
South East Asian J. of Mathematics and Mathematical Sciences
Vol. 17, Proceedings (2021), pp. 33-38

ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

EDGE-COLORING VERTEX-WEIGHTING OF SOME PRODUCT
GRAPHS

N. Paramaguru

Department of Mathematics,
Government Arts College for Women,

Krishnagiri - 635002, Tamil Nadu, INDIA

E-mail : npguru@gmail.com

(Received: Aug. 08, 2021 Accepted: Oct. 01, 2021 Published: Nov. 30, 2021)

Special Issue
Proceedings of International Virtual Conference on

“Mathematical Modelling, Analysis and Computing IC- MMAC- 2021”

Abstract: Let G be a graph. A k−vertex weighting of a graph G is a mapping
w : V (G) → {1, 2, 3, . . . , k}. A k−vertex weighting induces an edge labeling fw :
E(G) → N such that fw(uv) = w(u) + w(v). Such a labeling is called an edge-
coloring k−weighting if fw(e) 6= fw(e′) for any two adjacent edges e and e′. Denote
by µ′(G) the minimum k for G to admit an edge-coloring k−vertex weighting. In
this paper, we determine µ′(G) for some product graphs.
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1. Introduction and Preliminaries
Let G be a graph. For general notations and definitions we follow [1].
In [6], edge-coloring vertex-weighting introduced by WC Shiu et al.
A mapping w : V (G)→ {1, 2, 3, . . . , k} induces a edge labeling fw : E(G)→ N

such that fw(uv) = w(u)+w(v) is the sum of the weighting of the adjacent vertices.
Such a labeling is called an edge-coloring k-vertex-weighting if fw(e) 6= fw(e′) for
any two adjacent edges e and e′. Denote by µ′(G) the minimum k for G to admit
an edge-coloring k−vertex weighting.
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Note 1. µ′(G) = 1 if and only if every component of G is a K2.
Note 2. Suppose w is an edge-coloring k−vertex weighting of G. If u and v have
a common neighbor in G, then w(u) 6= w(v). This is also a sufficient condition for
an edge-coloring vertex-weighting.
Note 3. let χ′(G) be the chromatic index of G. Then µ′(G) ≥ χ′(G). Hence
µ′(G) ≥ ∆(G), where ∆(G) is the maximum degree of G.

In [6], WC Shiu, GC Lau and HK Ng are determined edge-coloring vertex-
weightings for paths, cycles, complete graphs, complete bipartite graphs, wheel
graph, gear graph, Cartesian product of paths, Cartesian product of P2 with Cn,
double star graphs, trees, tadpole graph, lollipop graph, spider graph, theta graph
and long dumbbell graph.

In this paper, we determined edge-coloring vertex-weightings for Pm�Cn, Km�Kn

for some positive integers m and n.

2. Main Results

Theorem 2.1. For n ≥ 3, µ′(K2�Kn) = n.
Proof. Let the vertices of K2�Kn be vij, i ∈ {1, 2} and 1 ≤ j ≤ n. First,
we prove that µ′(K2�Kn) ≤ n. Assign the weighting to vertices of K2�Kn by
w(vij) = j, i ∈ {1, 2} and 1 ≤ j ≤ n. Next, we prove that µ′(K2�Kn) ≥ n.
Since, ∆(K2�Kn) = n, and by Note 3, µ′(K2�Kn) ≥ n. Thus, µ′(K2�Kn) = n.
This completes the proof.

Theorem 2.2. For m ≥ 3 and n ≥ 3, µ′(Km �Kn) = mn.
Proof. Let the vertices of Km �Kn be vij, 1 ≤ i ≤ m and 1 ≤ j ≤ n. First,
we prove that µ′(Km �Kn) ≤ mn. Assign the weighting to vertices of Km �Kn by
w(vij) = (i− 1)n+ j, 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Next, our aim is to prove µ′(Km �Kn) ≥ mn. By Note 2, vertices of copy of Kn

in the first row will receive the weighting v1j = j, 1 ≤ j ≤ n, since Kn is complete
graph all vertices receive distinct label. In the second row, the copy of Kn, suppose
the vertex v21 label by any of {1, 2, 3, . . . , n} it contradict Note 2, since the vertices
v21 and v1j = j, 1 ≤ j ≤ n have a common neighbor. In general, any two vertices
in Km �Kn have a common neighbor. So, no two distinct vertices receive same
weighting. There are mn vertices in Km �Kn. Hence, µ′(Km �Kn) ≥ mn. Thus,
µ′(Km �Kn) = mn. This completes the proof.

Theorem 2.3. For n ≥ 4, n 6≡ 2( mod 4), µ′(P3� Cn) = 4.
Proof. Let the vertices of P3� Cn be vij, 1 ≤ i ≤ 3 and 1 ≤ j ≤ n.
Case 1. n ≡ 0( mod 4).
First, we prove that µ′(P3� Cn) ≤ 4. Assign weight 1 to vertices v1j, j is congruent
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to 1, 2 modulo 4, and to vertices v3j, j is congruent to 0, 3 modulo 4. Assign weight
2 to vertices v1j, j is congruent to 0, 3 modulo 4, and to vertices v3j, j is congruent
to 1, 2 modulo 4.

Assign weight 3 to vertices v2j, j is congruent to 0, 1 modulo 4, and assign
weight 4 to vertices v2j, j is congruent to 2, 3 modulo 4. Since, ∆(P3� Cn) = 4
and by Note 3, µ′(P3� Cn) ≥ 4. Thus, µ′(P3� Cn) = 4.
Case 2. n ≡ 1( mod 4).
First, we prove that µ′(P3� Cn) ≤ 4.

Assign weight 1 to vertices v1j, j is congruent to 1, 2 modulo 4, j 6= n, to vertex
v2(n−1), and to vertices v3j, j is congruent to 0, 3 modulo 4, j 6= n−2. Assign weight
2 to vertices v1j, j is congruent to 0, 3 modulo 4, to the vertex v21, and to vertices
v3j, j is congruent to 1, 2 modulo 4, j 6∈ {2, n}. Assign weight 3 to the vertex v1n,
to vertices v2j, j is congruent to 0, 1 modulo 4, j 6= n − 1, and to the vertices
v32, v3(n−2) and assign weight 4 to vertices v2j, j is congruent to 2, 3 modulo 4,
and the vertex v3n. Since, ∆(P3� Cn) = 4 and by Note 3, µ′(P3� Cn) ≥ 4. Thus,
µ′(P3� Cn) = 4.
Case 3. n ≡ 3( mod 4).
First, we prove that µ′(P3� Cn) ≤ 4. Assign weight 1 to vertices v1j, j is congruent
to 1, 2 modulo 4, j 6= n − 1, to vertex v2(n−2), and to vertices v3j, j is congruent
to 0, 3 modulo 4, j 6= n− 3. Assign weight 2 to vertices v1j, j is congruent to 0, 3
modulo 4, to the vertex v2n, and to vertices v3j, j is congruent to 1, 2 modulo 4,
j 6∈ {1, n− 1}. Assign weight 3 to the vertex v1(n−1), to vertices v2j, j is congruent
to 0, 1 modulo 4, j 6= n− 2, and to the vertices v31, v3(n−3) and assign weight 4 to
vertices v2j, j is congruent to 2, 3 modulo 4, j 6= n, and the vertex v3(n−1). Since,
∆(P3� Cn) = 4 and by Note 3, µ′(P3� Cn) ≥ 4. Thus, µ′(P3� Cn) = 4. This
completes the proof.

Theorem 2.4. For n ≥ 4, n 6≡ 2(mod 4), µ′(P4� Cn) = 4.
Proof. Let the vertices of P4� Cn be vij, 1 ≤ i ≤ 4 and 1 ≤ j ≤ n.
Case 1. n ≡ 0( mod 4).
First, we prove that µ′(P4� Cn) ≤ 4. Assign weight 1 to vertices v1j, j is congruent
to 1, 2 modulo 4, and to vertices v3j, j is congruent to 0, 3 modulo 4. Assign weight
2 to vertices v1j, j is congruent to 0, 3 modulo 4, and to vertices v3j, j is congruent
to 1, 2 modulo 4. Assign weight 3 to vertices v2j, j is congruent to 0, 1 modulo 4,
and to vertices v4j, j is congruent to 2, 3 modulo 4, and assign weight 4 to vertices
v2j, j is congruent to 2, 3 modulo 4, to vertices v4j, j is congruent to 0, 1 modulo
4. Since, ∆(P4� Cn) = 4 and by Note 3, µ′(P4� Cn) ≥ 4. Thus, µ′(P4� Cn) = 4.
Case 2. n ≡ 1( mod 4).
First, we prove that µ′(P4� Cn) ≤ 4.
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Subcase 2.1. n = 5.
Assign weight 1 to vertices v11, v12, v24, v34, v41, v42.
Assign weight 2 to vertices v13, v14, v21, v31, v43, v44.
Assign weight 3 to vertices v15, v25, v32, v33.Assign weight 4 to vertices v22, v23, v35, v45.
Since, ∆(P3� C5) = 4 and by Note 3, µ′(P4� C5) ≥ 4. Thus, µ′(P4� C5) = 4.
Subcase 2.2. n ≥ 9.

Assign weight 1 to vertices v1j, j is congruent to 1, 2 modulo 4, j 6= n, to
vertex v2(n−1), to vertices v3j, j is congruent to 0, 3 modulo 4, j 6= n−2, and to the
vertices v41, v4(n−3). Assign weight 2 to vertices v1j, j is congruent to 0, 3 modulo
4, to the vertex v21, to vertices v3j, j is congruent to 1, 2 modulo 4, j 6∈ {2, n}, and
to vertices v43, v4(n−1).

Assign weight 3 to the vertex v1n, to vertices v2j, j is congruent to 0, 1 modulo
4, j 6∈ {1, n − 1}, to the vertices v32, v3(n−2) and to vertices v4j, j is congruent to
2, 3 modulo 4, j 6∈ {3, n − 3}, assign weight 4 to vertices v2j, j is congruent to
2, 3 modulo 4, the vertex v3n, and to vertices v4j, j is congruent to 0, 1 modulo
4, j 6= n − 1. Since, ∆(P4� Cn) = 4 and by Note 3, µ′(P4� Cn) ≥ 4. Thus,
µ′(P4� Cn) = 4.
Case 3. n ≡ 3( mod 4).
First, we prove that µ′(P4� Cn) ≤ 4. Assign weight 1 to vertices v1j, j is congruent
to 1, 2 modulo 4, j 6= n− 1, to vertex v2(n−2), to vertices v3j, j is congruent to 0, 3
modulo 4, j 6= n−3, and to vertices v4(n−4), v4n. Assign weight 2 to vertices v1j, j is
congruent to 0, 3 modulo 4, to the vertex v2n, to vertices v3j, j is congruent to 1, 2
modulo 4, j 6∈ {1, n− 1}, and to vertices v42, v4(n−2). Assign weight 3 to the vertex
v1(n−1), to vertices v2j, j is congruent to 0, 1 modulo 4, j 6= n − 2, to the vertices
v31, v3(n−3), and to vertices v4j, j is congruent to 2, 3 modulo 4, j 6∈ {2, n− 4, n},
assign weight 4 to vertices v2j, j is congruent to 2, 3 modulo 4, j 6= n, the vertex
v3(n−1), and to vertices v4j, j is congruent to 0, 1 modulo 4, j 6= v4(n−2). Since,
∆(P4� Cn) = 4 and by Note 3, µ′(P4� Cn) ≥ 4. Thus, µ′(P4� Cn) = 4.

Theorem 2.5. For m ∈ {3, 4}, µ′(Pm � C3) = ∆(Pm � C3) + 1 = 5.
Proof. Let the vertices of Pm � C3 be vij, 1 ≤ i ≤ m and 1 ≤ j ≤ 3.
Case 1. m = 3.
First, we prove that µ′(P3� C3) ≤ 5. Assign weight 1 to the vertices v11, v33, assign
weight 2 to the vertices v12, v31, assign weight 3 to the vertices v13, v23, assign weight
4 to the vertex v21, assign weight 5 to the vertices v22, v32. Since, ∆(Pm � C3) = 4,
µ′(Pm � C3) ≥ 4. Suppose assume that µ′(Pm � C3) = 4. In the Cartesian product
of P3� C3, the first row will be the copy of C3, by note 2, the vertices v11, v12, v13 will
receive different weight, without loss of generality, assume that v11, v12, v13 receives
1, 2, and 3 respectively.
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Next, assign weight to v21. Since, v21 adjacent to v11, we can assign weight to
the vertex v21 by either 1 or 4, suppose v21 receive 2 or 3 it contradicts note 2.
Subcase 1.1. Assume that w(v21) = 1, similarly, assign weight to v22 by 2 or 4 and
assign weight to v23 by 3 or 4. Without loss of generality, assume that w(v21) = 1,
w(v22) = 2, w(v23) = 3. Now, assign weight to v31, since, v21 adjacent to v11, v22, v23
v31 and v11, v22, v23 received colors 1, 2 and 3 respectively. By note 2, v31 receive
weight 4. Next assign weight to v32. Since, v22 adjacent to v12, v21, v23, v32 and
v12, v21, v23 received colors 1, 2 and 3 respectively, so v32 must receive weight 4, by
note 2. Hence, w(v31) = w(v31) = 4, which contradicts that v31 and v32 have the
common neighbor v33. Thus, w(v32) = 5.
Subcase 1.2. Assume that w(v21) = 4. By note 2, w(v22) = 2, w(v23) = 3.
Similarly, by note 2, w(v31) = 4, and w(v32) = 1. The adjacent vertices of v23 are
v13, v21, v22 receives weights 3, 4 and 2 respectively, then w(v33) must be 1 which
contradicts that v33 and v32 have a common neighbor v31. Hence, w(v33) = 5. Same
way we can prove for other possible cases.
Case 2. m = 4.
First, we prove that µ′(P4� C3) ≤ 5. Assign weight 1 to the vertices v11, v33, v43
assign weight 2 to the vertices v12, v31, assign weight 3 to the vertices v13, v23, v42
assign weight 4 to the vertices v21, v31 assign weight 5 to the vertices v22, v32. Since,
∆(Pm � C3) = 4, µ′(Pm � C3) ≥ 4. Suppose µ′(Pm � C3) = 4, then we will get the
contradictions as we discussed previous case. Hence, µ′(Pm � C3) = ∆(Pm � C3) +
1 = 5. This completes the proof.

3. Conclusion
We determined edge-coloring vertex-weightings for Pm � Cn, Km �Kn for some

positive integers m and n.
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