South East Asian J. of Mathematics and Mathematical Sciences Vol. 17, Proceedings (2021), pp. 51-58

> ISSN (Online): 2582-0850 ISSN (Print): 0972-7752

FIBONACCI PRIME LABELING OF SNAKE GRAPH

J. Jenifer and M. Subbulakshmi

PG and Research Department of Mathematics, G. Venkataswamy Naidu College, Kovilpatti, Thoothukudi – 628502, Tamil Nadu, INDIA

E-mail: johnkennedy46164@gmail.com, mslakshmi1966@gmail.com

(Received: Aug. 08, 2021 Accepted: Oct. 01, 2021 Published: Nov. 30, 2021)

Special Issue Proceedings of International Virtual Conference on "Mathematical Modelling, Analysis and Computing IC- MMAC- 2021"

Abstract: Here we describe the Snake related graph into a Fibonacci prime Graph by the following condition, If there exist a one-to-one mapping between the vertex set and the fibonacci numbers then there is a mapping between edge set and natural numbers where the end points of the edges are relatively prime. This work is a continuation of S. Chandrakala, Dr. C. Sekar who introduced Fibonacci Prime Labeling. We represent Fibonacci Prime Labeling as *(FPL)*, Fibonacci Prime Graph as *(FPG)*.

Keywords and Phrases: Fibonacci Prime Labeling *(FPL)*, Fibonacci Prime Graph *(FPG)*.

2020 Mathematics Subject Classification: 05C78.

1. Introduction and Preliminaries

The finite, loopless and non-multiple edge, connected, bidirectional graph has been used in the current work. Let G = (V', E') be a (p, q) graph where V', E', pand q denotes vertex set, edge set, the number of vertices, number of edges of the graph. Here we mentioned the Triangular Snake Graph as Δ_s^a , Double Triangular Snake graph as $D - \Delta_s^k$, Quadrilateral Snake Graph as Q_s^l , Double Quadrilateral Snake Graph as $D - Q_s^c$, n- Polygonal Snake graph as $n - P_s^x$, where a, k, l, c, x denotes number of times the cycles appears in the snake graph.

FPL was lauched by C. Sekar, S. Chandrakala [5] and they are also proved that the path, friendship graph, fan graph, star graph, dragon graph, umbrella graph, cycle related graph and crown graph are FPG [2],[5]. We refer Bondy and Murthy for notations and terminology [1]. This paper proves that some snake related graphs are admits FPL. A FPL of a graph G = (V', E') with |V'| = m is an injective function $h: V' \to \{F_2, F_3, ..., F_{m+1}\}$, where F_m is the m-th Fibonacci number, that leads to a another function $h'': E' \to N$ defined by $h''(vw) = \gcd(h(v), h(w)) = 1$ for all edges belong to the edge set E'(G). Δ_s^a , $D - \Delta_s^k$, Q_s^l , $D - Q_s^c$, $n - P_s^x$ are satisfy the conditions of the Difference Perfect Square labeling, Mean Cordial labeling and Odd Prime labeling in the articles [3], [4], [6].

2. Main Results

Note 2.1. From the Fibonacci numbers we get $g.c.d \{F_m, F_k\} = 1$, if $g.c.d \{m, k\} = 1$ or $g.c.d \{m, k\} = 2$, where F_m, F_k are distinct Fibonacci numbers and m, k are distinct integers, $k = m + l, 1 \le l \le m - 1$ and $m \ge 3$.

Theorem 2.2. Δ_s^a admits FPL.

Proof. Δ_s^a , where $a \ge 2$ is a triangular snake graph.

Let $V'(\Delta_s^a) = \{v_1, v_2, ..., v_{2a-1}\}$ be the vertex set and

Let $E'(\Delta_s^a) = \{v_i v_{i+1}/1 \le i \le 2a-2\} \cup \{v_i v_{i+2}/i \in [1, 2a-3] - \{2i\}\}$ be the edge set.

Let p = 2a - 1, q = 3a - 3 indicates the number of nodes and links in Δ_s^a

Let us define a function $h': V'(\Delta_s^a) \to \{F_2, F_3, ..., F_{2a}\}$ and the vertices of Δ_s^a are labeled with the Fibonacci numbers $F_2, F_3, ..., F_{2a}$ i.e. $h'(v_1) = F_2, h'(v_2) = F_3, ..., h'(v_{2a-1}) = F_{2a}$

 $\Rightarrow h'(v_i) = F_{i+1}$, where $1 \le i \le 2a - 1$.

Then the function f induces the function $h^* : E'(\Delta_s^a) \to N$ is defined as $h^*(bd) = g.c.d(h'(b), h'(d))$ for all edges in $E'(\Delta_s^a)$. Minimum degree of each vertex in Δ_s^a is 2. Let v_i be a vertex in Δ_s^a and it is 2-connected. Assume that the vertex v_i adjacent to the vertices v_{i+1}, v_{i+2} . Now the vertex v_i and the vertices adjacent to v_i are labeled as $F_{i+1}, F_{i+2}, F_{i+3}$.

 $\Rightarrow h^*(v_i v_{i+1}) = g.c.d(h'(v_i), h'(v_{i+1})) = g.c.d(F_{i+1}, F_{i+2}) = 1, 1 \le i \le 2a - 2$ Similarly, $h^*(v_i v_{i+2}) = g.c.d(F_{i+1}, F_{i+3}) = 1$, where *i* is the odd number and not exceeded than 2a - 3.

 $\Rightarrow h^{*}(bd) = \gcd(h'(b), h'(d)) = 1 \text{ for every edge belongs to } E'(\Delta_{s}^{a})$ Therefore, Δ_{s}^{a} is a *FPG*.

Example 2.3. Consider the triangular snake graph Δ_s^4 .

Figure 1: Δ_s^4 - FPG

Theorem 2.4. $D - \Delta_s^k$ admits *FPL*. **Proof.** $D - \Delta_s^k$, $k \ge 2$, $V'(D - \Delta_s^k) = \{v_1, v_2, ..., v_{3k-2}\}$ is the vertex set, $E'\left(D-\Delta_{s}^{k}\right) = \left\{v_{3b-2}v_{3b-1} \cup v_{3b-2}v_{3b} \cup v_{3b-2}v_{3b+1} \cup v_{3b}v_{3b+1} \cup v_{3b-1}v_{3b+1} / 1 \le b \le 0\right\}$ k-1 is the edge set and $|V'(D-\Delta_s^k)| = 3k-2 |E'(D-\Delta_s^k)| = 5k-5$ refers the number of points and lines.

Define a function $H: V'(D-\Delta_s^k) \to \{F_2, F_3, ..., F_{3k-1}\}$ and the vertices of $D - \Delta_s^k$ are labeled with the Fibonacci numbers $F_2, F_3, \dots, F_{3k-1}$ i.e. $H(v_1) =$ $F_2, H(v_2) = F_3, ..., H(v_{3k-2}) = F_{3k-1} \Rightarrow H(v_b) = F_{b+1}, where \ 1 \le b \le 3k-2.$

There exists the function $H': E'(D-\Delta_s^k) \to N$ is defined by H'(uv) = $g.c.d\left(H\left(u\right),H\left(v\right)\right)\forall uv\in E'\left(D-\Delta_{s}^{k}\right).$

Now, $H'(v_{3b-2}v_{3b-1}) = g.c.d(H(v_{3b-2}), H(v_{3b-1})) = g.c.d(F_{3b-1}, F_{3b}) = 1$ Similarly, $H'(v_{3b-2}v_{3b}) = g.c.d(H(v_{3b-2}), H(v_{3b})) = g.c.d(F_{3b-1}, F_{3b+1}) = 1$ $H'(v_{3b-1}v_{3b+1}) = g.c.d(H(v_{3b-1}), H(v_{3b+1})) = g.c.d(F_{3b}, F_{3b+2}) = 1$ $H'(v_{3b}v_{3b+1}) = g.c.d(H(v_{3b}), H(v_{3b+1})) = g.c.d(F_{3b+1}, F_{3b+2}) = 1$ $H'(v_{3b-2}v_{3b+1}) = g.c.d(H(v_{3b-2}), H(v_{3b+1})) = g.c.d(F_{3b-1}, F_{3b+2}) = 1$ $\Rightarrow H'\left(uv\right) = g.c.d\left(H\left(u\right), H\left(v\right)\right) \forall uv \in E'\left(D - \Delta_s^k\right)$ Therefore, $D - \Delta_s^k$ is a FPG.

Example 2.5. Consider the double triangular snake graph $D - \Delta_s^5$

Figure 2: $D - \Delta_s^5$ -FPG

Theorem 2.6. Q_s^l exists as FPG. **Proof.** Q_s^l , where $l \ge 2$. The vertex set and edge set of Q_s^l are $V^*(Q_n^l) = \{v_1, v_2, ..., v_{3l-2}\}$ $E^*(Q_s^l) = \{v_{3j-2}v_{3j-1} \cup v_{3j-1}v_{3j} \cup v_{3j-2}v_{3j+1} \cup v_{3j}v_{3j+1}/1 \le j \le l-1\}$ p' = 3n - 2, q' = 4n - 4 represents order and size of Q_s^l

Consider the function $M': V(Q_s^l) \to \{F_2, F_3, ..., F_{3l-1}\}$ and the vertices of Q_s^l are labeled with the Fibonacci numbers $F_2, F_3, ..., F_{3l-1}$ i.e. $M'(v_1) = F_2, M'(v_2) = F_3, ..., M'(v_{3l-2}) = F_{3l-1}$

 $\begin{array}{l} \text{Model} \ (e_1) = I_{2}, m \ (e_2) = I_{3}, m, m \ (e_{3l-2}) = I_{3l-1} \\ \Rightarrow \ M' \ (v_j) = F_{j+1} \ , \text{ where } \ 1 \leq j \leq 3l-2. \\ M' \ \text{induces the function } \ M'' : E^*(Q_s^l) \to N \ \text{is defined by} \\ M'' \ (xy) = g.c.d \left\{ M' \ (x) \ , M' \ (y) \right\} \ \forall \ xy \in E' \ (Q_s^l). \\ \text{Now, } \ M'' \ (v_{3j-2}v_{3j-1}) = g.c.d \ (M' \ (v_{3j-2}) \ , M' \ (v_{3j-1})) = g.c.d \ (F_{3j-1}, F_{3j}) = 1, \\ 1 \leq j \leq l-1 \\ \text{Similarly,} \\ M'' \ (v_{3j-2}v_{3j}) = g.c.d \ \left\{ M' \ (v_{3j-2}) \ , M' \ (v_{3j}) \right\} = g.c.d \ (F_{3j-1}, F_{3j+1}) = 1 \\ M'' \ (v_{3j-2}v_{3j+1}) = g.c.d \ (M' \ (v_{3j}) \ , M' \ (v_{3j+1})) = g.c.d \ (F_{3j-1}, F_{3j+2}) = 1 \\ M'' \ (v_{3j-2}v_{3j+1}) = g.c.d \ (M' \ (v_{3j-2}) \ , M' \ (v_{3j+1})) = g.c.d \ (F_{3j-1}, F_{3j+2}) = 1 \\ \Rightarrow \ M'' \ (xy) = g.c.d \ (M' \ (x) \ , M' \ (y)) = 1, \ \text{for each edge belongs to } E^* \ (Q_s^l) \\ \text{Hence } Q_s^l \ \text{exists as FPG.} \end{array}$

Example 2.7. Consider the quadrilateral snake graph Q_s^6

Figure 3: Q_s^6 - FPG

Theorem 2.8. $D - Q_s^c$ allows FPL **Proof.** Suppose $D - Q_s^c$, $c \ge 2$ is a double quadrilateral graph, $V (D - Q_s^c) = \{w_1, w_2, ..., w_{5c-4}\},$ $E (D - Q_s^c) = \{w_{5i-4}w_{5i-3} \cup v_{5i-4}v_{5i-2} \cup w_{5i-1}w_{5i+1} \cup w_{5i}w_{5i+1} \cup w_{5i-2}w_{5i} \cup w_{5i-3}w_{5i-1} \cup w_{5i-4}w_{5i+1}/1 \le i \le c-1\}$ are the points and lines of $D - Q_s^c$. Then $p^* = 5c - 4$, $q^* = 7c - 7$ signifies the order and size of $D - Q_s^c$

Let us define a function $T': V(D-Q_s^c) \rightarrow \{F_2, F_3, ..., F_{5c-3}\}$ and the vertices of $D-Q_s^c$ are labeled with the Fibonacci numbers $F_2, F_3, ..., F_{5c-3}$ i.e. $T'(w_1) = F_2, T'(w_2) = F_3, ..., T'(w_{5c-4}) = F_{5c-3}$ $\Rightarrow T'(w_i) = F_{i+1}, where 1 \le i \le 5c - 4.$

Then the another function is exists $T'': E(D-Q_s^c) \to N$ is defined by $T''(xz) = g.c.d(T'(x), T'(z)), \forall xz \in E(D_{Q_s}^c).$

Now, $T''(w_{5i-4}w_{5i-3}) = g.c.d(T'(w_{5i-4}), T'(w_{5i-3})) = g.c.d(F_{5i-3}, F_{5i-2}) = 1,$ $1 \le i \le c-1$ Similarly,

$$T''(w_{5i-4}w_{5i-2}) = g.c.d(T'(w_{5i-4}), T'(w_{5i-2})) = g.c.d(F_{5i-3}, F_{5i-1}) = 1$$

$$T''(w_{5i-1}w_{5i+1}) = g.c.d(T'(w_{5i-1}), T'(w_{5i+1})) = g.c.d(F_{5i}, F_{5i+2}) = 1$$

$$T''(w_{5i}w_{5i+1}) = g.c.d(T'(w_{5i}), T'(w_{5i+1})) = g.c.d(F_{5i+1}, F_{5i+2}) = 1$$

$$T''(w_{5i-2}w_{5i}) = g.c.d(T'(w_{5i-2}), T'(w_{5i})) = g.c.d(F_{5i-1}, F_{5i+1}) = 1$$

$$T''(w_{5i-3}w_{5i-1}) = g.c.d(T'(w_{5i-3}), T'(w_{5i-1})) = g.c.d(F_{5i-2}, F_{5i}) = 1$$

$$T''(w_{5i-4}w_{5i+1}) = g.c.d(T'(w_{5i-4}), T'(w_{5i+1})) = g.c.d(F_{5i-3}, F_{5i+2}) = 1$$

$$\Rightarrow T''(xz) = \gcd(T'(x)T'(z)) = 1 \text{ for all members of } E(D - Q_s^c).$$

Thus $D - Q_s^c$ proved as FPG.

Example 2.9. Consider the double quadrilateral snake graph $D - Q_s^3$

Figure 4: $D - Q_s^3$ - FPG

Theorem 2.10. $n - P_s^x$ is a FPG

Proof. Consider the graph $n - P_s^x, x \ge 2, n \ge 5$. The collection of vertices and edges are given below

$$V''(n - P_s^x) = \left\{ v'_{(n-1)m-(n-2)}/1 \le m \le x \right\} \cup \left\{ v'_{(n-1)m-(n-2)+e}/1 \le m \le x - 1, \\ 1 \le e \le n - 2 \right\}$$

Let $E''(n - P_s^x) = \left\{ v'_{(n-1)m-(n-2)}v'_{(n-1)m+1} \cup v'_{(n-1)m-(n-2)+1}v'_{(n-1)m-(n-2)} \cup v'_{(n-1)m-(n-2)} \cup v'_{(n-1)m-(n-2)$

$$v'_{(n-1)m}v'_{(n-1)m+1} \cup v'_{(n-1)m-(n-2)+(e-1)}v'_{(n-1)m-(n-2)+e}/1 \le m \le x-1,$$

$$2 \le e \le n-2\}$$

$$\begin{split} \left| V^{''}(n-P_s^x) \right| &= x \, (n-1) - (n-2), \, \left| E^{''}(n-P_s^x) \right| = n \, (x-1) \text{ denotes the number} \\ \text{of points and lines of } n-P_s^x \\ \mathbf{Case 1. If } n &= 3,4 \\ \text{Suppose } n &= 3 \\ &\Rightarrow V^{''}(3-P_s^x) = \left\{ v_{2m-1}'/1 \leq m \leq x \right\} \cup \left\{ v_{2m-1+e}'/1 \leq m \leq x-1, e = 1 \right\} \\ E^{''}(3-P_s^x) &= \left\{ v_{2m-1}'v_{2m+1}' \cup v_{2m}'v_{2m-1}' \cup v_{2m}'v_{2m+1}' \cup v_{2(m-1)+e}'v_{2m+e-1}'/1 \\ 1 \leq m \leq x-1, e = 1 \right\} \\ \text{When Substitutes } e &= 1 \text{ we get}, \\ E^{''}(3-P_s^x) &= \left\{ v_{2m-1}'v_{2m+1}' \cup v_{2m}'v_{2m-1}' \cup v_{2m}'v_{2m+1}' \cup v_{2m-1}'v_{2m}'/1 \leq m \leq x-1 \right\} \\ \text{Suppose } n &= 4 \\ \Rightarrow V^{''}(4-P_s^x) &= \left\{ v_{3m-2}'/1 \leq m \leq x \right\} \cup \left\{ v_{3m-2+e}'/1 \leq m \leq x-1, e = 1, 2 \right\} \\ E^{''}(4-P_s^x) &= \left\{ v_{3m-2}'v_{3m+1}' \cup v_{3m-2}'v_{3m-1}' \cup v_{3m}'v_{3m+1}' \cup v_{3(m-1)+e}'v_{3m+e-2}'/1 \\ 1 \leq m \leq x-1, e = 1, 2 \right\} \\ \text{When Substitutes } e &= 1, 2 \text{ we get}, \\ \Rightarrow E^{''}(4-P_s^x) &= \left\{ v_{3m-2}'v_{3m+1}' \cup v_{3m-2}'v_{3m-1}' \cup v_{3m}'v_{3m+1}' \cup v_{3m-2}'v_{3m-1}' \\ \cup v_{3m-1}'v_{3m}'/1 \leq m \leq x-1 \right\} \end{split}$$

Edges are repeated in $3 - P_s^x$, $4 - P_s^x$ Graphs. **Case 2.** If n > 4Suppose n = 5 $\Rightarrow V''(5 - P_s^x) = \{v'_{4m-3}/1 \le m \le x\} \cup \{v'_{4m-3+e}/1 \le m \le x - 1, 1 \le e \le 3\}$ $E''(5 - P_s^x) = \{v'_{4m-3}v'_{4m+1} \cup v'_{4m-2}v'_{4m-3} \cup v'_{4m}v'_{4m+1} \cup v'_{4(m-1)+e}v'_{4m+e-3}/1 \le m \le x - 1, 1 \le e \le 3\}$ When Substitutes e = 1, 2, 3 we get, $E''(5 - P_s^x) = \{v'_{4m-3}v'_{4m+1} \cup v'_{4m-2}v'_{4m-3} \cup v'_{4m}v'_{4m+1} \cup v'_{4m-3}v'_{4m-4} \cup v'_{4m-2}v'_{4m-1} \cup v'_{4m-1}v'_{4m}/1 \le m \le x - 1\}$

Edges are not repeated when the value of n is greater than four. Thus the generalized Vertex Set and Edge Set are true, when $n \ge 5$. Consider the function $X': V''(n - P_s^x) \to \{F_2, F_3, ..., F_{x(n-1)-(n-2)+1}\}$ $\Rightarrow X'(v'_m) = F_{m+1}, where \ 1 \le m \le x (n-1) - (n-2).$ Consequently the function exists $X^*: E''((n - P_s^x) \to N)$ is defined as $X^*(yz) = g.c.d\{X'(y), X'(z)\} \forall xz \in E''((n - P_s^x))$.

Now,
$$X^* \left(v'_{(n-1)m-(n-2)} v'_{(n-1)m+1} \right) = g.c.d \left(X' \left(v'_{(n-1)m-(n-2)} \right), X' \left(v'_{(n-1)m+1} \right) \right)$$

$$= g.c.d \left[x' \left(v'_{(n-1)m-(n-2)+1} \right), X' \left(v'_{(n-1)m-(n-2)+(n-1)+1} \right) \right]$$

$$= g.c.d \left[F_{(n-1)m-(n-2)+1} \right), X' \left(v'_{(n-1)m-(n-2)+(n-1)+1} \right]$$
Similarly, $X^* \left(v'_{(n-1)m-(n-2)+1} v'_{(n-1)m-(n-2)} \right) \right]$

$$= g.c.d \left[\left(v'_{(n-1)m-(n-2)+2} , F_{(n-1)m-(n-2)+1} \right) \right]$$

$$= g.c.d \left[F_{(n-1)m-(n-2)+2} , F_{(n-1)m-(n-2)+1} \right] = 1$$

$$X^* \left(v'_{(n-1)m+1} v'_{(n-1)m} \right) = g.c.d \left[X' \left(v'_{(n-1)m+1} \right), X' \left(v'_{(n-1)m} \right) \right]$$

$$= g.c.d \left\{ F_{(n-1)m+1} , F_{(n-1)m+2} \right\}$$

$$= 1$$

$$X^* \left(v'_{(n-1)m-(n-2)+(e-1)} v'_{(n-1)m-(n-2)+e} \right)$$

$$= g.c.d \left[X' \left(v'_{(n-1)m-(n-2)+e} \right) \right]$$

$$= g.c.d \left[X' \left(v'_{(n-1)m-(n-2)+e} \right] \right]$$

Example 2.11. Consider the 8–polygonal snake graph $8 - P_s^3$

Figure 5: $8 - P_s^3$ -FPG

3. Conclusion

In this paper, we proved that some snake graphs are admits Fibonacci Prime Labeling. The Triangular snake graph, Double Triangular snake graph, Quadrilateral Snake graph, Double Quadrilateral snake graph, n-Polygonal Snake graph, Double n-Polygonal snake graph, Alternate Triangular Snake graph are Fibonacci Prime Graphs.

References

- [1] Bondy J. A. and Murthy U. S. R., Graph Theory and Application, North Holland, New York, (1976).
- [2] Chandrakala S. and Sekar C., Fibonacci Prime Labeling of Cycle Related Graphs, International Journal for Research in Engineering Application & Management, (IJREAM), Vol-04, Issue-03, (2018).
- [3] Ponraj R. and Sathish Narayanan S., Mean cordiality of some snake graphs, Palestine Journal of Mathematics, Vol.4 (2) (2015), 439-445.
- [4] Prajapati U. M. and Shah K. P., Odd Prime Labeling of Various Snake Graphs, International Journal of Scientific Research and Reviews.
- [5] Sekar C., Chandrakala S., Fibonacci Prime Labeling of Graphs, IJCRT, (2018).
- [6] Vaghela U., Parmar D., Difference Perfect Square Cordial Labeling of Snake Graphs, Zeichen Journal.