
$=\left(0_{L}, 0\right) \vee\left(a_{m 1} \ldots a_{m s}, 0\right)$
$=\left(a_{m 1} \ldots a_{m s}, 0\right)$
Hence, $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$

Subcase 3d.

Let $a_{m 1}, \ldots, a_{m s} \notin\left\{a_{p}, \ldots, a_{r}\right\}$,
$a_{p 1}, \ldots, a_{p q} \notin\left\{a_{p}, \ldots, a_{r}\right\}$
Now, $x \wedge(y \vee z)=\left(a_{m 1} \ldots a_{m s}, 0\right) \wedge\left[\left(a_{p 1} \ldots a_{p q}, 0\right) \vee\left(a_{p} \ldots a_{r}\right)\right]$

$$
=\left(a_{m 1} \ldots a_{m s}, 0\right) \wedge\left(a_{p 1} \ldots a_{p q} a_{p \ldots} \ldots a_{r}\right)
$$

$$
=\left(0_{L}, 0\right)
$$

$(x \wedge y) \vee(x \wedge z)=\left[\left(a_{m 1} \ldots a_{m s}, 0\right) \wedge\left(a_{p 1} \ldots a_{p q}, 0\right)\right] \vee\left[\left(a_{m 1} \ldots a_{m s}, 0\right) \wedge\left(a_{p} \ldots a_{r}\right)\right]$
$=\left(0_{L}, 0\right) \vee\left(0_{L}, 0\right)$
$=\left(0_{L}, 0\right)$
Hence, $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$

Case 4.

Let $x=\left(a_{m 1} \ldots a_{m s}, 1\right), y=\left(a_{p 1} \ldots a_{p q}, 1\right)$ and $z=\left(a_{p} \ldots a_{r}\right), p<r \leq n$

Subcase 4a.

Let $a_{m 1}, \ldots, a_{m s} \in\left\{a_{p}, \ldots, a_{r}\right\}$,

$$
a_{p 1}, \ldots, a_{p q} \notin\left\{a_{p}, \ldots, a_{r}\right\}
$$

Now, $x \wedge(y \vee z)=\left(a_{m 1} \ldots a_{m s}, 1\right) \wedge\left[\left(a_{p 1} \ldots a_{p q}, 1\right) \vee\left(a_{p} \ldots a_{r}\right)\right]$

$$
\begin{aligned}
& =\left(a_{m 1} \ldots a_{m s}, 1\right) \wedge\left(a_{p 1} \ldots a_{p q} a_{p} \ldots a_{r}\right) \\
& =\left(a_{m 1} \ldots a_{m s}, 1\right)
\end{aligned}
$$

$(x \wedge y) \vee(x \wedge z)=\left[\left(a_{m 1} \ldots a_{m s}, 1\right) \wedge\left(a_{p 1} \ldots a_{p q}, 1\right)\right] \vee\left[\left(a_{m 1} \ldots a_{m s}, 1\right) \wedge\left(a_{p} \ldots a_{r}\right)\right]$
$=\left(0_{L}, 1\right) \vee\left(a_{m 1} \ldots a_{m s}, 1\right)$
$=\left(a_{m 1} \ldots a_{m s}, 1\right)$
Hence, $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$
Subcase $4 \mathrm{a}_{1}$.
Let $a_{m 1}=a_{p 1}, a_{m 2}=a_{p 2}, \ldots, a_{m t}=a_{p t}, t<s$,
$a_{m 1}, \ldots, a_{m s}, a_{p 1}, \ldots, a_{p q} \in\left\{a_{p}, \ldots, a_{r}\right\}$
Now, $x \wedge(y \vee z)=\left(a_{m 1} \ldots a_{m s}, 1\right) \wedge\left[\left(a_{p 1} \ldots a_{p q}, 1\right) \vee\left(a_{p} \ldots a_{r}\right)\right]$
$=\left(a_{m 1} \ldots a_{m s}, 1\right) \wedge\left(a_{p} \ldots a_{r}\right)$
$=\left(a_{m 1} \ldots a_{m s}, 1\right)$
$(x \wedge y) \vee(x \wedge z)=\left[\left(a_{m 1} \ldots a_{m s}, 1\right) \wedge\left(a_{p 1} \ldots a_{p q}, 1\right)\right] \vee\left[\left(a_{m 1} \ldots a_{m s}, 1\right) \wedge\left(a_{p} \ldots a_{r}\right)\right]$
$=\left(0_{L}, 1\right) \vee\left(a_{m 1} \ldots a_{m s}, 1\right)$
$=\left(a_{m 1} \ldots a_{m s}, 1\right)$
Therefore, $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$
Subcase 4b.
Let $a_{m 1}, \ldots, a_{m s} \notin\left\{a_{p}, \ldots, a_{r}\right\}$,
$a_{p 1}, \ldots, a_{p q} \in\left\{a_{p}, \ldots, a_{r}\right\}$
Now, $x \wedge(y \vee z)=\left(a_{m 1} \ldots a_{m s}, 1\right) \wedge\left[\left(a_{p 1 \ldots} \ldots a_{p q}, 1\right) \vee\left(a_{p} \ldots a_{r}\right)\right]$
$=\left(a_{m 1} \ldots a_{m s}, 1\right) \wedge\left(a_{p} \ldots a_{r}\right)$
$=\left(0_{L}, 1\right)$
$(x \wedge y) \vee(x \wedge z)=\left[\left(a_{m 1} \ldots a_{m s}, 1\right) \wedge\left(a_{p 1 \ldots} \ldots a_{p q}, 1\right)\right] \vee\left[\left(a_{m 1} \ldots a_{m s}, 1\right) \wedge\left(a_{p} \ldots a_{r}\right)\right]$
$=\left(0_{L}, 1\right) \vee\left(0_{L}, 1\right)$
$=\left(0_{L}, 1\right)$
Hence, $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$

Subcase 4c.

Let $a_{m 1}, \ldots, a_{m s} \in\left\{a_{p}, \ldots, a_{r}\right\}$,
$a_{p 1}, \ldots, a_{p q} \in\left\{a_{p}, \ldots, a_{r}\right\}$
Now, $x \wedge(y \vee z)=\left(a_{m 1} \ldots a_{m s}, 1\right) \wedge\left[\left(a_{p 1} \ldots a_{p q}, 1\right) \vee\left(a_{p} \ldots a_{r}\right)\right]$
$=\left(a_{m 1} \ldots a_{m s}, 1\right) \wedge\left(a_{p} \ldots a_{r}\right)$
$=\left(a_{m 1} \ldots a_{m s}, 1\right)$
$(x \wedge y) \vee(x \wedge z)=\left[\left(a_{m 1} \ldots a_{m s}, 1\right) \wedge\left(a_{p 1} \ldots a_{p q}, 1\right)\right] \vee\left[\left(a_{m 1} \ldots a_{m s}, 1\right) \wedge\left(a_{p} \ldots a_{r}\right)\right]$
$=\left(0_{L}, 1\right) \vee\left(a_{m 1} \ldots a_{m s}, 1\right)$
$=\left(a_{m 1} \ldots a_{m s}, 1\right)$
Hence, $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$

Subcase 4d.

Let $a_{m 1}, \ldots, a_{m s} \notin\left\{a_{p}, \ldots, a_{r}\right\}$,
$a_{p 1}, \ldots, a_{p q} \notin\left\{a_{p}, \ldots, a_{r}\right\}$
Now, $x \wedge(y \vee z)=\left(a_{m 1} \ldots a_{m s}, 1\right) \wedge\left[\left(a_{p 1 \ldots} \ldots a_{p q}, 1\right) \vee\left(a_{p} \ldots a_{r}\right)\right]$
$=\left(a_{m 1} \ldots a_{m s}, 1\right) \wedge\left(a_{p 1} \ldots a_{p q} a_{p} \ldots a_{r}\right)$
$=\left(0_{L}, 1\right)$
$\begin{aligned}(x & \wedge y) \vee(x \wedge z)=\left[\left(a_{m 1} \ldots a_{m s}, 1\right) \wedge\left(a_{p 1 \ldots} \ldots a_{p q}, 1\right)\right] \vee\left[\left(a_{m 1} \ldots a_{m s}, 1\right) \wedge\left(a_{p} \ldots a_{r}\right)\right] \\ & =\left(0_{L}, 1\right) \vee\left(0_{L}, 0\right) \\ & =\left(0_{L}, 1\right)\end{aligned}$
Hence, $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$
Hence, in all the above cases, we see that when $x, y \in B_{k} \times C_{2}$ and $z \in B_{n} \backslash B_{k}$, x, y, z satisfy the distributive law.

In a similar way, in the cases when $x \in\left(B_{k} \times C_{2}\right)=B_{k+1}$ and $y, z \in B_{n} \backslash B_{k}$, it can be proved to satisfy the distributive law. In the cases when $x, y, z \in B_{k+1}$ and when $x, y, z \in B_{n} \backslash B_{k}$ the result follows, as B_{n} is distributive.

Thus, we conclude that $B_{n}(I)$ is distributive.

Figure 1: B_{3}

Figure 2: $B_{3}(I)$ where $I=\left[0_{L}, d\right]$
This $B_{3}(I)$ is distributive but not Boolean, as it is not complemented.
Corollary 2.2. Doubling construction of a Boolean algebra by an interval containing 1 is always distributive.

3. Special Cases - A Counter example

In this section, we give a counter example in which doubling of an intermediate interval of B_{3} is not distributive. The following figure $B_{3}(I)$ contains the sublattice

Figure 3: $B_{3}(I)$ where $I=[a, d]$
$\left\{0_{L},(d, 0),(d, 1), c, 1_{L}\right\}$ in the form of N_{5}, a non-modular lattice which shows that $B_{3}(I)$ is not distributive.

4. Conclusion

There is a scope of examining the effect of doubling construction in other types of lattices.

References

[1] Day A., A simple solution of the word problem for lattices, Canad. Math. Bull., 13 (1970), 253-254.
[2] Day A., Herb Gaskill and Werner Poguntke, Distributive lattices with finite projective covers, Pacific Journal of Math., 81 (1979).
[3] Day A., Doubling constructions in lattice theory, Can. J. Math., Vol. 44, (2) (1992), 252-269.
[4] Gratzer G., A property of transferable lattices, Proc. Amer. Soc., 43 (1974), 269-271.
[5] Gratzer G., Lattice Theory: Foundation, Birkhauser (2011).
[6] Nation J. B., Alan Day's doubling construction, Algebra Universalis, 34 (1995), 24-35.

