FIBONACCI PRIME LABELING OF SNAKE GRAPH

J. Jenifer and M. Subbulakshmi
PG and Research Department of Mathematics, G. Venkataswamy Naidu College, Kovilpatti, Thoothukudi - 628502, Tamil Nadu, INDIA
E-mail : johnkennedy46164@gmail.com, mslakshmi1966@gmail.com

(Received: Aug. 08, 2021 Accepted: Oct. 01, 2021 Published: Nov. 30, 2021)

Special Issue

Proceedings of International Virtual Conference on
"Mathematical Modelling, Analysis and Computing IC- MMAC- 2021"
Abstract: Here we describe the Snake related graph into a Fibonacci prime Graph by the following condition, If there exist a one-to-one mapping between the vertex set and the fibonacci numbers then there is a mapping between edge set and natural numbers where the end points of the edges are relatively prime. This work is a continuation of S. Chandrakala, Dr. C. Sekar who introduced Fibonacci Prime Labeling. We represent Fibonacci Prime Labeling as (FPL), Fibonacci Prime Graph as (FPG).
Keywords and Phrases: Fibonacci Prime Labeling (FPL), Fibonacci Prime Graph (FPG).

2020 Mathematics Subject Classification: 05C78.

1. Introduction and Preliminaries

The finite, loopless and non-multiple edge, connected, bidirectional graph has been used in the current work. Let $G=\left(V^{\prime}, E^{\prime}\right)$ be a (p, q) graph where $V^{\prime}, E^{\prime}, p$ and q denotes vertex set, edge set, the number of vertices, number of edges of the graph. Here we mentioned the Triangular Snake Graph as Δ_{s}^{a}, Double Triangular Snake graph as $D-\Delta_{s}^{k}$, Quadrilateral Snake Graph as Q_{s}^{l}, Double Quadrilateral Snake Graph as $D-Q_{s}^{c}, n$ - Polygonal Snake graph as $n-P_{s}^{x}$, where a, k, l, c, x
denotes number of times the cycles appears in the snake graph.
FPL was lauched by C. Sekar, S. Chandrakala [5] and they are also proved that the path, friendship graph, fan graph, star graph, dragon graph, umbrella graph, cycle related graph and crown graph are $F P G[2],[5]$. We refer Bondy and Murthy for notations and terminology [1]. This paper proves that some snake related graphs are admits $F P L$. A $F P L$ of a graph $G=\left(V^{\prime}, E^{\prime}\right)$ with $\left|V^{\prime}\right|=m$ is an injective function $h: V^{\prime} \rightarrow\left\{F_{2}, F_{3}, \ldots, F_{m+1}\right\}$, where F_{m} is the m-th Fibonacci number, that leads to a another function $h^{\prime \prime}: E^{\prime} \rightarrow N$ defined by $h^{\prime \prime}(v w)=\operatorname{gcd}(h(v), h(w))=$ 1 for all edges belong to the edge set $E^{\prime}(G) . \Delta_{s}^{a}, D-\Delta_{s}^{k}, Q_{s}^{l}, D-Q_{s}^{c}, n-P_{s}^{x}$ are satisfy the conditions of the Difference Perfect Square labeling, Mean Cordial labeling and Odd Prime labeling in the articles [3], [4], [6].

2. Main Results

Note 2.1. From the Fibonacci numbers we get g.c.d $\left\{F_{m}, F_{k}\right\}=1$, if g.c.d $\{m, k\}=$ 1 or g.c.d $\{m, k\}=2$, where F_{m}, F_{k} are distinct Fibonacci numbers and m, k are distinct integers, $k=m+l, 1 \leq l \leq m-1$ and $m \geq 3$.
Theorem 2.2. Δ_{s}^{a} admits FPL.
Proof. Δ_{s}^{a}, where $a \geq 2$ is a triangular snake graph.
Let $V^{\prime}\left(\Delta_{s}^{a}\right)=\left\{v_{1}, v_{2}, \ldots, v_{2 a-1}\right\}$ be the vertex set and
Let $E^{\prime}\left(\Delta_{s}^{a}\right)=\left\{v_{i} v_{i+1} / 1 \leq i \leq 2 a-2\right\} \cup\left\{v_{i} v_{i+2} / i \in[1,2 a-3]-\{2 i\}\right\}$ be the edge set.

Let $p=2 a-1, q=3 a-3$ indicates the number of nodes and links in Δ_{s}^{a}
Let us define a function $h^{\prime}: V^{\prime}\left(\Delta_{s}^{a}\right) \rightarrow\left\{F_{2}, F_{3}, \ldots, F_{2 a}\right\}$ and the vertices of Δ_{s}^{a} are labeled with the Fibonacci numbers $F_{2}, F_{3}, \ldots, F_{2 a}$
i.e. $h^{\prime}\left(v_{1}\right)=F_{2}, h^{\prime}\left(v_{2}\right)=F_{3}, \ldots, h^{\prime}\left(v_{2 a-1}\right)=F_{2 a}$
$\Rightarrow h^{\prime}\left(v_{i}\right)=F_{i+1}$, where $1 \leq i \leq 2 a-1$.
Then the function f induces the function $h^{*}: E^{\prime}\left(\Delta_{s}^{a}\right) \rightarrow N$ is defined as $h^{*}(b d)=$ g.c.d $\left(h^{\prime}(b), h^{\prime}(d)\right)$ for all edges in $E^{\prime}\left(\Delta_{s}^{a}\right)$. Minimum degree of each vertex in Δ_{s}^{a} is 2 . Let v_{i} be a vertex in Δ_{s}^{a} and it is 2 -connected. Assume that the vertex v_{i} adjacent to the vertices v_{i+1}, v_{i+2}. Now the vertex v_{i} and the vertices adjacent to v_{i} are labeled as $F_{i+1}, F_{i+2}, F_{i+3}$.
$\Rightarrow h^{*}\left(v_{i} v_{i+1}\right)=g . c . d\left(h^{\prime}\left(v_{i}\right), h^{\prime}\left(v_{i+1}\right)\right)=g . c . d\left(F_{i+1}, F_{i+2}\right)=1,1 \leq i \leq 2 a-2$
Similarly, $h^{*}\left(v_{i} v_{i+2}\right)=$ g.c.d $\left(F_{i+1}, F_{i+3}\right)=1$, where i is the odd number and not exceeded than $2 a-3$.
$\Rightarrow h^{*}(b d)=\operatorname{gcd}\left(h^{\prime}(b), h^{\prime}(d)\right)=1$ for every edge belongs to $E^{\prime}\left(\Delta_{s}^{a}\right)$
Therefore, Δ_{s}^{a} is a FPG.
Example 2.3. Consider the triangular snake graph Δ_{s}^{4}.

Figure 1: $\Delta_{s}^{4}-F P G$
Theorem 2.4. $D-\Delta_{s}^{k}$ admits FPL.
Proof. $D-\Delta_{s}^{k}, k \geq 2, V^{\prime}\left(D-\Delta_{s}^{k}\right)=\left\{v_{1}, v_{2}, \ldots, v_{3 k-2}\right\}$ is the vertex set, $E^{\prime}\left(D-\Delta_{s}^{k}\right)=\left\{v_{3 b-2} v_{3 b-1} \cup v_{3 b-2} v_{3 b} \cup v_{3 b-2} v_{3 b+1} \cup v_{3 b} v_{3 b+1} \cup v_{3 b-1} v_{3 b+1} / 1 \leq b \leq\right.$ $k-1\}$ is the edge set and $\left|V^{\prime}\left(D-\Delta_{s}^{k}\right)\right|=3 k-2\left|E^{\prime}\left(D-\Delta_{s}^{k}\right)\right|=5 k-5$ refers the number of points and lines.

Define a function $H: V^{\prime}\left(D-\Delta_{s}^{k}\right) \rightarrow\left\{F_{2}, F_{3}, \ldots, F_{3 k-1}\right\}$ and the vertices of $D-\Delta_{s}^{k}$ are labeled with the Fibonacci numbers $F_{2}, F_{3}, \ldots, F_{3 k-1}$ i.e. $H\left(v_{1}\right)=$ $F_{2}, H\left(v_{2}\right)=F_{3}, \ldots, H\left(v_{3 k-2}\right)=F_{3 k-1} \Rightarrow H\left(v_{b}\right)=F_{b+1}$, where $1 \leq b \leq 3 k-2$.

There exists the function $H^{\prime}: E^{\prime}\left(D-\Delta_{s}^{k}\right) \rightarrow N$ is defined by $H^{\prime}(u v)=$ g.c.d $(H(u), H(v)) \forall u v \in E^{\prime}\left(D-\Delta_{s}^{k}\right)$.

Now, $H^{\prime}\left(v_{3 b-2} v_{3 b-1}\right)=$ g.c.d $\left(H\left(v_{3 b-2}\right), H\left(v_{3 b-1}\right)\right)=\operatorname{g.c.d}\left(F_{3 b-1}, F_{3 b}\right)=1$
Similarly, $H^{\prime}\left(v_{3 b-2} v_{3 b}\right)=$ g.c.d $\left(H\left(v_{3 b-2}\right), H\left(v_{3 b}\right)\right)=$ g.c.d $\left(F_{3 b-1}, F_{3 b+1}\right)=1$
$H^{\prime}\left(v_{3 b-1} v_{3 b+1}\right)=$ g.c.d $\left(H\left(v_{3 b-1}\right), H\left(v_{3 b+1}\right)\right)=$ g.c.d $\left(F_{3 b}, F_{3 b+2}\right)=1$
$H^{\prime}\left(v_{3 b} v_{3 b+1}\right)=$ g.c.d $\left(H\left(v_{3 b}\right), H\left(v_{3 b+1}\right)\right)=$ g.c.d $\left(F_{3 b+1}, F_{3 b+2}\right)=1$
$H^{\prime}\left(v_{3 b-2} v_{3 b+1}\right)=$ g.c.d $\left(H\left(v_{3 b-2}\right), H\left(v_{3 b+1}\right)\right)=$ g.c.d $\left(F_{3 b-1}, F_{3 b+2}\right)=1$
$\Rightarrow H^{\prime}(u v)=$ g.c.d $(H(u), H(v)) \forall u v \in E^{\prime}\left(D-\Delta_{s}^{k}\right)$
Therefore, $D-\Delta_{s}^{k}$ is a FPG.
Example 2.5. Consider the double triangular snake graph $D-\Delta_{s}^{5}$

Figure 2: $D-\Delta_{s}^{5}$ - FPG

Theorem 2.6. Q_{s}^{l} exists as $F P G$.
Proof. Q_{s}^{l}, where $l \geq 2$. The vertex set and edge set of Q_{s}^{l} are
$V^{*}\left(Q_{n}^{l}\right)=\left\{v_{1}, v_{2}, \ldots, v_{3 l-2}\right\}$
$E^{*}\left(Q_{s}^{l}\right)=\left\{v_{3 j-2} v_{3 j-1} \cup v_{3 j-1} v_{3 j} \cup v_{3 j-2} v_{3 j+1} \cup v_{3 j} v_{3 j+1} / 1 \leq j \leq l-1\right\}$
$p^{\prime}=3 n-2, q^{\prime}=4 n-4$ represents order and size of Q_{s}^{l}
Consider the function $M^{\prime}: V\left(Q_{s}^{l}\right) \rightarrow\left\{F_{2}, F_{3}, \ldots, F_{3 l-1}\right\}$ and the vertices of Q_{s}^{l} are labeled with the Fibonacci numbers $F_{2}, F_{3}, \ldots, F_{3 l-1}$
i.e. $M^{\prime}\left(v_{1}\right)=F_{2}, M^{\prime}\left(v_{2}\right)=F_{3}, \ldots, M^{\prime}\left(v_{3 l-2}\right)=F_{3 l-1}$
$\Rightarrow M^{\prime}\left(v_{j}\right)=F_{j+1}$, where $1 \leq j \leq 3 l-2$.
M^{\prime} induces the function $M^{\prime \prime}: E^{*}\left(Q_{s}^{l}\right) \rightarrow N$ is defined by
$M^{\prime \prime}(x y)=$ g.c.d $\left\{M^{\prime}(x), M^{\prime}(y)\right\} \forall x y \in E^{\prime}\left(Q_{S}^{l}\right)$.
Now, $M^{\prime \prime}\left(v_{3 j-2} v_{3 j-1}\right)=$ g.c.d $\left(M^{\prime}\left(v_{3 j-2}\right), M^{\prime}\left(v_{3 j-1}\right)\right)=\operatorname{g.c.d}\left(F_{3 j-1}, F_{3 j}\right)=1$,
$1 \leq j \leq l-1$
Similarly,
$M^{\prime \prime}\left(v_{3 j-2} v_{3 j}\right)=$ g.c.d $\left\{M^{\prime}\left(v_{3 j-2}\right), M^{\prime}\left(v_{3 j}\right)\right)=$ g.c.d $\left(F_{3 j-1}, F_{3 j+1}\right)=1$
$M^{\prime \prime}\left(v_{3 j} v_{3 j+1}\right)=$ g.c.d $\left(M^{\prime}\left(v_{3 j}\right), M^{\prime}\left(v_{3 j+1}\right)\right)=$ g.c.d $\left(F_{3 j+1}, F_{3 j+2}\right)=1$
$M^{\prime \prime}\left(v_{3 j-2} v_{3 j+1}\right)=$ g.c.d $\left(M^{\prime}\left(v_{3 j-2}\right), M^{\prime}\left(v_{3 j+1}\right)\right)=$ g.c.d $\left(F_{3 j-1}, F_{3 j+2}\right)=1$
$\Rightarrow M^{\prime \prime}(x y)=g . c . d\left(M^{\prime}(x), M^{\prime}(y)\right)=1$, for each edge belongs to $E^{*}\left(Q_{s}^{l}\right)$
Hence Q_{s}^{l} exists as FPG.
Example 2.7. Consider the quadrilateral snake graph Q_{s}^{6}

Figure 3: $Q_{s}^{6}-\mathrm{FPG}$
Theorem 2.8. $D-Q_{s}^{c}$ allows $F P L$
Proof. Suppose $D-Q_{s}^{c}, c \geq 2$ is a double quadrilateral graph, $V\left(D-Q_{s}^{c}\right)=\left\{w_{1}, w_{2}, \ldots, w_{5 c-4}\right\}$, $E\left(D-Q_{s}^{c}\right)=\left\{w_{5 i-4} w_{5 i-3} \cup v_{5 i-4} v_{5 i-2} \cup w_{5 i-1} w_{5 i+1} \cup w_{5 i} w_{5 i+1} \cup w_{5 i-2} w_{5 i} \cup\right.$ $\left.w_{5 i-3} w_{5 i-1} \cup w_{5 i-4} w_{5 i+1} / 1 \leq i \leq c-1\right\}$
are the points and lines of $D-Q_{s}^{c}$. Then $p^{*}=5 c-4, q^{*}=7 c-7$ signifies the
order and size of $D-Q_{s}^{c}$
Let us define a function $T^{\prime}: V\left(D-Q_{s}^{c}\right) \rightarrow\left\{F_{2}, F_{3}, \ldots, F_{5 c-3}\right\}$ and the vertices of $D-Q_{s}^{c}$ are labeled with the Fibonacci numbers $F_{2}, F_{3}, \ldots, F_{5 c-3}$
i.e. $T^{\prime}\left(w_{1}\right)=F_{2}, T^{\prime}\left(w_{2}\right)=F_{3}, \ldots, T^{\prime}\left(w_{5 c-4}\right)=F_{5 c-3}$
$\Rightarrow T^{\prime}\left(w_{i}\right)=F_{i+1}$, where $1 \leq i \leq 5 c-4$.
Then the another function is exists $T^{\prime \prime}: E\left(D-Q_{s}^{c}\right) \rightarrow N$ is defined by $T^{\prime \prime}(x z)=$ g.c.d $\left(T^{\prime}(x), T^{\prime}(z)\right), \forall x z \in E\left(D_{Q^{s}}^{c}\right)$.

Now, $T^{\prime \prime}\left(w_{5 i-4} w_{5 i-3}\right)=$ g.c.d $\left(T^{\prime}\left(w_{5 i-4}\right), T^{\prime}\left(w_{5 i-3}\right)\right)=\operatorname{g.c.d}\left(F_{5 i-3}, F_{5 i-2}\right)=1$, $1 \leq i \leq c-1$
Similarly,
$T^{\prime \prime}\left(w_{5 i-4} w_{5 i-2}\right)=\operatorname{g.c.d}\left(T^{\prime}\left(w_{5 i-4}\right), T^{\prime}\left(w_{5 i-2}\right)\right)=$ g.c.d $\left(F_{5 i-3}, F_{5 i-1}\right)=1$
$T^{\prime \prime}\left(w_{5 i-1} w_{5 i+1}\right)=\operatorname{g.c.d}\left(T^{\prime}\left(w_{5 i-1}\right), T^{\prime}\left(w_{5 i+1}\right)\right)=\operatorname{g.c.d}\left(F_{5 i}, F_{5 i+2}\right)=1$
$T^{\prime \prime}\left(w_{5 i} w_{5 i+1}\right)=$ g.c.d $\left(T^{\prime}\left(w_{5 i}\right), T^{\prime}\left(w_{5 i+1}\right)\right)=$ g.c.d $\left(F_{5 i+1}, F_{5 i+2}\right)=1$
$T^{\prime \prime}\left(w_{5 i-2} w_{5 i}\right)=$ g.c.d $\left(T^{\prime}\left(w_{5 i-2}\right), T^{\prime}\left(w_{5 i}\right)\right)=$ g.c.d $\left(F_{5 i-1}, F_{5 i+1}\right)=1$
$T^{\prime \prime}\left(w_{5 i-3} w_{5 i-1}\right)=$ g.c.d $\left(T^{\prime}\left(w_{5 i-3}\right), T^{\prime}\left(w_{5 i-1}\right)\right)=$ g.c.d $\left(F_{5 i-2}, F_{5 i}\right)=1$
$T^{\prime \prime}\left(w_{5 i-4} w_{5 i+1}\right)=$ g.c.d $\left(T^{\prime}\left(w_{5 i-4}\right), T^{\prime}\left(w_{5 i+1}\right)\right)=$ g.c.d $\left(F_{5 i-3}, F_{5 i+2}\right)=1$
$\Rightarrow T^{\prime \prime}(x z)=\operatorname{gcd}\left(T^{\prime}(x) T^{\prime}(z)\right)=1$ for all members of $E\left(D-Q_{s}^{c}\right)$.
Thus $D-Q_{s}^{c}$ proved as $F P G$.
Example 2.9. Consider the double quadrilateral snake graph $D-Q_{s}^{3}$

Figure 4: $D-Q_{s}^{3}$ - FPG
Theorem 2.10. $n-P_{s}^{x}$ is a $F P G$
Proof. Consider the graph $n-P_{s}^{x}, x \geq 2, n \geq 5$. The collection of vertices and edges are given below
$V^{\prime \prime}\left(n-P_{s}^{x}\right)=\left\{v_{(n-1) m-(n-2)}^{\prime} / 1 \leq m \leq x\right\} \cup\left\{v_{(n-1) m-(n-2)+e}^{\prime} / 1 \leq m \leq x-1\right.$,
$1 \leq e \leq n-2\}$
Let $E^{\prime \prime}\left(n-P_{s}^{x}\right)=\left\{v_{(n-1) m-(n-2)}^{\prime} v_{(n-1) m+1}^{\prime} \cup v_{(n-1) m-(n-2)+1}^{\prime} v_{(n-1) m-(n-2)}^{\prime} \cup\right.$

$$
\begin{array}{r}
v_{(n-1) m}^{\prime} v_{(n-1) m+1}^{\prime} \cup v_{(n-1) m-(n-2)+(e-1)}^{\prime} v_{(n-1) m-(n-2)+e}^{\prime} / 1 \leq m \leq x-1 \\
2 \leq e \leq n-2\}
\end{array}
$$

$\left|V^{\prime \prime}\left(n-P_{s}^{x}\right)\right|=x(n-1)-(n-2),\left|E^{\prime \prime}\left(n-P_{s}^{x}\right)\right|=n(x-1)$ denotes the number of points and lines of $n-P_{s}^{x}$
Case 1. If $n=3,4$
Suppose $n=3$
$\Rightarrow V^{\prime \prime}\left(3-P_{s}^{x}\right)=\left\{v_{2 m-1}^{\prime} / 1 \leq m \leq x\right\} \cup\left\{v_{2 m-1+e}^{\prime} / 1 \leq m \leq x-1, e=1\right\}$
$E^{\prime \prime}\left(3-P_{s}^{x}\right)=\left\{v_{2 m-1}^{\prime} v_{2 m+1}^{\prime} \cup v_{2 m}^{\prime} v_{2 m-1}^{\prime} \cup v_{2 m}^{\prime} v_{2 m+1}^{\prime} \cup v_{2(m-1)+e}^{\prime} v_{2 m+e-1}^{\prime} /\right.$
$1 \leq m \leq x-1, e=1\}$
When Substitutes $e=1$ we get,
$E^{\prime \prime}\left(3-P_{s}^{x}\right)=\left\{v_{2 m-1}^{\prime} v_{2 m+1}^{\prime} \cup v_{2 m}^{\prime} v_{2 m-1}^{\prime} \cup v_{2 m}^{\prime} v_{2 m+1}^{\prime} \cup v_{2 m-1}^{\prime} v_{2 m}^{\prime} / 1 \leq m \leq x-1\right\}$
Suppose $n=4$
$\Rightarrow V^{\prime \prime}\left(4-P_{s}^{x}\right)=\left\{v_{3 m-2}^{\prime} / 1 \leq m \leq x\right\} \cup\left\{v_{3 m-2+e}^{\prime} / 1 \leq m \leq x-1, e=1,2\right\}$
$E^{\prime \prime}\left(4-P_{s}^{x}\right)=\left\{v_{3 m-2}^{\prime} v_{3 m+1}^{\prime} \cup v_{3 m-2}^{\prime} v_{3 m-1}^{\prime} \cup v_{3 m}^{\prime} v_{3 m+1}^{\prime} \cup v_{3(m-1)+e}^{\prime} v_{3 m+e-2}^{\prime} /\right.$
$1 \leq m \leq x-1, e=1,2\}$
When Substitutes $e=1,2$ we get,
$\Rightarrow E^{\prime \prime}\left(4-P_{s}^{x}\right)=\left\{v_{3 m-2}^{\prime} v_{3 m+1}^{\prime} \cup v_{3 m-2}^{\prime} v_{3 m-1}^{\prime} \cup v_{3 m}^{\prime} v_{3 m+1}^{\prime} \cup v_{3 m-2}^{\prime} v_{3 m-1}^{\prime}\right.$

$$
\left.\cup v_{3 m-1}^{\prime} v_{3 m}^{\prime} / 1 \leq m \leq x-1\right\}
$$

Edges are repeated in $3-P_{s}^{x}, 4-P_{s}^{x}$ Graphs.
Case 2. If $n>4$
Suppose $n=5$
$\Rightarrow V^{\prime \prime}\left(5-P_{s}^{x}\right)=\left\{v_{4 m-3}^{\prime} / 1 \leq m \leq x\right\} \cup\left\{v_{4 m-3+e}^{\prime} / 1 \leq m \leq x-1,1 \leq e \leq 3\right\}$
$E^{\prime \prime}\left(5-P_{s}^{x}\right)=\left\{v_{4 m-3}^{\prime} v_{4 m+1}^{\prime} \cup v_{4 m-2}^{\prime} v_{4 m-3}^{\prime} \cup v^{\prime}{ }_{4 m} v_{4 m+1}^{\prime} \cup v_{4(m-1)+e}^{\prime} v_{4 m+e-3}^{\prime} /\right.$
$1 \leq m \leq x-1,1 \leq e \leq 3\}$
When Substitutes $e=1,2,3$ we get,
$E^{\prime \prime}\left(5-P_{s}^{x}\right)=\left\{v_{4 m-3}^{\prime} v_{4 m+1}^{\prime} \cup v_{4 m-2}^{\prime} v_{4 m-3}^{\prime} \cup v_{4 m}^{\prime} v_{4 m+1}^{\prime} \cup v_{4 m-3}^{\prime} v_{4 m-4}^{\prime}\right.$

$$
\left.\cup v_{4 m-2}^{\prime} v_{4 m-1}^{\prime} \cup v_{4 m-1}^{\prime} v_{4 m}^{\prime} / 1 \leq m \leq x-1\right\}
$$

Edges are not repeated when the value of n is greater than four. Thus the generalized Vertex Set and Edge Set are true, when $n \geq 5$.
Consider the function $X^{\prime}: V^{\prime \prime}\left(n-P_{s}^{x}\right) \rightarrow\left\{F_{2}, F_{3}, \ldots, F_{x(n-1)-(n-2)+1}\right\}$
$\Rightarrow X^{\prime}\left(v_{m}^{\prime}\right)=F_{m+1}$, where $1 \leq m \leq x(n-1)-(n-2)$.
Consequently the function exists $X^{*}: E^{\prime \prime}\left(\left(n-P_{s}^{x}\right) \rightarrow N\right.$ is defined as $X^{*}(y z)=$ g.c.d $\left\{X^{\prime}(y), X^{\prime}(z)\right\} \forall x z \in E^{\prime \prime}\left(\left(n-P_{s}^{x}\right)\right.$.

Now, $X^{*}\left(v_{(n-1) m-(n-2)}^{\prime} v_{(n-1) m+1}^{\prime}\right)=$ g.c.d $\left(X^{\prime}\left(v_{(n-1) m-(n-2)}^{\prime}\right), X^{\prime}\left(v_{(n-1) m+1}^{\prime}\right)\right)$

$$
\begin{aligned}
& =g . c . d\left[x^{\prime}\left(v_{(n-1) m-(n-2)}^{\prime}\right), X^{\prime}\left(v_{(n-1) m-(n-2)+(n-1)}^{\prime}\right)\right] \\
& =g \cdot c \cdot d\left[F_{(n-1) m-(n-2)+1}, F_{(n-1) m-(n-2)+(n-1)+1}\right] \\
& =1,1 \leq m \leq x-1
\end{aligned}
$$

Similarly, $X^{*}\left(v_{(n-1) m-(n-2)+1}^{\prime} v_{(n-1) m-(n-2)}^{\prime}\right)$

$$
\begin{aligned}
& =\text { g.c.d }\left[\left(v_{(n-1) m-(n-2)+1}^{\prime}\right), X^{\prime}\left(v_{(n-1) m-(n-2)}^{\prime}\right)\right] \\
& =\text { g.c.d }\left[F_{(n-1) m-(n-2)+2}, F_{(n-1) m-(n-2)+1}\right]=1
\end{aligned}
$$

$$
X^{*}\left(v_{(n-1) m+1}^{\prime} v_{(n-1) m}^{\prime}\right)=\text { g.c.d }\left[X^{\prime}\left(v_{(n-1) m+1}^{\prime}\right), X^{\prime}\left(v_{(n-1) m}^{\prime}\right)\right]
$$

$$
=\text { g.c.d }\left\{F_{(n-1) m+1}, F_{(n-1) m+2}\right\}
$$

$$
X^{*}\binom{=1}{v_{(n-1) m-(n-2)+(e-1)}^{\prime} v_{(n-1) m-(n-2)+e}^{\prime}}
$$

$$
=g . c . d\left[X^{\prime}\left(v_{(n-1) m-(n-2)+(e-1)}^{\prime}\right), X^{\prime}\left(v_{(n-1) m-(n-2)+e}^{\prime}\right)\right]
$$

$$
=g . c . d\left\{F_{(n-1) m-(n-2)+e}, F_{(n-1) m-(n-2)+e+1}\right\}=1
$$

\Rightarrow g.c.d $\left[X^{\prime}(y), X^{\prime}(z)\right]=1 \forall y z \in E^{\prime \prime}\left(n-P_{s}^{x}\right)$.
$n-P_{s}^{x}$ admits FPL.
Example 2.11. Consider the 8 -polygonal snake graph $8-P_{s}^{3}$

Figure 5: $8-P_{s}^{3}$-FPG

3. Conclusion

In this paper, we proved that some snake graphs are admits Fibonacci Prime Labeling. The Triangular snake graph, Double Triangular snake graph, Quadrilateral Snake graph, Double Quadrilateral snake graph, n-Polygonal Snake graph, Double n-Polygonal snake graph, Alternate Triangular Snake graph are Fibonacci Prime Graphs.

References

[1] Bondy J. A. and Murthy U. S. R., Graph Theory and Application, North Holland, New York, (1976).
[2] Chandrakala S. and Sekar C., Fibonacci Prime Labeling of Cycle Related Graphs, International Journal for Research in Engineering Application \& Management,(IJREAM), Vol-04, Issue-03, (2018).
[3] Ponraj R. and Sathish Narayanan S., Mean cordiality of some snake graphs, Palestine Journal of Mathematics, Vol. 4 (2) (2015), 439-445.
[4] Prajapati U. M. and Shah K. P., Odd Prime Labeling of Various Snake Graphs, International Journal of Scientific Research and Reviews.
[5] Sekar C., Chandrakala S., Fibonacci Prime Labeling of Graphs, IJCRT, (2018).
[6] Vaghela U., Parmar D., Difference Perfect Square Cordial Labeling of Snake Graphs, Zeichen Journal.

