South East Asian J. of Mathematics and Mathematical Sciences Vol. 17, Proceedings (2021), pp. 59-68

ISSN (Online): 2582-0850
ISSN (Print): 0972-7752

NEIGHBOURLY PSEUDO IRREGULAR NEUTROSOPHIC FUZZY GRAPHS

S. Sivabala and N. R. Santhi Maheswari
PG and Research Department of Mathematics, G. Venkataswamy Naidu College, Kovilpatti, Thoothukudi - 628502, Tamil Nadu, INDIA
E-mail : sivamaths13@gmail.com, nrsmaths@yahoo.com

(Received: Aug. 08, 2021 Accepted: Oct. 01, 2021 Published: Nov. 30, 2021)

Special Issue

Proceedings of International Virtual Conference on
"Mathematical Modelling, Analysis and Computing IC- MMAC- 2021"
Abstract: The idea of pseudo regular and irregular $N_{G}\left(N_{G}\right.$ - Neutrosophic Fuzzy Graph), neighbourly pseudo irregular N_{G} are made known here. We represent some theorems and results of these graphs.
Keywords and Phrases: Pseudo regular and irregular $N_{G}\left(N_{G}\right.$ - Neutrosophic Fuzzy Graph), neighbourly pseudo irregular N_{G}.
2020 Mathematics Subject Classification: 05C78.

1. Introduction and Preliminaries

Divya and J. Malarvizhi introduced the notions and fundamental operations on neutrosophic fuzzy graph [1]. S. Sivabala and N. R. Santhi Maheswari introduced Neighbourly and highly irregular neutrosophic fuzzy graph [3]. These ideas encourage us to introduce Neighbourly pseudo irregular neutrosophic fuzzy graphs.
Definition 1.1. "A neutrosophic fuzzy graph with underlying set V is defined to be a pair $N_{G}=(A, B)$, where
(i) The functions $T_{A}, I_{A}, F_{A}: V \rightarrow[0,1]$ denote the degree of truth membership, degree of indeterminacy membership and the degree of falsity membership of the element $v_{i} \in V$ respectively and $0 \leq T_{A}\left(v_{i}\right)+I_{A}\left(v_{i}\right)+F_{A}\left(v_{i}\right) \leq 3$.
(ii) $E \subseteq V \times V$ where the functions $T_{B}, I_{B}, F_{B}: V \times V \rightarrow[0,1]$ are defined by

$$
\begin{aligned}
T_{B}\left(v_{i}, v_{j}\right) & \leq T_{A}\left(v_{i}\right) \cdot T_{A}\left(v_{j}\right) \\
I_{B}\left(v_{i}, v_{j}\right) & \leq I_{A}\left(v_{i}\right) \cdot I_{A}\left(v_{j}\right) \\
F_{B}\left(v_{i}, v_{j}\right) & \leq F_{A}\left(v_{i}\right) \cdot F_{A}\left(v_{j}\right)
\end{aligned}
$$

for all $v_{i}, v_{j} \in V$, where . means ordinary multiplication denotes the degrees of truth membership, indeterminacy membership and falsity membership of the edge $\left(v_{i}, v_{j}\right) \in E$ respectively, where $0 \leq T_{B}\left(v_{i}, v_{j}\right)+I_{B}\left(v_{i}, v_{j}\right)+F_{B}\left(v_{i}, v_{j}\right) \leq 3$ for all $\left(v_{i}, v_{j}\right) \in E(i, j=1,2, \ldots, n) . "[1]$
Definition 1.2. The degree of a vertex x in N_{G} defined by $d_{N_{G}}(x)=\left(\operatorname{deg}_{T}(x)\right.$, $\operatorname{deg}_{I}(x)$, $\left.\operatorname{deg}_{F}(x)\right)$, where $\operatorname{deg}_{T}(x)=\sum_{x y \in E} T_{B}(x y)$, $\operatorname{deg}_{I}(x)=\sum_{x y \in E} I_{B}(x y)$, $\operatorname{deg}_{F}(x)=\sum_{x y \in E} F_{B}(x y)$. [3]

2. Pseudo degree of a vertex in N_{G}

Definition 2.1. The 2 - degree of a vertex v in N_{G} is defined by $t_{N_{G}}(v)=$ $\sum d_{N_{G}}(u)$, where $d_{N_{G}}(u)$ is the degree of the vertex u which is adjacent with the vertex v.
Definition 2.2. A pseudo degree of a vertex v in N_{G} is denoted by $p d_{N_{G}}(v)$ and is defined by $p d_{N_{G}}(v)=\frac{t_{N_{G}}(v)}{d_{N_{G}}^{*}(v)}$, where $d_{N_{G}}^{*}(v)$ is the number of edges incident at v.
Definition 2.3. Let N_{G} be a neutrosophic fuzzy graph on $G(V, E)$. The total pseudo degree of a vertex v in N_{G} is defined by $\operatorname{tpd}_{N_{G}}(v)=p d_{N_{G}}(v)+\left(T_{A}, I_{A}, F_{A}\right)(v), \forall$ v in V.

3. Pseudo Regular N_{G}

Definition 3.1. If all the vertices of N_{G} have same pseudo degree, then N_{G} is pseudo regular N_{G} simply says $P R N_{G}$.
Definition 3.2. If all the vertices of N_{G} have same total pseudo degree,then N_{G} is totally pseudo regular N_{G} simply says $T P R N_{G}$
Example 3.3. Consider N_{G}.

Fig. 1

In this Fig.1, $p d_{N_{G}}\left(v_{1}\right)=(0.05,0.07,0.09) ; p d_{N_{G}}\left(v_{2}\right)=(0.05,0.07,0.09)$;
$p d_{N_{G}}\left(v_{3}\right)=(0.05,0.07,0.09) ; p d_{N_{G}}\left(v_{4}\right)=(0.05,0.07,0.09)$;
$\operatorname{tpd}_{N_{G}}\left(v_{1}\right)=(0.45,0.57,0.69) ; \operatorname{tpd}_{N_{G}}\left(v_{2}\right)=(0.45,0.57,0.69) ;$
$\operatorname{tpd}_{N_{G}}\left(v_{3}\right)=(0.45,0.57,0.69) ; \operatorname{tpd}_{N_{G}}\left(v_{4}\right)=(0.45,0.57,0.69)$.
Here, every vertices having same pseudo degree and same total pseudo degree.
Hence the N_{G} is $P R N_{G}$ and $T P R N_{G}$.
Remark 3.4. Every $P R N_{G}$ need not be $T P R N_{G}$.
Example 3.5. Consider N_{G}

Fig. 2
In this Fig.2, $p d_{N_{G}}\left(v_{1}\right)=(0.05,0.07,0.09)=p d_{N_{G}}\left(v_{2}\right)=p d_{N_{G}}\left(v_{3}\right)=p d_{N_{G}}\left(v_{4}\right)$;
$\operatorname{tpd}_{N_{G}}\left(v_{1}\right)=(0.15,0.27,0.39) ; \operatorname{tpd}_{N_{G}}\left(v_{2}\right)=(0.25,0.37,0.49)$;
$\operatorname{tpd}_{N_{G}}\left(v_{3}\right)=(0.35,0.47,0.59) ; \operatorname{tpd}_{N_{G}}\left(v_{4}\right)=(0.45,0.57,0.69)$.
Here, every vertices having same pseudo degree but every vertices having distinct total pseudo degrees. Therefore N_{G} is $P R N_{G}$ but not $T P R N_{G}$.
Remark 3.6. Every $T P R N_{G}$ need not be $P R N_{G}$.
Example 3.7. In Fig 3, $p d_{N_{G}}\left(v_{1}\right)=(0.02,0.04,0.06)=p d_{N_{G}}\left(v_{3}\right)$;
$p d_{N_{G}}\left(v_{2}\right)=(0.01,0.02,0.03)$.
$\operatorname{tpd}_{N_{G}}\left(v_{1}\right)=(0.22,0.34,0.46)=\operatorname{tpd}_{N_{G}}\left(v_{2}\right)=t p d_{N_{G}}\left(v_{3}\right)$.

$$
\stackrel{v_{1}(.2, .3, .4)}{\bullet(.01, .02, .03)} \stackrel{v_{2}(.21, .32, .43)}{\bullet(.01, .02, .03)} \bullet v_{3}(.2, .3, .4)
$$

Fig. 3

Here, every vertices having same total pseudo degrees. Therefore this graph is $T P R N_{G}$. But pseudo degree of v_{2} is distinct from the vertices v_{1} and v_{3}. Therefore this is not a $P R N_{G}$.

Theorem 3.8. Let N_{G} be a cycle of length n with $\left(T_{A}, I_{A}, F_{A}\right)$ and $\left(T_{B}, I_{B}, F_{B}\right)$ are constant, then N_{G} is $P R N_{G}$ and $T P R N_{G}$.
Proof. We take N_{G} with $\left(T_{B}, I_{B}, F_{B}\right)$ is constant. i.e. $\left(T_{B}, I_{B}, F_{B}\right)\left(v_{i} v_{j}\right)=$ $\left(c_{T}, c_{I}, c_{F}\right), v_{i} v_{j} \in E, i \neq j$. Then $t_{N_{G}}\left(v_{i}\right)=\sum d_{N_{G}}\left(v_{j}\right)=4\left(T_{B}, I_{B}, F_{B}\right)\left(v_{i} v_{j}\right)$. This implies that $p d_{N_{G}}\left(v_{i}\right)=\frac{t_{N_{G}}\left(v_{i}\right)}{d_{N_{G}}^{*}\left(v_{i}\right)}=\frac{4\left(T_{B}, I_{B}, F_{B}\right)\left(v_{i} v_{j}\right)}{2}=2\left(T_{B}, I_{B}, F_{B}\right)\left(v_{i} v_{j}\right)=$ $2\left(c_{T}, c_{I}, c_{F}\right)$, also a constant $\forall v_{i} v_{j} \in E, i \neq j$. Therefore every vertices have same pseudo degree. Hence N_{G} is $P R N_{G}$.
Now, we take $\left(T_{A}, I_{A}, F_{A}\right)\left(v_{i}\right)=\left(c_{T_{2}}, c_{I_{2}}, c_{F_{2}}\right)$, for all $v_{i} \in V$ where $\left(c_{T_{2}}, c_{I_{2}}, c_{F_{2}}\right)$ is constant. Then $\operatorname{tpd}{N_{G}}\left(v_{i}\right)=p d_{N_{G}}\left(v_{i}\right)+\left(T_{A}, I_{A}, F_{A}\right)\left(v_{i}\right)$, for all $v_{i} \in V$. This implies that $\operatorname{tpd}_{N_{G}}\left(v_{i}\right)=\left(c_{T_{1}}, c_{I_{1}}, c_{F_{1}}\right)+\left(c_{T_{2}}, c_{I_{2}}, c_{F_{2}}\right)=$ constant, $\forall v_{i} \in V$. Hence N_{G} is $T P R N_{G}$.

4. Pseudo irregular N_{G}.

Definition 4.1. N_{G} is said to be pseudo irregular $N_{G}\left(P I N_{G}\right)$ if the adjacent vertices of the vertex $v \in N_{G}$ having distinct pseudo degrees in N_{G}.

Definition 4.2. If the adjacent vertices of the vertex $v \in N_{G}$ having distinct total pseudo degrees, then N_{G} is totally pseudo irregular $N_{G}\left(T P I N_{G}\right)$
Example 4.3. Consider N_{G}

Fig. 4

In this Fig. $4, p d_{N_{G}}\left(v_{1}\right)=(0.04,0.06,0.08)$;
$p d_{N_{G}}\left(v_{2}\right)=(0.045,0.065,0.085) ; p d_{N_{G}}\left(v_{3}\right)=(0.035,0.055,0.075) ;$
$t p d_{N_{G}}\left(v_{1}\right)=(0.14,0.26,0.38) ; \operatorname{tpd}_{N_{G}}\left(v_{2}\right)=(0.245,0.365,0.485) ;$
$t p d_{N_{G}}\left(v_{3}\right)=(0.335,0.455,0.575)$.
Hence this N_{G} is both $P I N_{G}$ and $T P I N_{G}$.
Remark 4.4. Every $P I N_{G}$ need not be $T P I N_{G}$.
Example 4.5. Consider N_{G}

Fig. 5
In Fig. $5, p d_{N_{G}}\left(v_{1}\right)=(0.04,0.06,0.08) ; p d_{N_{G}}\left(v_{2}\right)=(0.045,0.065,0.085)$;
$p d_{N_{G}}\left(v_{3}\right)=(0.035,0.055,0.075) ; \operatorname{tpd}_{N_{G}}\left(v_{1}\right)=(0.345,0.465,0.585) ;$
$t p d_{N_{G}}\left(v_{2}\right)=(0.345,0.465,0.585) ; t p d_{N_{G}}\left(v_{3}\right)=(0.345,0.465,0.585)$.
Hence this N_{G} is $P I N_{G}$ but not $T P I N_{G}$.
Remark 4.6. Every TPIN N_{G} need not be $P I N_{G}$.
Example 4.7. Consider N_{G}

$$
\begin{array}{r}
v_{1}(0.1,0.2,0.3) \\
\bullet v_{2}(0.2,0.3,0.4) \\
{ }_{(0.01,0.02,0.03)(0.01,0.02,0.03)}^{\bullet} v_{3}(0.3,0.4,0.5)
\end{array}
$$

Fig. 6
In this graph, $p d_{N_{G}}\left(v_{1}\right)=(0.02,0.04,0.06) ; p d_{N_{G}}\left(v_{2}\right)=(0.01,0.02,0.03)$;
$p d_{N_{G}}\left(v_{3}\right)=(0.02,0.04,0.06) . t p d_{N_{G}}\left(v_{1}\right)=(0.12,0.24,0.36)$
$\operatorname{tpd}_{N_{G}}\left(v_{2}\right)=(0.21,0.32,0.43) ; \operatorname{tpd}_{N_{G}}\left(v_{3}\right)=(0.32,0.44,0.56)$.
Hence this N_{G} is $T P I N_{G}$ but not $P I N_{G}$.
Theorem 4.8. Let N_{G} with constant $\left(T_{A}, I_{A}, F_{A}\right)$, then the following conditions are equivalent
(i) PIN $_{G}$ (ii) $T P I N_{G}$.

Proof. Let N_{G} with $\left(T_{A}, I_{A}, F_{A}\right)$ is constant. i.e. $\left(T_{A}, I_{A}, F_{A}\right)\left(v_{i}\right)=(p, q, r), \forall v_{i} \in$ V, where (p, q, r) is constant. Suppose N_{G} is $P I N_{G}$. Then at least one vertex of N_{G} which is adjacent to distinct pseudo degrees of the vertices. Let v_{1} and v_{2} be the adjacent vertices of v_{3} with distinct pseudo degrees $\left(l_{1}, m_{1}, n_{1}\right)$ and $\left(l_{2}, m_{2}, n_{2}\right)$ respectively. Then $\left(l_{1}, m_{1}, n_{1}\right) \neq\left(l_{2}, m_{2}, n_{2}\right)$. This implies that $\left(l_{1}, m_{1}, n_{1}\right)+(p, q, r) \neq\left(l_{2}, m_{2}, n_{2}\right)+(p, q, r) . \Longrightarrow\left(l_{1}, m_{1}, n_{1}\right)+\left(T_{A}, I_{A}, F_{A}\right)\left(v_{1}\right)$ $\left.\neq\left(l_{2}, m_{2}, n_{2}\right)\right)+\left(T_{A}, I_{A}, F_{A}\right)\left(v_{2}\right) . \Longrightarrow t p d_{N_{G}}\left(v_{1}\right) \neq t p d_{N_{G}}\left(v_{2}\right)$. Therefore v_{1} and v_{2} be the adjacent vertices of v_{3} in N_{G} with distinct total pseudo degrees. Hence
N_{G} is $T P I N_{G}$.
Hence $(i) \Longrightarrow(i i)$ is hold.
Conversely, Suppose N_{G} is $T P I N_{G}$. Suppose v_{1} and v_{2} are the adjacent vertices of v_{3} having the total pseudo degrees $\left(t x_{1}, t y_{1}, t z_{1}\right)$ and $\left(t x_{2}, t y_{2}, t z_{2}\right)$ respectively are distinct. Then $\operatorname{tpd} d_{N_{G}}\left(v_{1}\right) \neq t p d_{N_{G}}\left(v_{2}\right)$.
This implies that $\left.\left(l_{1}, m_{1}, n_{1}\right)+\left(T_{A}, I_{A}, F_{A}\right)\left(v_{1}\right) \neq\left(l_{2}, m_{2}, n_{2}\right)\right)+\left(T_{A}, I_{A}, F_{A}\right)\left(v_{2}\right)$. Since $\left(T_{A}, I_{A}, F_{A}\right)\left(v_{i}\right)=(p, q, r)$, we have $\left(l_{1}, m_{1}, n_{1}\right)+(p, q, r) \neq\left(l_{2}, m_{2}, n_{2}\right)+$ (p, q, r). This implies that $\left(l_{1}, m_{1}, n_{1}\right) \neq\left(l_{2}, m_{2}, n_{2}\right)$. Therefore v_{1} and v_{2} be the adjacent vertices of v_{3} in N_{G} with distinct pseudo degrees. Hence N_{G} is $P I N_{G}$.
Hence (i) \Longrightarrow (ii) is hold.
Remark 4.9. Converse of the above theorem need not be true.
Example 4.10. Refer example 5.3.
5. Neighbourly Pseudo irregular N_{G}

Definition 5.1. Any two adjacent vertices in N_{G} having distinct pseudo degrees, then N_{G} is called neighbourly pseudo irregular N_{G} simply NPI N_{G}.

Definition 5.2. Any two adjacent vertices in N_{G} having the total pseudo degrees are distinct, then N_{G} is called neighbourly totally pseudo irregular N_{G} simply NTPIN N_{G}.
Example 5.3. Refer Example 5.3
Remark 5.4. Every $N P I N_{G}$ need not be $N T P I N_{G}$.
Example 5.5. Refer Example 4.7
Remark 5.6. Every NTPIN N_{G} need not be $N P I N_{G}$.
Example 5.7. Consider N_{G}.

Fig. 7
In this Fig. $7, p d_{N_{G}}\left(v_{1}\right)=(0.04,0.08,0.12) ; p d_{N_{G}}\left(v_{2}\right)=(0.04,0.08,0.12)$;
$p d_{N_{G}}\left(v_{3}\right)=(0.04,0.08,0.12) ; p d_{N_{G}}\left(v_{4}\right)=(0.04,0.08,0.12) ;$
$\operatorname{tpd}_{N_{G}}\left(v_{1}\right)=(0.14,0.28,0.42) ; \operatorname{tpd}_{N_{G}}\left(v_{2}\right)=(0.24,0.38,0.52) ;$
$\operatorname{tpd}_{N_{G}}\left(v_{3}\right)=(0.14,0.28,0.42) ; \operatorname{tpd}_{N_{G}}\left(v_{4}\right)=(0.24,0.38,0.52)$.
Hence this N_{G} is $N T P I N_{G}$ but not $N P I N_{G}$.
Remark 5.8. Every PIN N_{G} need not NPIN N_{G}.
Example 5.9. Consider N_{G}.

$$
\stackrel{v_{1}(.3, .4, .5) \quad v_{2}(.2, .3, .4)}{(.01, .02, .03)} \stackrel{v}{3}(.2, .3, .4)_{(.02, .03, .04)}^{(.01, .02, .03)} v_{4}(.1, .2, .3)
$$

Fig. 8
In this graph, $p d_{N_{G}}\left(v_{1}\right)=(0.03,0.05,0.07) ; p d_{N_{G}}\left(v_{2}\right)=(0.02,0.035,0.05)$;
$p d_{N_{G}}\left(v_{3}\right)=(0.02,0.035,0.05) ; p d_{N_{G}}\left(v_{4}\right)=(0.03,0.05,0.07)$.
Therefore this N_{G} is $P I N_{G}$ but not $N P I N_{G}$.
Remark 5.10. Every NPIN N_{G} need not be PIN N_{G}.
Example 5.11. Consider N_{G}.

$$
\stackrel{v_{1}(.1, .2, .3)}{\bullet(.01, .02, .03)} \stackrel{v_{2}(.2, .3, .4)}{(.01, .02, .03)} \bullet v_{3}(.1, .2, .3)
$$

Fig. 9
In this graph, $p d_{N_{G}}\left(v_{1}\right)=(0.02,0.04,0.06) ; p d_{N_{G}}\left(v_{2}\right)=(0.01,0.02,0.03)$;
$p d_{N_{G}}\left(v_{3}\right)=(0.02,0.04,0.06)$.
Therefore this N_{G} is $N P I N_{G}$ but not $P I N_{G}$.
Remark 5.12. Every TPIN N_{G} need not be $N T P I N_{G}$.
Example 5.13. Consider N_{G}.

$$
\begin{gathered}
v_{1}(0.3,0.4,0.5) \\
\stackrel{v_{2}(0.2,0.3,0.4)}{\bullet} v_{3}(0.2,0.3,0.4) \quad v_{4}(0.1,0.2,0.3) \\
(0.01,0.02,0.03)(0.02,0.03,0.0 \stackrel{4}{4})(0.01,0.02,0.03)
\end{gathered}
$$

Fig. 10
In this graph, $\operatorname{tpd_{N_{G}}(v_{1})=(0.33,0.45,0.57);\operatorname {tpd_{N_{G}}}(v_{2})=(0.22,0.335,0.45);~;~;~}$
$\operatorname{tpd}_{N_{G}}\left(v_{3}\right)=(0.22,0.335,0.45) ; \operatorname{tpd}_{N_{G}}\left(v_{3}\right)=(0.13,0.25,0.37)$.

Therefore this N_{G} is $T P I N_{G}$ but not $N T P I N_{G}$.
Remark 5.14. Every $N T P I N_{G}$ need not be TPIN N_{G}.
Example 5.15. Refer example 6.11, $\operatorname{tp} d_{N_{G}}\left(v_{1}\right)=(0.12,0.24,0.36)$;
$t p d_{N_{G}}\left(v_{2}\right)=(0.21,0.32,0.43) ; \operatorname{tpd}{N_{G}}\left(v_{3}\right)=(0.12,0.24,0.36)$. Therefore this N_{G} is $N T P I N_{G}$ but not TPIN N_{G}.
Theorem 5.16. Let $N_{G}=(A, B)$ with $\left(T_{A}, I_{A}, F_{A}\right)$ is constant, then the following two conditions are equivalent (i) NPIN N_{G} (ii) NTPIN N_{G}.
Proof. Proof is similar to the theorem 5.8.
Remark 5.17. Converse of the above theorem need not be true.
Example 5.18. Refer Example 5.3.
Theorem 5.19. Let N_{G} be an even cycle of length n and $\left(T_{A}, I_{A}, F_{A}\right)\left(v_{i}\right)$ are distinct for every i. If the membership values of the alternate edges are same, then N_{G} is $N P I N_{G}$ and NTPIN N_{G}.
Proof. Let $\left(T_{A}, I_{A}, F_{A}\right)\left(v_{i}\right)=\left(l_{i}, m_{i}, n_{i}\right), \forall v_{i}$ and $\left(l_{1}, m_{1}, n_{1}\right) \neq\left(l_{2}, m_{2}, n_{2}\right) \neq \ldots \neq$ $\left(l_{n}, m_{n}, n_{n}\right)$. Suppose the membership values of the alternate edges are same.
$\left(T_{B}, I_{B}, F_{B}\right)\left(e_{j}\right)=\left(c_{T_{1}}, c_{I_{1}}, c_{F_{1}}\right)$ if j is odd
$\left(T_{B}, I_{B}, F_{B}\right)\left(e_{j}\right)=\left(c_{T_{2}}, c_{I_{2}}, c_{F_{2}}\right)$ if j is even
$\Longrightarrow p d_{N_{G}}\left(v_{i}\right)=\left(c_{T_{1}}, c_{I_{1}}, c_{F_{1}}\right)+\left(c_{T_{2}}, c_{I_{2}}, c_{F_{2}}\right), i=1,2, \ldots, n$.
$\Longrightarrow p d_{N_{G}}\left(v_{i}\right)=$ constant. Therefore N_{G} is $N P I N_{G}$. This implies that
$t p d_{N_{G}}\left(v_{i}\right)=p d_{N_{G}}\left(v_{i}\right)+\left(T_{A}, I_{A}, F_{A}\right)\left(v_{i}\right), \forall v_{i} \in V$.
$\Longrightarrow t p d_{N_{G}}\left(v_{i}\right)=p d_{N_{G}}\left(v_{i}\right)+\left(l_{i}, m_{i}, n_{i}\right), \mathrm{i}=1,2, \ldots, \mathrm{n}$.
where $\left(l_{1}, m_{1}, n_{1}\right) \neq\left(l_{2}, m_{2}, n_{2}\right) \neq \ldots \neq\left(l_{n}, m_{n}, n_{n}\right)$. Hence N_{G} is NTPIN N_{G}.
Observation 5.20. Let N_{G} be a cycle of length n. If the membership values of the alternate vertices and edges are same, then N_{G} is NTPIN N_{G}
Theorem 5.21. Let N_{G} be a cycle of length $n \geq 5$. If the edges having membership values are $\left(l_{1}, m_{1}, n_{1}\right),\left(l_{2}, m_{2}, n_{2}\right), \ldots,\left(l_{n}, m_{n}, n_{n}\right)$ such that $\left(l_{1}, m_{1}, n_{1}\right)$ $<\left(l_{2}, m_{2}, n_{2}\right)<\ldots<\left(l_{n}, m_{n}, n_{n}\right)$. Then N_{G} is NPIN ${ }_{G}$.
Proof. Let N_{G} be a cycle of length $n \geq 5$. If the edges having membership values are $\left(l_{1}, m_{1}, n_{1}\right),\left(l_{2}, m_{2}, n_{2}\right), \ldots,\left(l_{n}, m_{n}, n_{n}\right)$ such that $\left(l_{1}, m_{1}, n_{1}\right)<\left(l_{2}, m_{2}, n_{2}\right)<$ $\ldots<\left(l_{n}, m_{n}, n_{n}\right)$. Then
$d_{N_{G}}\left(v_{i}\right)=\left(l_{n}, m_{n}, n_{n}\right)+\left(l_{1}, m_{1}, n_{1}\right)$ if $\mathrm{i}=1$
$d_{N_{G}}\left(v_{i}\right)=\left(l_{i-1}, m_{i-1}, n_{i-1}\right)+\left(l_{i}, m_{i}, n_{i}\right)$ if $\mathrm{i}=2,3, \ldots, \mathrm{n}$
This implies that
$p d_{N_{G}}\left(v_{i}\right)=\frac{d_{N_{G}}\left(v_{2}\right)+d_{N_{G}}\left(v_{n}\right)}{2}$ if $\mathrm{n}=1$
$p d_{N_{G}}\left(v_{i}\right)=\frac{d_{N_{G}}\left(v_{i-1}\right)+d_{N_{G}}\left(v_{i+1}\right)}{2}$ if $\mathrm{i}=2,3, . ., \mathrm{n}-1$
$p d_{N_{G}}\left(v_{i}\right)=\frac{d_{N_{G}}\left(v_{n-1}\right)+d_{N_{G}}\left(v_{1}\right)}{2}$ if $\mathrm{i}=\mathrm{n}$
This implies that
$p d_{N_{G}}\left(v_{i}\right)=\frac{\left(l_{2}, m_{2}, n_{2}\right)+\left(l_{3}, m_{3}, n_{3}\right)+\left(l_{n-1}, m_{n-1}, n_{n-1}\right)+\left(l_{n}, m_{n}, n_{n}\right)}{2}$ if $\mathrm{i}=1$
$p d_{N_{G}}\left(v_{i}\right)=\frac{\left(l_{n}, m_{n}, n_{n}\right)+\left(l_{1}, m_{1}, n_{1}\right)+\left(l_{2}, m_{2}, n_{2}\right)+\left(l_{3}, m_{3}, n_{3}\right)}{2}$ if $\mathrm{i}=2$
$p d_{N_{G}}\left(v_{i}\right)=\frac{\left(l_{i-2}, m_{i-2}, n_{i-2}\right)+\left(l_{i-1}, m_{i-1}, n_{i-1}\right)+\left(l_{i}, m_{i}, n_{i}\right)+\left(l_{i+1}, m_{i+1}, n_{i+1}\right)}{2}$ if $\mathrm{i}=3, \ldots, \mathrm{n}-1$
$p d_{N_{G}}\left(v_{i}\right)=\frac{\left(l_{1}, m_{1}, n_{1}\right)+\left(l_{n}, m_{n}, n_{n}\right)+\left(l_{n-1}, m_{n-1}, n_{n-1}\right)+\left(l_{n-2}, m_{n-2}, n_{n-2}\right)}{2}$ if $\mathrm{i}=\mathrm{n}$.
Since $\left(l_{1}, m_{1}, n_{1}\right)<\left(l_{2}, m_{2}, n_{2}\right)<\ldots<\left(l_{n}, m_{n}, n_{n}\right)$, we have every pair of adjacent vertices having pseudo degrees are distinct.
Hence N_{G} is $N P I N_{G}$.

Acknowledgement

The first authour S. Sivabala, Research Scholar, Ph.D. Registration number: 18122052092003 and Second authour N. R. Santhi Maheswari, Associate Professor and Head, PG and Research Department of Mathematics, G. Venkataswamy Naidu College, Kovilpatti - 628502 (Affiliation of Manonmaniam Sundaranar University, Tirunelveli-627012,Tamil Nadu, India), Tamil Nadu, India thank the reviewers for providing their valuable feedback on the initial version of this paper which resulted into its betterment.

References

[1] Divya G. and Malarvizhi J., Some operations on neutrosophic fuzzy graph, International Journal of Mathematical Archive, 8(9) (2017), 120-125.
[2] Shah N., Some Studies in Neutrosophic Graphs, Neutrosophic Sets and Systems, Vol 12 (2016), 54-64.
[3] Sivabala S. and Maheswari N. R. S., Neighbourly and Highly Irregular Neutrosophic Fuzzy Graphs, International Journal of Mathematical Combinatorics, Vol. 1 (2021), 30-46.
[4] Smarandache F., Neutrosophic Set, a generalisation of the intuitionistic fuzzy sets, Inter. J. Pure Appl. Math., 24 (2005), 287-297.
[5] Smarandache F., Pramavik S., New Trends in Neutrosophic Theory and its Applications, Pons Edition, Brussels, Belgium, EU, (2016).

