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Abstract: In this paper, we have formulated a new mathematical model for trans-
mission dynamics of Hepatitis B virus by using system of differential equations.
Also we have obtained the conditions under which the model will be in disease free
equilibrium state as well as we have found its basic reproduction number.
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1. Introduction

Hepatitis B is an infectious disease caused by the Hepatitis B virus (HBV) that
affects the liver. It can cause both mild to severe infections which can result in
death. According to WHO, 257 million people were living with severe Hepatitis
B infection. Hepatitis B can be prevented by vaccines that are safe, available and
effective and 80 - 90% of infants infected during the first year of life develop chronic
infections and 20 - 30% of adults who are chronically infected will develop cirrhosis
and liver cancer. There is still limited access to diagnosis and treatment of Hepatitis
B in many resource contained settings. Since the observance of World Hepatitis
Day 2019, WHO has been focusing on the eradication of Hepatitis B by the year
2030. For this, control strategies should be decided and the most effective control
measure is vaccination. One of the primary reasons for studying Hepatitis B virus
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(HBV) infection is to improve control and finally to bring down the infection from
the population [1]. Mathematical modelling can be a useful tool in this approach
which helps us to optimize the use of finite resources and to take control measures
more impressively. Many authors have studied transmission dynamics of Hepatitis
B virus and other infectious diseases by proposing different mathematical models
for example, see [2, 5, 6, 13, 14], [11], [3], [7, 8, 12, 15]. Recently, Blessing et. al.
[4] proposed the mathematical model which is based on standard SEIR model.

Many mathematical models containing Hepatitis B vaccine usually considered

that the vaccine is fully effective to avoid the infection of vaccinated individuals.
In fact, the Hepatitis B vaccine should be taken in three doses at 0, 1 and 6
months. Generally 30-50% of individuals will gain anti-HBs antibody after the
first dose, 80-90% will gain after the second dose and almost all the individuals will
have high anti-HBs concentrations one month after the last dose that 99.80% of
vaccines improve anti-HBs antibody. As soon as we give vaccination to susceptible
individuals, they will be removed from susceptible population. But they should
also differ from recovered individual s which have immunity beside the disease. It
means that some of vaccinated individuals may still be susceptible to infection,
but they will be infected at a lower rate than susceptible individuals whoever not
vaccinated.
So, we extend the model proposed in [4], by adding three new compartments as
Vi, Vo and V3 of vaccinated individuals. We propose new mathematical model and
study the transmission dynamics of Hepatitis B virus under the administration of
vaccination. Further we establish necessary and sufficient conditions for the model
to be stable. Also we obtain basic reproduction number for the newly proposed
model.

The paper is organized as follows: Section 2 presents used assumptions, param-
eters and existing model. In section 3, we propose new mathematical model. In
section 4, we discuss the equilibrium points, stability analysis and basic reproduc-
tion number and section 5, gives conclusion of the study.

2. Assumptions, parameters and existing model of HBV
We shall use the following assumptions and parameters :

2.1. Assumptions of the Model
e The population is homogeneous.
e The treated individuals recover.

e Influx in the population is by birth only.
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e Exit out of the population is by natural and HBV related mortality only.
e The vaccinated individuals do not acquire permanent immunity.

2.2. Variables and Parameters of the Model

@]

t) = proportion of the susceptible individuals at time t,

—

(
(

t) = proportion of the latently infected/exposed individuals at time t,

—

(t) = proportion of the infectious individuals at time t,
R(t) = proportion of the recovered/removed individuals at time t.

Vi(t) =proportion of vaccinated individuals who gain anti-HBs antibody after the
first dose,

V4(t) =proportion of vaccinated individuals who gain anti-HBs antibody after the
second dose,

V3(t) =proportion of vaccinated individuals who have high anti-HBs antibody after
the last dose (third dose).

¢, = rate of expiration of vaccine efficacy after the first dose
¢o = rate of expiration of vaccine efficacy after the second dose
¢3 = rate of expiration of vaccine efficacy after the third dose
¢4 = rate of transfer from class V; to V5

¢s = rate of transfer from class V5 to V3

1 = rate of conversion from S to L

k = rate of conversion from L to I

1) = rate of conversion from I to R

7w = rate of conversion from R to S

£ = HB-induced mortality

1 = natural mortality

P = population of new births

cP = immunized new births

N = total population size

2.3. The Existing Model
We begin our model formulation by introducing the existing model given in [4].
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The following is a flow diagram for the existing model.

Figure 1: Flow diagram of HBV transmission dynamics for the existing model

2.4. The Equations of the Existing Model
The model equations are as follows:

‘“‘j_t(t) = cP — ¢M(t) — nM(t) (1)
%@ = (1= )P+ ¢M(t) + wR(t) — (1 +n)S(1) (2)
%t) — uS(t) — qL(t) — KL(t) — 1L (1) (3)
%’f) — RL(t) — 0I(t) — nI(t) — BI(t) (4)
d]jz—it) = qL(t) + ¥I(t) — 7R(t) — nR(t) (5)

3. The Extended Model

The population is conveniently partitioned into seven compartments namely
S(t), L(t), I(t), R(t), Vi(t), Va(t), V5(t) as described above in assumptions and
parameter subsection. The flow diagram for the existing model is now amended to
obtain the flow diagram for the extended model as follows:
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Figure 2: Flow diagram of HBV transmission dynamics for the extended model

3.1. Equations of the Extended Model
Based on the above assumptions, parameters and flow diagram of the model
equations of extended model we obtain model equations are as follows:

D _ P~ + 61+ 00Vl (6)
DD _ 60(t) ~ (14 62 + 65)Val) (7)
PO — govatt) — (0 + 6100 (®)
ast) W) — (1= P+ 6iVilt) + 62Valt) + V() — (u + m)S(@) + 7RE)  (9)

Zi> — uS(t) = (g + k +)L(1) (10)
# = kL(t) = (¢ +n+ B)I(t) (11)
MO p10) + aLt) — (x + (D) (12)

N(t) = Va(t) + Va(t) + Va(t) + S(8) + L(t) + 1(t) + R(t) (13)

4. Equilibrium Points
Let E(V4, Va2, V3, S, L, I, R) be the equilibrium point of the system described by
equations (6)-(13). At the equilibrium state, we must have

AV _dVy _dVy _dS _dL _dl _dR 1)
dt  dt dt dt dt dt dt
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which gives,

cP —(n+é1+ ¢s)Vi =0 (15)

GaVi — (N + b2 + ¢5)V2 = 0 (16)
¢sVa — (n+ ¢3)V3 =0 (17)
(1= )P+ ¢1Vi+ ¢oVo + @3V — (u+n)S+7R =0 (18)
pSI—(g+k+nL=0 (19)
kL — (¢ +n+pB) =0 (20)
I +qL —(m+nR=0 (21)

In order to obtain the DFE state, we solve the equations (15)-(21) simultaneously.

4.1. Existence of a Trivial Equilibrium State (TES)

Let Eo(Vie, Vao, Vao, So, Lo, Io, Ro) be the trivial equilibrium state (TES) of equa-
tions (6)-(13) of the model. There exists no TES since the population cannot be
extinct, so long as new babies are born into the population.(i.e. ¢cP # 0 and (1-¢)P
#0).

Le. EO(‘/lm ‘/207 ‘/307 507 L07 ]07 RO) 7é (0707070707070)'
4.2. DFE State

DFE state is the state of total elimination of disease. Let E°(V VP, V2 SO,

L° I° R°) be the DFE state. For DFE state we must have

I’=1L"=0 (22)

Putting the value of 1Y = L° = 0 into equations (15)-(21) and solving them simul-
taneously, we get
From equation (15), we obtain

cP

Vo — — 23
Lo+ o+ o (23)
From equation (16), we obtain
0
V= (24)
(n+ 2+ ¢5)
Putting the value of V in equation (24), we get
P
vy - " )

(0 + é1+ ¢a)(n + d2 + &5)
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From equation (17), we obtain

¢5Vy
VY =
S (n+ o)
Putting the value of V3 in equation (26), we get
0 Ps5pacP

BT i+ )+ 0 9900+ 00)
From equation (18), we obtain
(L—)P+ ¢V + goVy + 3V — (u+n)S° + 7R’ =0
Putting the value of V?, V) and V7 in equation (28), we get

p1cP G204cP

(I—c)P+ (n+¢1+¢4)+(7)+¢1+¢4)(77+¢2+¢5)

P395¢4cP

_ 0 0_
(n+ ¢1 + da)(n + b2+ &5)(n + ¢3) (u+mS°+7R" =0

From equation (21), we have
gL’ +I° — (m +n)R° =0

= (7 +n)R" = 0(since L° = I° = 0)

= FEither(n+n1)=0 or R'=0

Since 7 and 7 are positive constants, (7 +n ) # 0
Therefore, R® = 0

Then equation (29) gives

(L =)P+ ¢ VP + ¢oVy + ¢5V5 — (u+1)S° =0

1— )P+ ¢ VP + ¢V + p3V3
(1 +m)

Therefore the DFE state of the model is given by
EO(‘GO,‘/QO,%O,SO,LO,]O,RO)

SOZ(

391

(26)

(29)

(30)

(31)

(32)
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cP pacP PapscP
N+o1+ o N+ o1+ o)+ b2+ ¢5) (n+ b1+ da) () + P2+ d5) (N + ¢3)

=

(1 =c)P+ ¢ VP + ¢aVy) + 3V
(1 +n)
4.3. Stability Analysis of the DFE State
To determine the stability of the DFE state E°, we consider the nature of
the model population nearby this equilibrium solution. Here, we determine the

conditions that must be met if the disease is to be totally eradicated. Remind that
the system of equations in this model at equilibrium state is given by

,0,0,0).

cP =+ o1+ ¢)Vi =
Vi — (N + da + ¢5) Vo =
¢5Va — (n+ ¢3)Va =0
(I—=c)P+ Vi + ¢V + ¢3Vs — (n+n)S+7R =0 (33)
uSI—(g+k+nL=0
EL— (W +n+B8)I1=0
Yl +qL—(m+n)R=0

0
0

We now linearize the system of equations to obtain the Jacobian matrix J which is
given by

wi 0 0 0 O 0 0
Gy w, 0 0 0 0 0
0 ¢5 w3 0 0 0 0
J=|¢1 ¢2 ¢3 wgy 0 0 7 (34)
0 0 0 pul® wsy pS® 0
0 0 0 0 k ws O

0 0 0 0 ¢ v wr]

where,

wi=—M+ o1+ Qs),wa = —(n+ P2+ ¢5),w3 = —(1 + ¢3),
wy=—(p+n),ws=—(q+k+n)ws =~ +n+8),wr =—(7+n)

At the disease-free equilibrium state, E°(V?, V7, V})O, SO LY I° R%) | the Jacobian
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matrix J becomes

wg 0 O O O 0 O
¢4 Wy 0 0 0 0 0
0 ¢5 W10 0 0 0 0
J= |1 ¢ ¢33 wn 0 0 (35)
0 0 0 0 W12 W13 0
0 0 0 0 k W14 0

0 0 0 0 q ’;Z) W15 |

where

wg = —(N+ o1+ ¢s),wg = —(n+ P2 + ¢5), w10 = —(n + ¢3),
(1=c)P+ oV + ¢oVy + ¢35

(1 +mn)

wip =—(u+n),wie=—(¢+k+n),ws=pu

wig = —(P+n+6),wis = —(7+1n)
The characteristic equation |J —IA| = 0 is obtained from the Jacobian determinant
with the eigen values A\; (i =1, 2,3,4,5,6,7)

Y

[)\2 + 2N+ ¢1 + P2+ ds+ P5) A + (772 + o2 +Nds + P11 + G102 + G105+

G4 + Gapa + Gatps)] X [N + (¢3 + 20 + )X + (np+ 0 + dsp+ d3n)] - (36)
x(—m—n—N[4] =0

(1 —c)P + 1 VP + ¢V + 3V
—(g4+k+n)=\
(q n) I )

k —(@+n+5) - A
From equation (36), either

[N+ (20 + 61 + d2 + G+ &5)A + (1° + 12 + 05 + d11) + P10
+ 105 + Gun) + Paha + dads)] X [N+ (3 + 20 + p)A (37)
+(p+n"+ dsp+ dan)] X (=T —n—A) =0

or

B B (1—c)P + o1 VP + ¢2Vy + ¢35
(g+k+n)—A pn i+ 1) =0 (38)
g —(W+n+p8)—A

From equation (37), we have
AN+ M+ 1+ 00)] + (n+ &2+ &5)[A+ (0 + d1 + ¢4)]
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XAA+ (3 +n)] + (n+ ) A+ (g3 + )| (-7 —=n—=A) =0
A+ (4 ¢1+ @a)][A+ (7 + b2+ @5)][A+ (@3 + A+ (n+ p)][-7—n—A =0

—(m+n) (39)
—(n+ ¢1+ b4) (40)
—(n+ d2 + ¢5) (41)
(¢4+77) (42)
Let (1= )P+ VO + V0 + VD
4] = [Tt EE) p )
k —(W+n+p)

For the DFE to be asymptotically stable we must have trace(A) < 0 and det(A) >
0.

det(A) = (q+k+n)(V+n+8)—pk

—(qg+k+n)—@+n+p)
Obviously, trace(A) < 0, since all the parameters q, k, 7, ¢ and § are positive. For
the determinant of A to be positive, we must have

1= )P+ g1V + ¢V + 3V
(g +k+ )+ +8) - uk =9 e
o (n+n)

(1 —c)P + ¢ VP + VY + 3V
(1 +mn)

and Trace(A) =

>0

(1 —=¢)P + ¢ VP + oV + 3V

(1 +mn) (44)

(q+k+n)W+n+p6)> uk

From equations (39)-(43), A1, A2, A3, A4, A5 of equation (35) are all have negative
real parts.

We now establish the necessary and sufficient conditions for the remaining two
eigen values of equation (35) to have negative real part and this two eigen values
of equation (35) will have negative real parts if and only if the determinant of A

to be positive. i.e. detA > 0.

, 1—c)P + ¢ VP + ¢V + 3V

ie. (q+k+n)W+n+05) > ,uk( ) (ﬁ(lul—l-n)(bz 2 + Vs

Hurwitz theorem say that the equilibrium state will be asymptotically stable if and
only if all the eigen values of the characteristic equation |J — IA| = 0 have negative
real part. Using this theorem we examine that the disease-free equilibrium state of
this model will be asymptotically stable if and only if

. The Routh-
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(1 =c)P + ¢ VP + ¢V + 3V
(1 +m)

(1= )P+ o1V + ¢ V5 + 3V
(w+mn)

(q+E+n)W+n+6)> pk

= uk

<(g+k+n)+n+p5) (45)

The above inequality gives the necessary and sufficient condition for the DFE state
of the model to be asymptotically stable.
Alternatively, the inequality (44) can also be expressed as
(1= )P+ ¢ VP + doVy) + 3V
(1 +n) (W +n+p6)
This shows that sum of the rate of recovery of latently infected people and the rate
at which latently infected individuals improvement to active infection and the rate
of natural death of individuals (in the population, i.e. total removal rate from the
(L= )P+ VY + 6oV + §sVy
(b +m) (¥ +n+05)

(g+k+n) > uk

latent class ) must obtain a lower bound given by pk

4.4. Reproduction Number (R))

The basic reproduction number (Rp) is the number of cases directly caused by
an infected individual throughout his infectious period. R, is used to determine
the ability of a disease to spread within a given population. The reproduction
number (Ry) represents the transmissibility of a disease. The most important uses
of Ry are determining if an emerging infectious disease can spread in a population
and determining what proportion of the population should be immunized through
vaccination to eradicate a disease. If (Ry) > 1, then each person on average infects
more than one other person so the disease will spread. If (Ry) < 1, then each person
infects less than one person on average so the disease will die out. If (Ry) = 1,
then each person will infect exactly one other person so the disease will become
endemic, it will move throughout the population but not increase or decrease.

There are many simple methods for finding the reproduction number Ry, namely,
the survival function method, next generation method, constant term of the char-
acteristic polynomial etc.

Here, we find Ry, using the constant term of the characteristic polynomial.
From equation (35), characteristic equation for the Jacobian matrix at the DFE
state is given by
N —[=(g+k+n) =@ +n+ BN+ (¢ +E+n)(Y+n+ )

(L= )P + 61 VP + 62V + ¢5Vy)
— pk =0
(n+n) (W +n+p)
Therefore the basic reproduction number (Ry) is given by
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(1=c)P+ g1V + oV + 3 VY

(w+n)lg+k+n@+n+8) , ,
The above equation has all roots with negative real parts if and only if each coef-

ficient is positive. Hence Ry < 1 and the disease will die out.

R():,uk‘

5. Conclusion

In this paper, we have proposed new mathematical model for transmission dy-
namics of HBV infection.The proportion dynamics of the classes is described us-
ing seven differential equations. We conclude that the trivial equilibrium state
Eo(Vie, Vao, Vao, So, Lo, 1o, Ry) is unstable. The state there is no individual in the
population. The disease-free equilibrium state, E°(V?, V), V2 SO L° 1° RO) of the
model was determined and its stability analysed using the Routh-Hurwitz theorem.
The basic reproduction number, Ry for the model was computed using the con-
stant term of the characteristic polynomial and shown that disease will die out if
(1 =c)P+ o VP + ¢V + 3V <1

we carry out vaccination program so that uk
(+m)a+k+n)+n+p)
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