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Abstract: Here we describe the Snake related graph into a Fibonacci prime Graph
by the following condition, If there exist a one-to-one mapping between the vertex
set and the fibonacci numbers then there is a mapping between edge set and natu-
ral numbers where the end points of the edges are relatively prime. This work is a
continuation of S. Chandrakala, Dr. C. Sekar who introduced Fibonacci Prime La-
beling. We represent Fibonacci Prime Labeling as (FPL), Fibonacci Prime Graph
as (FPG).
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1. Introduction and Preliminaries
The finite, loopless and non-multiple edge, connected, bidirectional graph has

been used in the current work. Let G = (V ′, E ′) be a (p, q) graph where V ′, E ′, p
and q denotes vertex set, edge set, the number of vertices, number of edges of the
graph. Here we mentioned the Triangular Snake Graph as ∆a

s , Double Triangular
Snake graph as D − ∆k

s , Quadrilateral Snake Graph as Ql
s, Double Quadrilateral

Snake Graph as D − Qc
s, n− Polygonal Snake graph as n − P x

s , where a, k, l, c, x
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denotes number of times the cycles appears in the snake graph.

FPL was lauched by C. Sekar, S. Chandrakala [5] and they are also proved that the
path, friendship graph, fan graph, star graph, dragon graph, umbrella graph, cycle
related graph and crown graph are FPG [2],[5]. We refer Bondy and Murthy for
notations and terminology [1]. This paper proves that some snake related graphs
are admits FPL. A FPL of a graph G =

(
V

′
, E

′)
with

∣∣V ′∣∣=m is an injective

function h : V
′ → {F2, F3, ..., Fm+1}, where Fm is the m-th Fibonacci number, that

leads to a another function h
′′

: E
′ → N defined by h

′′
(vw) = gcd (h(v), h(w)) =

1 for all edges belong to the edge set E
′
(G). ∆a

s , D − ∆k
s , Ql

s, D − Qc
s, n − P x

s

are satisfy the conditions of the Difference Perfect Square labeling, Mean Cordial
labeling and Odd Prime labeling in the articles [3], [4], [6].

2. Main Results

Note 2.1. From the Fibonacci numbers we get g.c.d {Fm, Fk} = 1, if g.c.d {m, k} =
1 or g.c.d {m, k} = 2, where Fm, Fk are distinct Fibonacci numbers and m, k are
distinct integers, k = m + l, 1 ≤ l ≤ m− 1 and m ≥ 3.

Theorem 2.2. ∆a
s admits FPL.

Proof. ∆a
s , where a ≥ 2 is a triangular snake graph.

Let V
′
(∆a

s) = {v1, v2, ..., v2a−1} be the vertex set and

Let E
′
(∆a

s) = {vivi+1/1 ≤ i ≤ 2a− 2} ∪ {vivi+2/i ∈ [1, 2a− 3]− {2i}} be the
edge set.

Let p = 2a− 1, q = 3a− 3 indicates the number of nodes and links in ∆a
s

Let us define a function h
′

: V
′
(∆a

s) → {F2, F3, ..., F2a} and the vertices of ∆a
s

are labeled with the Fibonacci numbers F2, F3, ..., F2a

i.e. h
′
(v1) = F2, h

′
(v2) = F3, ..., h

′
(v2a−1) = F2a

⇒ h
′
(vi) = Fi+1 , where 1 ≤ i ≤ 2a− 1.

Then the function f induces the function h∗ : E
′
(∆a

s) → N is defined as
h∗ (bd) = g.c.d

(
h

′
(b) , h

′
(d)
)

for all edges in E
′
(∆a

s). Minimum degree of each
vertex in ∆a

s is 2. Let vi be a vertex in ∆a
s and it is 2−connected. Assume that

the vertex vi adjacent to the vertices vi+1, vi+2. Now the vertex vi and the vertices
adjacent to vi are labeled as Fi+1, Fi+2, Fi+3.
⇒ h∗ (vivi+1) = g.c.d

(
h

′
(vi) , h

′
(vi+1)

)
= g.c.d (Fi+1, Fi+2) = 1, 1 ≤ i ≤ 2a− 2

Similarly, h∗ (vivi+2) = g.c.d (Fi+1, Fi+3) = 1, where i is the odd number and not
exceeded than 2a− 3.
⇒ h∗ (bd) = gcd

(
h

′
(b) , h

′
(d)
)

= 1 for every edge belongs to E
′
(∆a

s)
Therefore, ∆a

s is a FPG.

Example 2.3. Consider the triangular snake graph ∆4
s.
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Figure 1: ∆4
s - FPG

Theorem 2.4. D −∆k
s admits FPL.

Proof. D − ∆k
s , k ≥ 2, V

′ (
D −∆k

s

)
= {v1, v2, ..., v3k−2} is the vertex set,

E
′ (
D −∆k

s

)
= {v3b−2v3b−1 ∪v3b−2v3b ∪v3b−2v3b+1 ∪v3bv3b+1 ∪v3b−1v3b+1/ 1≤ b ≤

k − 1} is the edge set and
∣∣V ′ (

D −∆k
s

)∣∣ = 3k − 2
∣∣E ′ (

D −∆k
s

)∣∣ = 5k − 5 refers
the number of points and lines.

Define a function H : V ′(D − ∆k
s) → {F2, F3, ..., F3k−1} and the vertices of

D − ∆k
s are labeled with the Fibonacci numbers F2, F3, ..., F3k−1 i.e. H (v1) =

F2, H (v2) = F3, ..., H (v3k−2) = F3k−1 ⇒ H (vb) = Fb+1, where 1 ≤ b ≤ 3k − 2.
There exists the function H

′
: E

′ (
D −∆k

s

)
→ N is defined by H

′
(uv) =

g.c.d (H (u) , H (v))∀uv ∈ E
′ (
D −∆k

s

)
.

Now, H
′
(v3b−2v3b−1) = g.c.d (H (v3b−2) , H (v3b−1)) = g.c.d (F3b−1, F3b) = 1

Similarly, H
′
(v3b−2v3b) = g.c.d (H (v3b−2) , H (v3b)) = g.c.d (F3b−1, F3b+1) = 1

H
′
(v3b−1v3b+1) = g.c.d (H (v3b−1) , H (v3b+1)) = g.c.d (F3b, F3b+2) = 1

H
′
(v3bv3b+1) = g.c.d (H (v3b) , H (v3b+1)) = g.c.d (F3b+1, F3b+2) = 1

H
′
(v3b−2v3b+1) = g.c.d (H (v3b−2) , H (v3b+1)) = g.c.d (F3b−1, F3b+2) = 1

⇒ H
′
(uv) = g.c.d (H (u) , H (v))∀uv ∈ E

′ (
D −∆k

s

)
Therefore, D −∆k

s is a FPG.

Example 2.5. Consider the double triangular snake graph D −∆5
s

Figure 2: D −∆5
s-FPG
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Theorem 2.6. Ql
s exists as FPG.

Proof. Ql
s, where l ≥ 2. The vertex set and edge set of Ql

s are
V ∗
(
Ql

n

)
= {v1, v2, ..., v3l−2}

E∗
(
Ql

s

)
= {v3j−2v3j−1 ∪ v3j−1v3j ∪ v3j−2v3j+1 ∪ v3jv3j+1/1 ≤ j ≤ l − 1}

p
′
= 3n− 2, q

′
= 4n− 4 represents order and size of Ql

s

Consider the function M
′

: V
(
Ql

s

)
→ {F2, F3, ..., F3l−1} and the vertices of Ql

s

are labeled with the Fibonacci numbers F2, F3, ..., F3l−1
i.e.M

′
(v1) = F2,M

′
(v2) = F3, ...,M

′
(v3l−2) = F3l−1

⇒M
′
(vj) = Fj+1 , where 1 ≤ j ≤ 3l − 2.

M
′

induces the function M
′′

: E∗(Ql
s)→ N is defined by

M
′′

(xy) = g.c.d
{
M

′
(x) ,M

′
(y)
}
∀ xy ∈ E

′ (
Ql

S

)
.

Now, M
′′

(v3j−2v3j−1) = g.c.d
(
M

′
(v3j−2) ,M

′
(v3j−1)

)
= g.c.d (F3j−1, F3j) = 1,

1 ≤ j ≤ l − 1
Similarly,
M

′′
(v3j−2v3j) = g.c.d

{
M

′
(v3j−2) ,M

′
(v3j)

)
= g.c.d (F3j−1, F3j+1) = 1

M
′′

(v3jv3j+1) = g.c.d
(
M

′
(v3j) ,M

′
(v3j+1)

)
= g.c.d (F3j+1, F3j+2) = 1

M
′′

(v3j−2v3j+1) = g.c.d
(
M

′
(v3j−2) ,M

′
(v3j+1)

)
= g.c.d (F3j−1, F3j+2) = 1

⇒M
′′

(xy) = g.c.d
(
M

′
(x) ,M

′
(y)
)

= 1, for each edge belongs to E∗
(
Ql

s

)
Hence Ql

s exists as FPG.

Example 2.7. Consider the quadrilateral snake graph Q6
s

Figure 3: Q6
s - FPG

Theorem 2.8. D −Qc
s allows FPL

Proof. Suppose D −Qc
s, c ≥ 2 is a double quadrilateral graph,

V (D −Qc
s) = {w1, w2, ..., w5c−4},

E (D −Qc
s) = {w5i−4w5i−3 ∪ v5i−4v5i−2 ∪ w5i−1w5i+1 ∪ w5iw5i+1 ∪ w5i−2w5i∪

w5i−3w5i−1 ∪ w5i−4w5i+1/1 ≤ i ≤ c− 1}
are the points and lines of D − Qc

s. Then p∗ = 5c − 4, q∗ = 7c − 7 signifies the
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order and size of D −Qc
s

Let us define a function T
′

: V (D −Qc
s) → {F2, F3, ..., F5c−3} and the vertices

of D −Qc
s are labeled with the Fibonacci numbers F2, F3, ..., F5c−3

i.e. T
′
(w1) = F2, T

′
(w2) = F3, ..., T

′
(w5c−4) = F5c−3

⇒ T
′
(wi) = Fi+1, where 1 ≤ i ≤ 5c− 4.

Then the another function is exists T
′′

: E (D −Qc
s) → N is defined by

T
′′

(xz) = g.c.d
(
T

′
(x) , T

′
(z)
)
, ∀xz ∈ E

(
Dc

Qs

)
.

Now, T
′′

(w5i−4w5i−3) = g.c.d
(
T

′
(w5i−4) , T

′
(w5i−3)

)
= g.c.d (F5i−3, F5i−2) = 1,

1 ≤ i ≤ c− 1
Similarly,

T
′′

(w5i−4w5i−2) = g.c.d
(
T

′
(w5i−4) , T

′
(w5i−2)

)
= g.c.d (F5i−3, F5i−1) = 1

T
′′

(w5i−1w5i+1) = g.c.d
(
T

′
(w5i−1) , T

′
(w5i+1)

)
= g.c.d (F5i, F5i+2) = 1

T
′′

(w5iw5i+1) = g.c.d
(
T

′
(w5i) , T

′
(w5i+1)

)
= g.c.d (F5i+1, F5i+2) = 1

T
′′

(w5i−2w5i) = g.c.d
(
T

′
(w5i−2) , T

′
(w5i)

)
= g.c.d (F5i−1, F5i+1) = 1

T
′′

(w5i−3w5i−1) = g.c.d
(
T

′
(w5i−3) , T

′
(w5i−1)

)
= g.c.d (F5i−2, F5i) = 1

T
′′

(w5i−4w5i+1) = g.c.d
(
T

′
(w5i−4) , T

′
(w5i+1)

)
= g.c.d (F5i−3, F5i+2) = 1

⇒ T
′′

(xz) = gcd
(
T

′
(x)T

′
(z)
)

= 1 for all members of E (D −Qc
s).

Thus D −Qc
s proved as FPG.

Example 2.9. Consider the double quadrilateral snake graph D −Q3
s

Figure 4: D −Q3
s - FPG

Theorem 2.10. n− P x
s is a FPG

Proof. Consider the graph n − P x
s , x ≥ 2, n ≥ 5. The collection of vertices and

edges are given below

V
′′

(n− P x
s ) =

{
v

′

(n−1)m−(n−2)/1 ≤ m ≤ x
}
∪
{
v

′

(n−1)m−(n−2)+e/1 ≤ m ≤ x− 1,

1 ≤ e ≤ n− 2}
Let E

′′
(n− P x

s ) =
{
v

′

(n−1)m−(n−2)v
′

(n−1)m+1 ∪ v
′

(n−1)m−(n−2)+1v
′

(n−1)m−(n−2)∪
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v
′

(n−1)mv
′

(n−1)m+1 ∪ v
′

(n−1)m−(n−2)+(e−1)v
′

(n−1)m−(n−2)+e/1 ≤ m ≤ x− 1,

2 ≤ e ≤ n− 2}∣∣V ′′
(n− P x

s )
∣∣ = x (n− 1)−(n− 2),

∣∣E ′′
(n− P x

s )
∣∣ = n (x− 1) denotes the number

of points and lines of n− P x
s

Case 1. If n = 3, 4
Suppose n = 3
⇒ V

′′
(3− P x

s ) =
{
v

′
2m−1/1 ≤ m ≤ x

}
∪
{
v

′
2m−1+e/1 ≤ m ≤ x− 1, e = 1

}
E

′′
(3− P x

s ) =
{
v

′
2m−1v

′
2m+1 ∪ v

′
2mv

′
2m−1 ∪ v

′
2mv

′
2m+1 ∪ v

′

2(m−1)+ev
′
2m+e−1/

1 ≤ m ≤ x− 1, e = 1}
When Substitutes e = 1 we get,
E

′′
(3− P x

s ) =
{
v

′
2m−1v

′
2m+1 ∪ v

′
2mv

′
2m−1 ∪ v

′
2mv

′
2m+1 ∪ v

′
2m−1v

′
2m/1 ≤ m ≤ x− 1

}
Suppose n = 4

⇒ V
′′

(4− P x
s ) =

{
v

′
3m−2/1 ≤ m ≤ x

}
∪
{
v

′
3m−2+e/1 ≤ m ≤ x− 1, e = 1, 2

}
E

′′
(4− P x

s ) =
{
v

′
3m−2v

′
3m+1 ∪ v

′
3m−2v

′
3m−1 ∪ v

′
3mv

′
3m+1 ∪ v

′

3(m−1)+ev
′
3m+e−2/

1 ≤ m ≤ x− 1, e = 1, 2}
When Substitutes e = 1, 2 we get,
⇒ E

′′
(4− P x

s ) =
{
v

′
3m−2v

′
3m+1 ∪ v

′
3m−2v

′
3m−1 ∪ v

′
3mv

′
3m+1 ∪ v

′
3m−2v

′
3m−1

∪v′
3m−1v

′
3m/1 ≤ m ≤ x− 1}

Edges are repeated in 3− P x
s , 4− P x

s Graphs.
Case 2. If n > 4
Suppose n = 5
⇒ V

′′
(5− P x

s ) =
{
v

′
4m−3/1 ≤ m ≤ x

}
∪
{
v

′
4m−3+e/1 ≤ m ≤ x− 1, 1 ≤ e ≤ 3

}
E

′′
(5− P x

s ) =
{
v

′
4m−3v

′
4m+1 ∪ v

′
4m−2v

′
4m−3 ∪ v′4mv

′
4m+1 ∪ v

′

4(m−1)+ev
′
4m+e−3/

1 ≤ m ≤ x− 1, 1 ≤ e ≤ 3}
When Substitutes e = 1, 2, 3 we get,
E

′′
(5− P x

s ) =
{
v

′
4m−3v

′
4m+1 ∪ v

′
4m−2v

′
4m−3 ∪ v

′
4mv

′
4m+1 ∪ v

′
4m−3v

′
4m−4

∪v′
4m−2v

′
4m−1 ∪ v

′
4m−1v

′
4m/1 ≤ m ≤ x− 1}

Edges are not repeated when the value of n is greater than four. Thus the
generalized Vertex Set and Edge Set are true, when n ≥ 5.
Consider the function X

′
: V

′′
(n− P x

s )→
{
F2, F3, ..., Fx(n−1)−(n−2)+1

}
⇒ X

′ (
v

′
m

)
= Fm+1, where 1 ≤ m ≤ x (n− 1)− (n− 2).

Consequently the function exists X∗ : E
′′

((n− P x
s )→ N is defined as

X∗ (yz) = g.c.d
{
X

′
(y) , X

′
(z)
}
∀xz ∈ E

′′
((n− P x

s ).
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Now, X∗
(
v

′

(n−1)m−(n−2)v
′

(n−1)m+1

)
= g.c.d

(
X

′
(
v

′

(n−1)m−(n−2)

)
, X

′
(
v

′

(n−1)m+1

))
= g.c.d

[
x

′
(
v

′

(n−1)m−(n−2)

)
, X

′
(
v

′

(n−1)m−(n−2)+(n−1)

)]
= g.c.d

[
F(n−1)m−(n−2)+1, F(n−1)m−(n−2)+(n−1)+1

]
= 1, 1 ≤ m ≤ x− 1

Similarly, X∗
(
v

′

(n−1)m−(n−2)+1v
′

(n−1)m−(n−2)

)
= g.c.d

[(
v

′

(n−1)m−(n−2)+1

)
, X

′
(
v

′

(n−1)m−(n−2)

)]
= g.c.d

[
F(n−1)m−(n−2)+2, F(n−1)m−(n−2)+1

]
= 1

X∗
(
v

′

(n−1)m+1v
′

(n−1)m

)
= g.c.d

[
X

′
(
v

′

(n−1)m+1

)
, X

′
(
v

′

(n−1)m

)]
= g.c.d

{
F(n−1)m+1, F(n−1)m+2

}
= 1

X∗
(
v

′

(n−1)m−(n−2)+(e−1)v
′

(n−1)m−(n−2)+e

)
= g.c.d

[
X

′
(
v

′

(n−1)m−(n−2)+(e−1)

)
, X

′
(
v

′

(n−1)m−(n−2)+e

)]
= g.c.d

{
F(n−1)m−(n−2)+e, F(n−1)m−(n−2)+e+1

}
= 1

⇒ g.c.d
[
X

′
(y) , X

′
(z)
]

= 1 ∀yz ∈ E
′′

(n− P x
s ).

n− P x
s admits FPL.

Example 2.11. Consider the 8−polygonal snake graph 8− P 3
s

Figure 5: 8− P 3
s -FPG

3. Conclusion
In this paper, we proved that some snake graphs are admits Fibonacci Prime

Labeling. The Triangular snake graph, Double Triangular snake graph, Quadrilat-
eral Snake graph, Double Quadrilateral snake graph, n−Polygonal Snake graph,
Double n−Polygonal snake graph, Alternate Triangular Snake graph are Fibonacci
Prime Graphs.
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