South East Asian J. of Mathematics and Mathematical Sciences Vol. 17, Proceedings (2021), pp. 59-68

ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

NEIGHBOURLY PSEUDO IRREGULAR NEUTROSOPHIC FUZZY GRAPHS

S. Sivabala and N. R. Santhi Maheswari

PG and Research Department of Mathematics, G. Venkataswamy Naidu College, Kovilpatti, Thoothukudi – 628502, Tamil Nadu, INDIA

E-mail : sivamaths13@gmail.com, nrsmaths@yahoo.com

(Received: Aug. 08, 2021 Accepted: Oct. 01, 2021 Published: Nov. 30, 2021)

Special Issue

Proceedings of International Virtual Conference on "Mathematical Modelling, Analysis and Computing IC- MMAC- 2021"

Abstract: The idea of pseudo regular and irregular $N_G(N_G$ - Neutrosophic Fuzzy Graph), neighbourly pseudo irregular N_G are made known here. We represent some theorems and results of these graphs.

Keywords and Phrases: Pseudo regular and irregular $N_G(N_G$ - Neutrosophic Fuzzy Graph), neighbourly pseudo irregular N_G .

2020 Mathematics Subject Classification: 05C78.

1. Introduction and Preliminaries

Divya and J. Malarvizhi introduced the notions and fundamental operations on neutrosophic fuzzy graph [1]. S. Sivabala and N. R. Santhi Maheswari introduced Neighbourly and highly irregular neutrosophic fuzzy graph [3]. These ideas encourage us to introduce Neighbourly pseudo irregular neutrosophic fuzzy graphs.

Definition 1.1. "A neutrosophic fuzzy graph with underlying set V is defined to be a pair $N_G = (A, B)$, where

(i) The functions $T_A, I_A, F_A : V \to [0, 1]$ denote the degree of truth membership, degree of indeterminacy membership and the degree of falsity membership of the element $v_i \in V$ respectively and $0 \leq T_A(v_i) + I_A(v_i) + F_A(v_i) \leq 3$.

(ii) $E \subseteq V \times V$ where the functions $T_B, I_B, F_B : V \times V \rightarrow [0, 1]$ are defined by

$$T_B(v_i, v_j) \le T_A(v_i) \cdot T_A(v_j)$$

$$I_B(v_i, v_j) \le I_A(v_i) \cdot I_A(v_j)$$

$$F_B(v_i, v_j) \le F_A(v_i) \cdot F_A(v_j)$$

for all $v_i, v_j \in V$, where . means ordinary multiplication denotes the degrees of truth membership, indeterminacy membership and falsity membership of the edge $(v_i, v_j) \in E$ respectively, where $0 \leq T_B(v_i, v_j) + I_B(v_i, v_j) + F_B(v_i, v_j) \leq 3$ for all $(v_i, v_j) \in E$ (i, j = 1, 2, ..., n)." [1]

Definition 1.2. The degree of a vertex x in N_G defined by $d_{N_G}(x) = (deg_T(x), deg_I(x), deg_F(x))$, where $deg_T(x) = \sum_{xy \in E} T_B(xy)$, $deg_I(x) = \sum_{xy \in E} I_B(xy)$, $deg_F(x) = \sum_{xy \in E} F_B(xy)$. [3]

2. Pseudo degree of a vertex in N_G

Definition 2.1. The 2 – degree of a vertex v in N_G is defined by $t_{N_G}(v) = \sum d_{N_G}(u)$, where $d_{N_G}(u)$ is the degree of the vertex u which is adjacent with the vertex v.

Definition 2.2. A pseudo degree of a vertex v in N_G is denoted by $pd_{N_G}(v)$ and is defined by $pd_{N_G}(v) = \frac{t_{N_G}(v)}{d_{N_G}^*(v)}$, where $d_{N_G}^*(v)$ is the number of edges incident at v.

Definition 2.3. Let N_G be a neutrosophic fuzzy graph on G(V, E). The total pseudo degree of a vertex v in N_G is defined by $tpd_{N_G}(v) = pd_{N_G}(v) + (T_A, I_A, F_A)(v), \forall v$ in V.

3. Pseudo Regular N_G

Definition 3.1. If all the vertices of N_G have same pseudo degree, then N_G is pseudo regular N_G simply says PRN_G .

Definition 3.2. If all the vertices of N_G have same total pseudo degree, then N_G is totally pseudo regular N_G simply says $TPRN_G$ **Example 3.3.** Consider N_G .

In this Fig.1, $pd_{N_G}(v_1) = (0.05, 0.07, 0.09); pd_{N_G}(v_2) = (0.05, 0.07, 0.09);$ $pd_{N_G}(v_3) = (0.05, 0.07, 0.09); pd_{N_G}(v_4) = (0.05, 0.07, 0.09);$ $tpd_{N_G}(v_1) = (0.45, 0.57, 0.69); tpd_{N_G}(v_2) = (0.45, 0.57, 0.69);$ $tpd_{N_G}(v_3) = (0.45, 0.57, 0.69); tpd_{N_G}(v_4) = (0.45, 0.57, 0.69).$ Here, every vertices having same pseudo degree and same total pseudo degree. Hence the N_G is PRN_G and $TPRN_G$.

Remark 3.4. Every PRN_G need not be $TPRN_G$.

Example 3.5. Consider N_G

Fig.2

In this Fig.2, $pd_{N_G}(v_1) = (0.05, 0.07, 0.09) = pd_{N_G}(v_2) = pd_{N_G}(v_3) = pd_{N_G}(v_4);$ $tpd_{N_G}(v_1) = (0.15, 0.27, 0.39); tpd_{N_G}(v_2) = (0.25, 0.37, 0.49);$ $tpd_{N_G}(v_3) = (0.35, 0.47, 0.59); tpd_{N_G}(v_4) = (0.45, 0.57, 0.69).$ Here, every vertices having same pseudo degree but every vertices having distinct total pseudo degrees. Therefore N_G is PRN_G but not $TPRN_G$.

Remark 3.6. Every $TPRN_G$ need not be PRN_G .

Example 3.7. In Fig 3, $pd_{N_G}(v_1) = (0.02, 0.04, 0.06) = pd_{N_G}(v_3);$ $pd_{N_G}(v_2) = (0.01, 0.02, 0.03).$ $tpd_{N_G}(v_1) = (0.22, 0.34, 0.46) = tpd_{N_G}(v_2) = tpd_{N_G}(v_3).$ $v_1(.2, .3, .4)$ $v_2(.21, .32, .43)$ \bullet $v_3(.2, .3, .4)$

Fig.3

Here, every vertices having same total pseudo degrees. Therefore this graph is $TPRN_G$. But pseudo degree of v_2 is distinct from the vertices v_1 and v_3 . Therefore this is not a PRN_G .

Theorem 3.8. Let N_G be a cycle of length n with (T_A, I_A, F_A) and (T_B, I_B, F_B) are constant, then N_G is PRN_G and $TPRN_G$.

Proof. We take N_G with (T_B, I_B, F_B) is constant. i.e. $(T_B, I_B, F_B)(v_iv_j) = (c_T, c_I, c_F), v_iv_j \in E, i \neq j$. Then $t_{N_G}(v_i) = \sum d_{N_G}(v_j) = 4(T_B, I_B, F_B)(v_iv_j)$. This implies that $pd_{N_G}(v_i) = \frac{t_{N_G}(v_i)}{d_{N_G}^*(v_i)} = \frac{4(T_B, I_B, F_B)(v_iv_j)}{2} = 2(T_B, I_B, F_B)(v_iv_j) = 2(c_T, c_I, c_F)$, also a constant $\forall v_iv_j \in E, i \neq j$. Therefore every vertices have same pseudo degree. Hence N_G is PRN_G . Now, we take $(T_A, I_A, F_A)(v_i) = (c_{T_2}, c_{I_2}, c_{F_2})$, for all $v_i \in V$ where $(c_{T_2}, c_{I_2}, c_{F_2})$ is constant. Then $tpd_{N_G}(v_i) = pd_{N_G}(v_i) + (T_A, I_A, F_A)(v_i)$, for all $v_i \in V$. This implies that $tpd_{N_G}(v_i) = (c_{T_1}, c_{I_1}, c_{F_1}) + (c_{T_2}, c_{I_2}, c_{F_2}) = \text{constant}, \forall v_i \in V$. Hence N_G is $TPRN_G$.

4. Pseudo irregular N_G .

Definition 4.1. N_G is said to be pseudo irregular $N_G(PIN_G)$ if the adjacent vertices of the vertex $v \in N_G$ having distinct pseudo degrees in N_G .

Definition 4.2. If the adjacent vertices of the vertex $v \in N_G$ having distinct total pseudo degrees, then N_G is totally pseudo irregular $N_G(TPIN_G)$

Example 4.3. Consider N_G

Fig.4

In this Fig. 4, $pd_{N_G}(v_1) = (0.04, 0.06, 0.08);$ $pd_{N_G}(v_2) = (0.045, 0.065, 0.085); pd_{N_G}(v_3) = (0.035, 0.055, 0.075);$ $tpd_{N_G}(v_1) = (0.14, 0.26, 0.38); tpd_{N_G}(v_2) = (0.245, 0.365, 0.485);$ $tpd_{N_G}(v_3) = (0.335, 0.455, 0.575).$ Hence this N_G is both PIN_G and $TPIN_G$.

Remark 4.4. Every PIN_G need not be $TPIN_G$.

Example 4.5. Consider N_G

Fig.5

In Fig.5, $pd_{N_G}(v_1) = (0.04, 0.06, 0.08); pd_{N_G}(v_2) = (0.045, 0.065, 0.085);$ $pd_{N_G}(v_3) = (0.035, 0.055, 0.075); tpd_{N_G}(v_1) = (0.345, 0.465, 0.585);$ $tpd_{N_G}(v_2) = (0.345, 0.465, 0.585); tpd_{N_G}(v_3) = (0.345, 0.465, 0.585).$ Hence this N_G is PIN_G but not $TPIN_G$.

Remark 4.6. Every $TPIN_G$ need not be PIN_G .

Example 4.7. Consider N_G

$$v_1(0.1, 0.2, 0.3) \qquad v_2(0.2, 0.3, 0.4) \\ \bullet \underbrace{(0.01, 0.02, 0.03)(0.01, 0.02, 0.03)} v_3(0.3, 0.4, 0.5)$$

Fig.6

In this graph, $pd_{N_G}(v_1) = (0.02, 0.04, 0.06); pd_{N_G}(v_2) = (0.01, 0.02, 0.03);$ $pd_{N_G}(v_3) = (0.02, 0.04, 0.06). tpd_{N_G}(v_1) = (0.12, 0.24, 0.36)$ $tpd_{N_G}(v_2) = (0.21, 0.32, 0.43); tpd_{N_G}(v_3) = (0.32, 0.44, 0.56).$ Hence this N_G is $TPIN_G$ but not PIN_G .

Theorem 4.8. Let N_G with constant (T_A, I_A, F_A) , then the following conditions are equivalent (i) PIN_G (ii) $TPIN_G$.

Proof. Let N_G with (T_A, I_A, F_A) is constant. i.e. $(T_A, I_A, F_A)(v_i) = (p, q, r), \forall v_i \in V$, where (p, q, r) is constant. Suppose N_G is PIN_G . Then at least one vertex of N_G which is adjacent to distinct pseudo degrees of the vertices. Let v_1 and v_2 be the adjacent vertices of v_3 with distinct pseudo degrees (l_1, m_1, n_1) and (l_2, m_2, n_2) respectively. Then $(l_1, m_1, n_1) \neq (l_2, m_2, n_2)$. This implies that $(l_1, m_1, n_1) + (p, q, r) \neq (l_2, m_2, n_2) + (p, q, r)$. $\implies (l_1, m_1, n_1) + (T_A, I_A, F_A)(v_1) \neq (l_2, m_2, n_2)) + (T_A, I_A, F_A)(v_2)$. $\implies tpd_{N_G}(v_1) \neq tpd_{N_G}(v_2)$. Therefore v_1 and v_2 be the adjacent vertices of v_3 in N_G with distinct total pseudo degrees. Hence

 N_G is $TPIN_G$.

Hence $(i) \implies (ii)$ is hold.

Conversely, Suppose N_G is $TPIN_G$. Suppose v_1 and v_2 are the adjacent vertices of v_3 having the total pseudo degrees (tx_1, ty_1, tz_1) and (tx_2, ty_2, tz_2) respectively are distinct. Then $tpd_{N_G}(v_1) \neq tpd_{N_G}(v_2)$.

This implies that $(l_1, m_1, n_1) + (T_A, I_A, F_A)(v_1) \neq (l_2, m_2, n_2)) + (T_A, I_A, F_A)(v_2)$. Since $(T_A, I_A, F_A)(v_i) = (p, q, r)$, we have $(l_1, m_1, n_1) + (p, q, r) \neq (l_2, m_2, n_2) + (p, q, r)$. This implies that $(l_1, m_1, n_1) \neq (l_2, m_2, n_2)$. Therefore v_1 and v_2 be the adjacent vertices of v_3 in N_G with distinct pseudo degrees. Hence N_G is PIN_G . Hence (i) \Longrightarrow (ii) is hold.

Remark 4.9. Converse of the above theorem need not be true.

Example 4.10. Refer example 5.3.

5. Neighbourly Pseudo irregular N_G

Definition 5.1. Any two adjacent vertices in N_G having distinct pseudo degrees, then N_G is called neighbourly pseudo irregular N_G simply $NPIN_G$.

Definition 5.2. Any two adjacent vertices in N_G having the total pseudo degrees are distinct, then N_G is called neighbourly totally pseudo irregular N_G simply $NTPIN_G$.

Example 5.3. Refer Example 5.3

Remark 5.4. Every $NPIN_G$ need not be $NTPIN_G$.

Example 5.5. Refer Example 4.7

Remark 5.6. Every $NTPIN_G$ need not be $NPIN_G$.

Example 5.7. Consider N_G .

Fig.7 In this Fig.7, $pd_{N_G}(v_1) = (0.04, 0.08, 0.12); pd_{N_G}(v_2) = (0.04, 0.08, 0.12);$ $\begin{array}{l} pd_{N_G}(v_3) = (0.04, 0.08, 0.12); \ pd_{N_G}(v_4) = (0.04, 0.08, 0.12); \\ tpd_{N_G}(v_1) = (0.14, 0.28, 0.42); \ tpd_{N_G}(v_2) = (0.24, 0.38, 0.52); \\ tpd_{N_G}(v_3) = (0.14, 0.28, 0.42); \ tpd_{N_G}(v_4) = (0.24, 0.38, 0.52). \\ \text{Hence this } N_G \text{ is } NTPIN_G \text{ but not } NPIN_G. \end{array}$

Remark 5.8. Every PIN_G need not $NPIN_G$.

Example 5.9. Consider N_G .

$$\underbrace{v_1(.3,.4,.5)}_{(.01,.02,.03)} \underbrace{v_2(.2,.3,.4)}_{(.02,.03,.04)} \underbrace{v_3(.2,.3,.4)}_{(.01,.02,.03)} \underbrace{v_4(.1,.2,.3)}_{(.01,.02,.03)}$$

Fig.8

In this graph, $pd_{N_G}(v_1) = (0.03, 0.05, 0.07); pd_{N_G}(v_2) = (0.02, 0.035, 0.05); pd_{N_G}(v_3) = (0.02, 0.035, 0.05); pd_{N_G}(v_4) = (0.03, 0.05, 0.07).$ Therefore this N_G is PIN_G but not $NPIN_G$.

Remark 5.10. Every $NPIN_G$ need not be PIN_G .

Example 5.11. Consider N_G .

$$v_1(.1, .2, .3)$$
 $v_2(.2, .3, .4)$
• (.01, .02, .03) • (.01, .02, .03) • $v_3(.1, .2, .3)$

Fig.9

In this graph, $pd_{N_G}(v_1) = (0.02, 0.04, 0.06); pd_{N_G}(v_2) = (0.01, 0.02, 0.03); pd_{N_G}(v_3) = (0.02, 0.04, 0.06).$

Therefore this N_G is $NPIN_G$ but not PIN_G .

Remark 5.12. Every $TPIN_G$ need not be $NTPIN_G$.

Example 5.13. Consider N_G .

$$\underbrace{v_1(0.3, 0.4, 0.5) \quad v_2(0.2, 0.3, 0.4) \quad v_3(0.2, 0.3, 0.4) \quad v_4(0.1, 0.2, 0.3)}_{(0.01, 0.02, 0.03)(0.02, 0.03, 0.04)(0.01, 0.02, 0.03)}$$

Fig.10

In this graph, $tpd_{N_G}(v_1) = (0.33, 0.45, 0.57); tpd_{N_G}(v_2) = (0.22, 0.335, 0.45); tpd_{N_G}(v_3) = (0.22, 0.335, 0.45); tpd_{N_G}(v_3) = (0.13, 0.25, 0.37).$

Therefore this N_G is $TPIN_G$ but not $NTPIN_G$.

Remark 5.14. Every $NTPIN_G$ need not be $TPIN_G$.

Example 5.15. Refer example 6.11, $tpd_{N_G}(v_1) = (0.12, 0.24, 0.36)$; $tpd_{N_G}(v_2) = (0.21, 0.32, 0.43)$; $tpd_{N_G}(v_3) = (0.12, 0.24, 0.36)$. Therefore this N_G is $NTPIN_G$ but not $TPIN_G$.

Theorem 5.16. Let $N_G = (A, B)$ with (T_A, I_A, F_A) is constant, then the following two conditions are equivalent (i) $NPIN_G$ (ii) $NTPIN_G$. **Proof.** Proof is similar to the theorem 5.8.

Remark 5.17. Converse of the above theorem need not be true.

Example 5.18. Refer Example 5.3.

Theorem 5.19. Let N_G be an even cycle of length n and $(T_A, I_A, F_A)(v_i)$ are distinct for every i. If the membership values of the alternate edges are same, then N_G is $NPIN_G$ and $NTPIN_G$.

Proof. Let $(T_A, I_A, F_A)(v_i) = (l_i, m_i, n_i), \forall v_i \text{ and } (l_1, m_1, n_1) \neq (l_2, m_2, n_2) \neq ... \neq (l_n, m_n, n_n)$. Suppose the membership values of the alternate edges are same. $(T_B, I_B, F_B)(e_j) = (c_{T_1}, c_{I_1}, c_{F_1}) \text{ if } j \text{ is odd}$ $(T_B, I_B, F_B)(e_j) = (c_{T_2}, c_{I_2}, c_{F_2}) \text{ if } j \text{ is even}$ $\implies pd_{N_G}(v_i) = (c_{T_1}, c_{I_1}, c_{F_1}) + (c_{T_2}, c_{I_2}, c_{F_2}), i = 1, 2, ..., n.$ $\implies pd_{N_G}(v_i) = constant.$ Therefore N_G is $NPIN_G$. This implies that $tpd_{N_G}(v_i) = pd_{N_G}(v_i) + (T_A, I_A, F_A)(v_i), \forall v_i \in V.$ $\implies tpd_{N_G}(v_i) = pd_{N_G}(v_i) + (l_i, m_i, n_i), i = 1, 2, ..., n.$ where $(l_1, m_1, n_1) \neq (l_2, m_2, n_2) \neq ... \neq (l_n, m_n, n_n).$ Hence N_G is $NTPIN_G$.

Observation 5.20. Let N_G be a cycle of length n. If the membership values of the alternate vertices and edges are same, then N_G is $NTPIN_G$

Theorem 5.21. Let N_G be a cycle of length $n \ge 5$. If the edges having membership values are $(l_1, m_1, n_1), (l_2, m_2, n_2), ..., (l_n, m_n, n_n)$ such that $(l_1, m_1, n_1) < (l_2, m_2, n_2) < ... < (l_n, m_n, n_n)$. Then N_G is NPIN_G.

Proof. Let *N*_G be a cycle of length *n* ≥ 5. If the edges having membership values are $(l_1, m_1, n_1), (l_2, m_2, n_2), ..., (l_n, m_n, n_n)$ such that $(l_1, m_1, n_1) < (l_2, m_2, n_2) < ... < (l_n, m_n, n_n)$. Then $d_{N_G}(v_i) = (l_n, m_n, n_n) + (l_1, m_1, n_1)$ if i = 1 $d_{N_G}(v_i) = (l_{i-1}, m_{i-1}, n_{i-1}) + (l_i, m_i, n_i)$ if i = 2, 3, ..., n This implies that $pd_{N_G}(v_i) = \frac{d_{N_G}(v_2) + d_{N_G}(v_n)}{2}$ if n = 1

$$\begin{aligned} pd_{N_G}(v_i) &= \frac{d_{N_G}(v_{i-1}) + d_{N_G}(v_{i+1})}{2} \text{ if } i = 2,3,..,n-1 \\ pd_{N_G}(v_i) &= \frac{d_{N_G}(v_{n-1}) + d_{N_G}(v_1)}{2} \text{ if } i = n \\ \text{This implies that} \\ pd_{N_G}(v_i) &= \frac{(l_{2},m_{2},n_{2}) + (l_{3},m_{3},n_{3}) + (l_{n-1},m_{n-1},n_{n-1}) + (l_{n},m_{n},n_{n})}{2} \text{ if } i = 1 \\ pd_{N_G}(v_i) &= \frac{(l_{n},m_{n},n_{n}) + (l_{1},m_{1,1}) + (l_{2},m_{2},n_{2}) + (l_{3},m_{3},n_{3})}{2} \text{ if } i = 2 \\ pd_{N_G}(v_i) &= \frac{(l_{i-2},m_{i-2},n_{i-2}) + (l_{i-1},m_{i-1},n_{i-1}) + (l_{i},m_{i},n_{i}) + (l_{i+1},m_{i+1},n_{i+1})}{2} \text{ if } i = 3,...,n-1 \\ pd_{N_G}(v_i) &= \frac{(l_{1},m_{1,1}) + (l_{n},m_{n},n_{n}) + (l_{n-1},m_{n-1},n_{n-1}) + (l_{n-2},m_{n-2},n_{n-2})}{2} \text{ if } i = n. \\ \text{Since } (l_{1},m_{1},n_{1}) < (l_{2},m_{2},n_{2}) < ... < (l_{n},m_{n},n_{n}), \text{ we have every pair of adjacent vertices having pseudo degrees are distinct. \\ \text{Hence } N_G \text{ is } NPIN_G. \end{aligned}$$

Acknowledgement

The first authour S. Sivabala, Research Scholar, Ph.D. Registration number: 18122052092003 and Second authour N. R. Santhi Maheswari, Associate Professor and Head, PG and Research Department of Mathematics, G. Venkataswamy Naidu College, Kovilpatti - 628502 (Affiliation of Manonmaniam Sundaranar University, Tirunelveli-627012, Tamil Nadu, India), Tamil Nadu, India thank the reviewers for providing their valuable feedback on the initial version of this paper which resulted into its betterment.

References

- [1] Divya G. and Malarvizhi J., Some operations on neutrosophic fuzzy graph, International Journal of Mathematical Archive, 8(9) (2017), 120-125.
- [2] Shah N., Some Studies in Neutrosophic Graphs, Neutrosophic Sets and Systems, Vol 12 (2016), 54-64.
- [3] Sivabala S. and Maheswari N. R. S., Neighbourly and Highly Irregular Neutrosophic Fuzzy Graphs, International Journal of Mathematical Combinatorics, Vol. 1 (2021), 30-46.
- [4] Smarandache F., Neutrosophic Set, a generalisation of the intuitionistic fuzzy sets, Inter. J. Pure Appl. Math., 24 (2005), 287-297.
- [5] Smarandache F., Pramavik S., New Trends in Neutrosophic Theory and its Applications, Pons Edition, Brussels, Belgium, EU, (2016).