EDGE-COLORING VERTEX-WEIGHTING OF SOME PRODUCT GRAPHS

N. Paramaguru
Department of Mathematics, Government Arts College for Women, Krishnagiri - 635002, Tamil Nadu, INDIA
E-mail: npguru@gmail.com

(Received: Aug. 08, 2021 Accepted: Oct. 01, 2021 Published: Nov. 30, 2021)

Special Issue
 Proceedings of International Virtual Conference on "Mathematical Modelling, Analysis and Computing IC- MMAC- 2021"

Abstract: Let G be a graph. A k-vertex weighting of a graph G is a mapping $w: V(G) \rightarrow\{1,2,3, \ldots, k\}$. A k-vertex weighting induces an edge labeling f_{w} : $E(G) \rightarrow \mathbb{N}$ such that $f_{w}(u v)=w(u)+w(v)$. Such a labeling is called an edgecoloring k-weighting if $f_{w}(e) \neq f_{w}\left(e^{\prime}\right)$ for any two adjacent edges e and e^{\prime}. Denote by $\mu^{\prime}(G)$ the minimum k for G to admit an edge-coloring k-vertex weighting. In this paper, we determine $\mu^{\prime}(G)$ for some product graphs.
Keywords and Phrases: Edge coloring, Vertex weighting, Cartesian product.
2020 Mathematics Subject Classification: 05C15, 05C76.

1. Introduction and Preliminaries

Let G be a graph. For general notations and definitions we follow [1].
In [6], edge-coloring vertex-weighting introduced by WC Shiu et al.
A mapping $w: V(G) \rightarrow\{1,2,3, \ldots, k\}$ induces a edge labeling $f_{w}: E(G) \rightarrow \mathbb{N}$ such that $f_{w}(u v)=w(u)+w(v)$ is the sum of the weighting of the adjacent vertices. Such a labeling is called an edge-coloring k-vertex-weighting if $f_{w}(e) \neq f_{w}\left(e^{\prime}\right)$ for any two adjacent edges e and e^{\prime}. Denote by $\mu^{\prime}(G)$ the minimum k for G to admit an edge-coloring k-vertex weighting.

Note 1. $\mu^{\prime}(G)=1$ if and only if every component of G is a \mathcal{K}_{2}.
Note 2. Suppose w is an edge-coloring k-vertex weighting of G. If u and v have a common neighbor in G, then $w(u) \neq w(v)$. This is also a sufficient condition for an edge-coloring vertex-weighting.
Note 3. let $\chi^{\prime}(G)$ be the chromatic index of G. Then $\mu^{\prime}(G) \geq \chi^{\prime}(G)$. Hence $\mu^{\prime}(G) \geq \Delta(G)$, where $\Delta(G)$ is the maximum degree of G.

In [6], WC Shiu, GC Lau and HK Ng are determined edge-coloring vertexweightings for paths, cycles, complete graphs, complete bipartite graphs, wheel graph, gear graph, Cartesian product of paths, Cartesian product of \mathcal{P}_{2} with \mathcal{C}_{n}, double star graphs, trees, tadpole graph, lollipop graph, spider graph, theta graph and long dumbbell graph.

In this paper, we determined edge-coloring vertex-weightings for $\mathcal{P}_{m} \square \mathcal{C}_{n}, \mathcal{K}_{m} \square \mathcal{K}_{n}$ for some positive integers m and n.

2. Main Results

Theorem 2.1. For $n \geq 3, \mu^{\prime}\left(\mathcal{K}_{2} \square \mathcal{K}_{n}\right)=n$.
Proof. Let the vertices of $\mathcal{K}_{2} \square \mathcal{K}_{n}$ be $v_{i j}, i \in\{1,2\}$ and $1 \leq j \leq n$. First, we prove that $\mu^{\prime}\left(\mathcal{K}_{2} \square \mathcal{K}_{n}\right) \leq n$. Assign the weighting to vertices of $\mathcal{K}_{2} \square \mathcal{K}_{n}$ by $w\left(v_{i j}\right)=j, i \in\{1,2\}$ and $1 \leq j \leq n$. Next, we prove that $\mu^{\prime}\left(\mathcal{K}_{2} \square \mathcal{K}_{n}\right) \geq n$. Since, $\Delta\left(\mathcal{K}_{2} \square \mathcal{K}_{n}\right)=n$, and by Note $3, \mu^{\prime}\left(\mathcal{K}_{2} \square \mathcal{K}_{n}\right) \geq n$. Thus, $\mu^{\prime}\left(\mathcal{K}_{2} \square \mathcal{K}_{n}\right)=n$. This completes the proof.
Theorem 2.2. For $m \geq 3$ and $n \geq 3, \mu^{\prime}\left(\mathcal{K}_{m} \square \mathcal{K}_{n}\right)=m n$.
Proof. Let the vertices of $\mathcal{K}_{m} \square \mathcal{K}_{n}$ be $v_{i j}, 1 \leq i \leq m$ and $1 \leq j \leq n$. First, we prove that $\mu^{\prime}\left(\mathcal{K}_{m} \square \mathcal{K}_{n}\right) \leq m n$. Assign the weighting to vertices of $\mathcal{K}_{m} \square \mathcal{K}_{n}$ by $w\left(v_{i j}\right)=(i-1) n+j, 1 \leq i \leq m$ and $1 \leq j \leq n$.

Next, our aim is to prove $\mu^{\prime}\left(\mathcal{K}_{m} \square \mathcal{K}_{n}\right) \geq m n$. By Note 2, vertices of copy of K_{n} in the first row will receive the weighting $v_{1 j}=j, 1 \leq j \leq n$, since \mathcal{K}_{n} is complete graph all vertices receive distinct label. In the second row, the copy of \mathcal{K}_{n}, suppose the vertex v_{21} label by any of $\{1,2,3, \ldots, n\}$ it contradict Note 2 , since the vertices v_{21} and $v_{1 j}=j, 1 \leq j \leq n$ have a common neighbor. In general, any two vertices in $\mathcal{K}_{m} \square \mathcal{K}_{n}$ have a common neighbor. So, no two distinct vertices receive same weighting. There are $m n$ vertices in $\mathcal{K}_{m} \square \mathcal{K}_{n}$. Hence, $\mu^{\prime}\left(\mathcal{K}_{m} \square \mathcal{K}_{n}\right) \geq m n$. Thus, $\mu^{\prime}\left(\mathcal{K}_{m} \square \mathcal{K}_{n}\right)=m n$. This completes the proof.
Theorem 2.3. For $n \geq 4, n \not \equiv 2(\bmod 4), \mu^{\prime}\left(\mathcal{P}_{3} \square \mathcal{C}_{n}\right)=4$.
Proof. Let the vertices of $\mathcal{P}_{3} \square \mathcal{C}_{n}$ be $v_{i j}, 1 \leq i \leq 3$ and $1 \leq j \leq n$.
Case 1. $n \equiv 0(\bmod 4)$.
First, we prove that $\mu^{\prime}\left(\mathcal{P}_{3} \square \mathcal{C}_{n}\right) \leq 4$. Assign weight 1 to vertices $v_{1 j}, j$ is congruent
to 1,2 modulo 4 , and to vertices $v_{3 j}, j$ is congruent to 0,3 modulo 4. Assign weight 2 to vertices $v_{1 j}, j$ is congruent to 0,3 modulo 4 , and to vertices $v_{3 j}, j$ is congruent to 1,2 modulo 4 .

Assign weight 3 to vertices $v_{2 j}, j$ is congruent to 0,1 modulo 4 , and assign weight 4 to vertices $v_{2 j}, j$ is congruent to 2,3 modulo 4 . Since, $\Delta\left(\mathcal{P}_{3} \square \mathcal{C}_{n}\right)=4$ and by Note $3, \mu^{\prime}\left(\mathcal{P}_{3} \square \mathcal{C}_{n}\right) \geq 4$. Thus, $\mu^{\prime}\left(\mathcal{P}_{3} \square \mathcal{C}_{n}\right)=4$.
Case 2. $n \equiv 1(\bmod 4)$.
First, we prove that $\mu^{\prime}\left(\mathcal{P}_{3} \square \mathcal{C}_{n}\right) \leq 4$.
Assign weight 1 to vertices $v_{1 j}, j$ is congruent to 1,2 modulo $4, j \neq n$, to vertex $v_{2(n-1)}$, and to vertices $v_{3 j}, j$ is congruent to 0,3 modulo $4, j \neq n-2$. Assign weight 2 to vertices $v_{1 j}, j$ is congruent to 0,3 modulo 4 , to the vertex v_{21}, and to vertices $v_{3 j}, j$ is congruent to 1,2 modulo $4, j \notin\{2, n\}$. Assign weight 3 to the vertex $v_{1 n}$, to vertices $v_{2 j}, j$ is congruent to 0,1 modulo $4, j \neq n-1$, and to the vertices $v_{32}, v_{3(n-2)}$ and assign weight 4 to vertices $v_{2 j}, j$ is congruent to 2,3 modulo 4 , and the vertex $v_{3 n}$. Since, $\Delta\left(\mathcal{P}_{3} \square \mathcal{C}_{n}\right)=4$ and by Note $3, \mu^{\prime}\left(\mathcal{P}_{3} \square \mathcal{C}_{n}\right) \geq 4$. Thus, $\mu^{\prime}\left(\mathcal{P}_{3} \square \mathcal{C}_{n}\right)=4$.
Case 3. $n \equiv 3(\bmod 4)$.
First, we prove that $\mu^{\prime}\left(\mathcal{P}_{3} \square \mathcal{C}_{n}\right) \leq 4$. Assign weight 1 to vertices $v_{1 j}, j$ is congruent to 1,2 modulo $4, j \neq n-1$, to vertex $v_{2(n-2)}$, and to vertices $v_{3 j}, j$ is congruent to 0,3 modulo $4, j \neq n-3$. Assign weight 2 to vertices $v_{1 j}, j$ is congruent to 0,3 modulo 4 , to the vertex $v_{2 n}$, and to vertices $v_{3 j}, j$ is congruent to 1,2 modulo 4 , $j \notin\{1, n-1\}$. Assign weight 3 to the vertex $v_{1(n-1)}$, to vertices $v_{2 j}, j$ is congruent to 0,1 modulo $4, j \neq n-2$, and to the vertices $v_{31}, v_{3(n-3)}$ and assign weight 4 to vertices $v_{2 j}, j$ is congruent to 2,3 modulo $4, j \neq n$, and the vertex $v_{3(n-1)}$. Since, $\Delta\left(\mathcal{P}_{3} \square \mathcal{C}_{n}\right)=4$ and by Note $3, \mu^{\prime}\left(\mathcal{P}_{3} \square \mathcal{C}_{n}\right) \geq 4$. Thus, $\mu^{\prime}\left(\mathcal{P}_{3} \square \mathcal{C}_{n}\right)=4$. This completes the proof.

Theorem 2.4. For $n \geq 4, n \not \equiv 2(\bmod 4), \mu^{\prime}\left(\mathcal{P}_{4} \square \mathcal{C}_{n}\right)=4$.
Proof. Let the vertices of $\mathcal{P}_{4} \square \mathcal{C}_{n}$ be $v_{i j}, 1 \leq i \leq 4$ and $1 \leq j \leq n$.
Case 1. $n \equiv 0(\bmod 4)$.
First, we prove that $\mu^{\prime}\left(\mathcal{P}_{4} \square \mathcal{C}_{n}\right) \leq 4$. Assign weight 1 to vertices $v_{1 j}, j$ is congruent to 1,2 modulo 4 , and to vertices $v_{3 j}, j$ is congruent to 0,3 modulo 4 . Assign weight 2 to vertices $v_{1 j}, j$ is congruent to 0,3 modulo 4 , and to vertices $v_{3 j}, j$ is congruent to 1,2 modulo 4 . Assign weight 3 to vertices $v_{2 j}, j$ is congruent to 0,1 modulo 4 , and to vertices $v_{4 j}, j$ is congruent to 2,3 modulo 4 , and assign weight 4 to vertices $v_{2 j}, j$ is congruent to 2,3 modulo 4 , to vertices $v_{4 j}, j$ is congruent to 0,1 modulo 4. Since, $\Delta\left(\mathcal{P}_{4} \square \mathcal{C}_{n}\right)=4$ and by Note $3, \mu^{\prime}\left(\mathcal{P}_{4} \square \mathcal{C}_{n}\right) \geq 4$. Thus, $\mu^{\prime}\left(\mathcal{P}_{4} \square \mathcal{C}_{n}\right)=4$. Case 2. $n \equiv 1(\bmod 4)$.
First, we prove that $\mu^{\prime}\left(\mathcal{P}_{4} \square \mathcal{C}_{n}\right) \leq 4$.

Subcase 2.1. $n=5$.
Assign weight 1 to vertices $v_{11}, v_{12}, v_{24}, v_{34}, v_{41}, v_{42}$.
Assign weight 2 to vertices $v_{13}, v_{14}, v_{21}, v_{31}, v_{43}, v_{44}$.
Assign weight 3 to vertices $v_{15}, v_{25}, v_{32}, v_{33}$. Assign weight 4 to vertices $v_{22}, v_{23}, v_{35}, v_{45}$. Since, $\Delta\left(\mathcal{P}_{3} \square \mathcal{C}_{5}\right)=4$ and by Note $3, \mu^{\prime}\left(\mathcal{P}_{4} \square \mathcal{C}_{5}\right) \geq 4$. Thus, $\mu^{\prime}\left(\mathcal{P}_{4} \square \mathcal{C}_{5}\right)=4$.
Subcase 2.2. $n \geq 9$.
Assign weight 1 to vertices $v_{1 j}, j$ is congruent to 1,2 modulo $4, j \neq n$, to vertex $v_{2(n-1)}$, to vertices $v_{3 j}, j$ is congruent to 0,3 modulo $4, j \neq n-2$, and to the vertices $v_{41}, v_{4(n-3)}$. Assign weight 2 to vertices $v_{1 j}, j$ is congruent to 0,3 modulo 4 , to the vertex v_{21}, to vertices $v_{3 j}, j$ is congruent to 1,2 modulo $4, j \notin\{2, n\}$, and to vertices $v_{43}, v_{4(n-1)}$.

Assign weight 3 to the vertex $v_{1 n}$, to vertices $v_{2 j}, j$ is congruent to 0,1 modulo $4, j \notin\{1, n-1\}$, to the vertices $v_{32}, v_{3(n-2)}$ and to vertices $v_{4 j}, j$ is congruent to 2, 3 modulo $4, j \notin\{3, n-3\}$, assign weight 4 to vertices $v_{2 j}, j$ is congruent to 2,3 modulo 4 , the vertex $v_{3 n}$, and to vertices $v_{4 j}, j$ is congruent to 0,1 modulo $4, j \neq n-1$. Since, $\Delta\left(\mathcal{P}_{4} \square \mathcal{C}_{n}\right)=4$ and by Note $3, \mu^{\prime}\left(\mathcal{P}_{4} \square \mathcal{C}_{n}\right) \geq 4$. Thus, $\mu^{\prime}\left(\mathcal{P}_{4} \square \mathcal{C}_{n}\right)=4$.
Case 3. $n \equiv 3(\bmod 4)$.
First, we prove that $\mu^{\prime}\left(\mathcal{P}_{4} \square \mathcal{C}_{n}\right) \leq 4$. Assign weight 1 to vertices $v_{1 j}, j$ is congruent to 1,2 modulo $4, j \neq n-1$, to vertex $v_{2(n-2)}$, to vertices $v_{3 j}, j$ is congruent to 0,3 modulo $4, j \neq n-3$, and to vertices $v_{4(n-4)}, v_{4 n}$. Assign weight 2 to vertices $v_{1 j}, j$ is congruent to 0,3 modulo 4 , to the vertex $v_{2 n}$, to vertices $v_{3 j}, j$ is congruent to 1,2 modulo $4, j \notin\{1, n-1\}$, and to vertices $v_{42}, v_{4(n-2)}$. Assign weight 3 to the vertex $v_{1(n-1)}$, to vertices $v_{2 j}, j$ is congruent to 0,1 modulo $4, j \neq n-2$, to the vertices $v_{31}, v_{3(n-3)}$, and to vertices $v_{4 j}, j$ is congruent to 2,3 modulo $4, j \notin\{2, n-4, n\}$, assign weight 4 to vertices $v_{2 j}, j$ is congruent to 2,3 modulo $4, j \neq n$, the vertex $v_{3(n-1)}$, and to vertices $v_{4 j}, j$ is congruent to 0,1 modulo $4, j \neq v_{4(n-2)}$. Since, $\Delta\left(\mathcal{P}_{4} \square \mathcal{C}_{n}\right)=4$ and by Note $3, \mu^{\prime}\left(\mathcal{P}_{4} \square \mathcal{C}_{n}\right) \geq 4$. Thus, $\mu^{\prime}\left(\mathcal{P}_{4} \square \mathcal{C}_{n}\right)=4$.
Theorem 2.5. For $m \in\{3,4\}, \mu^{\prime}\left(\mathcal{P}_{m} \square \mathcal{C}_{3}\right)=\Delta\left(\mathcal{P}_{m} \square \mathcal{C}_{3}\right)+1=5$.
Proof. Let the vertices of $\mathcal{P}_{m} \square \mathcal{C}_{3}$ be $v_{i j}, 1 \leq i \leq m$ and $1 \leq j \leq 3$.
Case 1. $m=3$.
First, we prove that $\mu^{\prime}\left(\mathcal{P}_{3} \square \mathcal{C}_{3}\right) \leq 5$. Assign weight 1 to the vertices v_{11}, v_{33}, assign weight 2 to the vertices v_{12}, v_{31}, assign weight 3 to the vertices v_{13}, v_{23}, assign weight 4 to the vertex v_{21}, assign weight 5 to the vertices v_{22}, v_{32}. Since, $\Delta\left(\mathcal{P}_{m} \square \mathcal{C}_{3}\right)=4$, $\mu^{\prime}\left(\mathcal{P}_{m} \square \mathcal{C}_{3}\right) \geq 4$. Suppose assume that $\mu^{\prime}\left(\mathcal{P}_{m} \square \mathcal{C}_{3}\right)=4$. In the Cartesian product of $\mathcal{P}_{3} \square \mathcal{C}_{3}$, the first row will be the copy of \mathcal{C}_{3}, by note 2 , the vertices v_{11}, v_{12}, v_{13} will receive different weight, without loss of generality, assume that v_{11}, v_{12}, v_{13} receives 1,2 , and 3 respectively.

Next, assign weight to v_{21}. Since, v_{21} adjacent to v_{11}, we can assign weight to the vertex v_{21} by either 1 or 4 , suppose v_{21} receive 2 or 3 it contradicts note 2 .
Subcase 1.1. Assume that $w\left(v_{21}\right)=1$, similarly, assign weight to v_{22} by 2 or 4 and assign weight to v_{23} by 3 or 4 . Without loss of generality, assume that $w\left(v_{21}\right)=1$, $w\left(v_{22}\right)=2, w\left(v_{23}\right)=3$. Now, assign weight to v_{31}, since, v_{21} adjacent to v_{11}, v_{22}, v_{23} v_{31} and v_{11}, v_{22}, v_{23} received colors 1,2 and 3 respectively. By note $2, v_{31}$ receive weight 4 . Next assign weight to v_{32}. Since, v_{22} adjacent to $v_{12}, v_{21}, v_{23}, v_{32}$ and v_{12}, v_{21}, v_{23} received colors 1,2 and 3 respectively, so v_{32} must receive weight 4 , by note 2. Hence, $w\left(v_{31}\right)=w\left(v_{31}\right)=4$, which contradicts that v_{31} and v_{32} have the common neighbor v_{33}. Thus, $w\left(v_{32}\right)=5$.
Subcase 1.2. Assume that $w\left(v_{21}\right)=4$. By note 2, $w\left(v_{22}\right)=2$, $w\left(v_{23}\right)=3$. Similarly, by note $2, w\left(v_{31}\right)=4$, and $w\left(v_{32}\right)=1$. The adjacent vertices of v_{23} are v_{13}, v_{21}, v_{22} receives weights 3,4 and 2 respectively, then $w\left(v_{33}\right)$ must be 1 which contradicts that v_{33} and v_{32} have a common neighbor v_{31}. Hence, $w\left(v_{33}\right)=5$. Same way we can prove for other possible cases.
Case 2. $m=4$.
First, we prove that $\mu^{\prime}\left(\mathcal{P}_{4} \square \mathcal{C}_{3}\right) \leq 5$. Assign weight 1 to the vertices v_{11}, v_{33}, v_{43} assign weight 2 to the vertices v_{12}, v_{31}, assign weight 3 to the vertices v_{13}, v_{23}, v_{42} assign weight 4 to the vertices v_{21}, v_{31} assign weight 5 to the vertices v_{22}, v_{32}. Since, $\Delta\left(\mathcal{P}_{m} \square \mathcal{C}_{3}\right)=4, \mu^{\prime}\left(\mathcal{P}_{m} \square \mathcal{C}_{3}\right) \geq 4$. Suppose $\mu^{\prime}\left(\mathcal{P}_{m} \square \mathcal{C}_{3}\right)=4$, then we will get the contradictions as we discussed previous case. Hence, $\mu^{\prime}\left(\mathcal{P}_{m} \square \mathcal{C}_{3}\right)=\Delta\left(\mathcal{P}_{m} \square \mathcal{C}_{3}\right)+$ $1=5$. This completes the proof.

3. Conclusion

We determined edge-coloring vertex-weightings for $\mathcal{P}_{m} \square \mathcal{C}_{n}, \mathcal{K}_{m} \square \mathcal{K}_{n}$ for some positive integers m and n.

References

[1] Balakrishnan R. and Ranganathan K., A textbook of graph theory, Second Edition, Springer-Verlag, New York, (2012).
[2] Chang G. J., Lu C., Wu J. and Yu Q., Vertex coloring edge-weighting of graphs, Taiwanese J. Math., 15 (4) (2011), 1807-1813.
[3] Farahani M. R., A new vertex coloring edge-weighting of complete graphs, J. Appl. Math. and Informatics, 32 (1-2) (2014), 1-6.
[4] Gallian J. A., A dynamic survey of graph labeling, Electronic J. Comb., 23 (2019).
[5] Kalkowski M., Karonski M and Pfender F., Vertex-coloring edge-weighting: Towards the 1-2-3-conjecture, J. Combin. Theory, Ser. B, 100 (2010), 347349.
[6] Shiu WC, Lau GC and Ng Hk, Edge-coloring Vertex-weighting of graphs, Iranian Journal of Mathematical Sciences and Informatics, 16 (1) (2021), 01-13.

