South East Asian J. of Mathematics and Mathematical Sciences Vol. 17, No. 2 (2021), pp. 313-318

> ISSN (Online): 2582-0850 ISSN (Print): 0972-7752

STAR COLOURING IN FEW CLASSES OF GRAPHS

A. S. Shanthi and Fathima Tabrez*

Department of Mathematics, Stella Maris College, Chennai - 600086, INDIA

E-mail : shanthu.a.s@gmail.com

*Department of Mathematics, Anna University, Chennai - 600025, INDIA

E-mail : tabrezfathima13@gmail.com

(Received: Jan. 17, 2021 Accepted: Jul. 23, 2021 Published: Aug. 30, 2021)

Abstract: A proper vertex colouring of a graph G is called a star colouring if every path of G on four vertices is not 2-coloured. The star chromatic number is the minimum number of colours required to star colour G and it is denoted by $\chi_s(G)$. The Star Chromatic Number of the Middle Graphs of path (P_n) ; Shadow Graphs of path (P_n) and Tadpole graphs $(T_{3,n})$; m- fold Triangular Snake graphs $(S(C_3, m, n))$ have been discussed in this paper.

Keywords and Phrases: Star Colouring, Star Chromatic number, Middle graph, Shadow graph, Tadpole graph, m-fold Triangular Snake graphs.

2020 Mathematics Subject Classification: 05C15.

1. Introduction and Preliminaries

Let us consider the graph $G = (V, E)$ to be finite, simple and undirected. Vertex *Colouring* on a graph G is an assignment of colours to the vertices of a graph so that no two adjacent vertices get the same colour. A vertex colouring of a graph is said to be proper if no two vertices sharing the same edge have the same colour. The *chromatic number* $\chi(G)$ of a graph G is the minimum number of colours required to colour G [2]. A proper vertex colouring of a graph G is called *star colouring*, if every path of G on four vertices is not 2 - coloured. The *star chromatic number* is the minimum number of colours required to star colour G and it is denoted by $\chi_s(G)$. In 1973, Branko Grünbaum introduced the concept of star coloring and also he introduce the notion of star chromatic number [4].

The Middle graph of G is denoted by $M(G)$, the vertex set of $M(G)$ is $V(G) \cup$ $E(G)$ and any two vertices x, y in $M(G)$ are adjacent in $M(G)$, if x, y are in $E(G)$ and x, y are adjacent in G or x is in $V(G)$, y is in $E(G)$ and x, y are adjacent in G.The *Shadow graph* denoted by shad(G) is that graph with the vertex set $V(G) \cup \{u_1, \ldots, u_n\}$, where u_i is called the shadow vertex of v_i and u_i is adjacent to u_j if v_i is adjacent to v_j and u_i is adjacent to v_j if v_i is adjacent to v_j for $1 \leq i$, $j \leq n$. The (m, n) -Tadpole graph is a graph is obtained by joining a cycle graph C_m to a path graph P_n with a bridge, is denoted by $T_{m,n}$. A m-fold triangular snake graph [1] denoted by $S(C_3, m, n)$, is of length n and is obtained from a path $v_1, v_2 \ldots v_n, v_{n+1}$ by joining v_i and v_{i+1} to new m vertices $w_{i1}, \ldots, w_{im}, i = 1, 2, \ldots n$ giving edges (v_iw_{ij}) and $(w_{ij}v_{i+1}), j = 1, 2, \ldots m$ and $i = 1, 2 \ldots n$. To prove the main result we need the following theorems:

Theorem 1.1. [3] Let P_n be a path graph on n vertices, then

$$
\chi_s(P_n) = 3, \forall \ n \ge 4
$$

Theorem 1.2. [3] If K_n is the complete graph on n vertices, then

$$
\chi_s(K_n) = n, \forall \ n \ge 3
$$

Theorem 1.3. [3] Let C_n be a cycle, $n \geq 3$. Then

$$
\chi_s(C_n) = \begin{cases} 4 & when \ n = 5 \\ 3 & otherwise \end{cases}
$$

2. Main Results

Theorem 2.1. For a path P_n where $n \geq 3$, the star chromatic number of middle graph of path is

$$
\chi_s(M(P_n)) = \begin{cases} 3 & n = 3, 4 \\ 4 & n \ge 5 \end{cases}
$$

Proof. Let $V(P_n) = \{v_i : 1 \le i \le n\}$ and $E(P_n) = \{e_j = u_j : 1 \le j \le n-1\}.$ Consider $M(P_n)$, the vertex set of the middle graph of P_n is $V(M(P_n)) = \{v_i \cup u_j :$ $1 \leq i \leq n; 1 \leq j \leq n-1$ and denote by S, the set of colours required to star colour the graph $M(P_n)$. We now star colour the graph.

Case 1: $n = 3, 4$. Clearly the vertices $\{v_2 \cup u_1 \cup u_2\}$ induces a clique of order 3.

Hence $|S| \geq 3$. We claim that $\chi_s(M(P_n)) = 3$. Let $f: V(M(P_n)) \to S$ such that

$$
f(v_i) = 1 \ (1 \le i \le n)
$$

$$
f(u_{2i-1}) = 2 \ (1 \le i \le 2)
$$

$$
f(u_2) = 3
$$

Thus there is no possibility for any path on four vertices to be bicoloured. Hence $\chi_s(M(P_n))=3.$

Case 2: $n \geq 5$. Let $f: V(M(P_n)) \to S$ such that

$$
f(v_i) = 1 \ (1 \le i \le n)
$$

\n
$$
f(u_{2j-1}) = 2 \ (j \ge 1) \ where \ 2j - 1 \le 2n - 7
$$

\n
$$
f(u_2) = 3 \ for \ n = 5, 6
$$

\nand
$$
f(u_{4j-2}) = 3
$$

where j varies from k to $k + t$; $k \in N$ (the set of natural numbers) and $t = 1, 2, \ldots$ in succession and $(4k - 1 \le n \le 4k + 2), k = 2, 3, \ldots$ If we assign the colours from $\{1, 2, 3\}$ to the vertex u_4 , we arrive at a contradiction. Hence $|S| \geq 4$. We claim that $\chi_s(M(P_n)) = 4$. For $j = k$; $k = 1, 2, \ldots$ in succession, we have

$$
f(u_{4j})=4
$$

where $4k + 1 \le n \le 4k + 4$ $(k = 1, 2, \ldots)$. We observe that there is no possibility for any path on four vertices to be bicoloured. Hence $\chi_s(M(P_n))=4$.

Theorem 2.2. For $m, n \geq 2$, the star chromatic number of m-fold Triangular Snake graph $S(C_3, m, n)$ is

$$
\chi_s(S(C_3, m, n)) = \begin{cases} 3 & n = 2 \\ 4 & otherwise \end{cases}
$$

Proof. Let $V(S(C_3, m, n)) = \{v_i \cup u_j : 1 \le i \le n+1, 1 \le j \le mn\}$ and $E(S(C_3, m, n)) = \{e_i : 1 \le i \le 2n+1\}$ and denote by S, the set of colours required to star colour the graph $S(C_3, m, n)$. We now star colour the graph.

Case 1: $n = 2$. Label the vertices of P_3 as v_1, v_2, v_3 and the m- vertices as $u_1, u_2, u_3, \ldots, u_{mn}$ respectively. We note that the vertices $\{v_1 \cup u_1 \cup v_2\}$ form a cycle of order 3. Hence $|S| \geq 3$. We claim that $\chi_s(S(C_3, m, 2)) = 3$. Let f: $V(S(C_3, m, 2)) \to S$ such that

$$
f(u_j) = 1 (1 \le j \le mn)
$$

f(v_{2i-1}) = 2 (1 \le i \le 2)
f(v_2) = 3

Thus there is no possibility for any path on four vertices to be bicoloured. Hence $\chi_s(S(C_3, m, 2)) = 3.$ **Case 2:** $n > 2$. Let $f : V(S(C_3, m, n)) \to S$ such that

$$
f(u_j) = 1 (1 \le j \le mn)
$$

$$
f(v_{2i-1}) = 2 (1 \le i \le n - 1)
$$

For $i = k$; $k \in N$ (the set of natural numbers), i varies from k to $k + t$, $t = 1, 2, \ldots$ in succession, we have

$$
f(v_{4i-2})=3
$$

where $4k + 1 \le n \le 4k + 4$ $(k = 1, 2, ...)$. If we assign the colours from $\{1, 2, 3\}$ to the vertex v_4 , we arrive at a contradiction. Hence $|S| \geq 4$. We claim that $\chi_s(S(C_3, m, n)) = 4$. For $i = k; k = 1, 2, \ldots$ in succession, we have

$$
f(u_{4i})=4
$$

where $4k + 1 \le n \le 4k + 4$ $(k = 1, 2, \ldots)$. We observe that there is no possibility for any path on four vertices to be bicoloured. Hence $\chi_s(S(C_3, m, n)) = 4$.

Theorem 2.3. For $n \geq 2$, the star chromatic number of the shadow graph of a path is given by

$$
\chi_s(shad(P_n)) = \begin{cases} 3 & n = 2,3 \\ 5 & otherwise \end{cases}
$$

Proof. Let $V(P_n) = \{v_i : 1 \le i \le n\}$ and $E(P_n) = \{e_i : 1 \le i \le n-1\}$. Consider shad(P_n), the vertex and edge sets are $V(shad(P_n)) = \{v_i \cup u_j : 1 \le i \le n, 1 \le n$ $j \leq n$ and $E(shad(P_n)) = \{e_j : 1 \leq j \leq 4n-4\}$ respectively and denote by S, the set of colours required to star colour the graph $shad(P_n)$. We now star colour the graph.

Case 1: $n = 2, 3$. In shad(P_3), we note that $v_1v_2u_1u_2$ is a path on four vertices. Hence $|S| \geq 3$. We claim that $\chi_s(shad(P_3)) = 3$. Let $f: V(shad(P_n)) \to S$ such that

$$
f(v_{2i+1}) = 1 (0 \le i \le 1)
$$

$$
f(u_{2j+1}) = 1 (0 \le j \le 1)
$$

$$
f(v_2) = 2
$$

$$
f(u_2) = 3
$$

Thus there is no possibility for any path on four vertices to be bicoloured. Hence $\chi_s(shad(P_n))=3.$ **Case 2:** $n \geq 4$. Let $f: V(\text{shad}(P_n)) \to S$ such that

$$
f(v_{2i-1}) = 1 \ (i \ge 1) \ where \ 2i - 1 \le n
$$

$$
f(v_{4i-2}) = 2 \ (i \ge 1) \ where \ 4i - 2 \le n
$$

$$
f(v_{4i}) = 3 \ (i \ge 1) \ where \ 4i \le n
$$

$$
f(u_{2j-1}) = 1 \ (j \ge 1) \ where \ 2j - 1 \le n
$$

If we assign the colours from $\{1, 2, 3\}$ to the vertex u_2 , we arrive at a contradiction. Hence $|S| \geq 4$. So⁴

$$
f(u_{4j-2}) = 4 (j \ge 1) where 4j - 2 \le n
$$

If we assign the colours from $\{1, 2, 3, 4\}$ to the vertex u_4 , we arrive at a contradiction. Hence $|S| \geq 5$. We claim that $\chi_s(s \text{had}(P_n)) = 5$. If

$$
f(u_{4j}) = 5 (j \ge 1) where 4j \le n
$$

then there is no possibility for any path on four vertices to be bicoloured. Hence $\chi_s(shad(P_n)) = 5.$

Figure 1: Star Colouring of $shad(P_4)$

Theorem 2.4. For $n \geq 1$, the star chromatic number of the shadow graph of $T_{3,n}$ is given by

 $\chi_s(shad(T_{3,n}))=5$

Proof. Let $V(T_{3,n}) = \{v_i : 1 \le i \le 3+n\}$ and $E(T_{3,n}) = \{e_i : 1 \le i \le 3+n\}.$ Consider shad($T_{3,n}$), the vertex and edge sets are $V(shad(T_{3,n})) = \{v_i \cup u_j : 1 \leq j \leq n\}$ $i \leq 3 + n, 1 \leq j \leq 3 + n$ and $E(shad(T_{3,n})) = \{e_j : 1 \leq j \leq 4n + 8\}$ respectively and denote by S, the set of colours required to star colour the graph $shad(T_{3,n})$.

We now star colour the graph. Label the vertices of C_3 as v_1, v_2, v_3 and u_1, u_2, u_3 respectively. Hence $|S| \geq 3$. Assume that $\chi_s(s \text{had}(T_{3,n})) = 3$. If we assign the colours from $\{1, 2, 3\}$ to the vertex u_2 we get a contradiction. Hence $|S| \geq 4$. Assign the colour 4 to u_2 . Assume that $\chi_s(shad(T_{3,n})) = 4$. If we assign the colours from $\{1, 2, 3, 4\}$ to the vertex u_3 we get a contradiction. Hence $|S| \geq 5$. Assign the colour 5 to u_3 . We claim that $\chi_s(shad(T_{3,n}))=5$. Let $f: V(shad(T_{3,n})) \to S$ such that

$$
f(v_{2i}) = 1 \ (i \ge 2) \ where \ 2i \le n+2
$$

\n
$$
f(u_{2j}) = 1 \ (j \ge 2) \ where \ 2j \le n+2
$$

\n
$$
f(v_{4i+1}) = 2 \ (i \ge 1) \ where \ 4i+1 \le n+2
$$

\n
$$
f(u_{4j+1}) = 4 \ (j \ge 1) \ where \ 4j+1 \le n+2
$$

\n
$$
f(v_{4i+3}) = 3 \ (i \ge 1) \ where \ 4i+3 \le n+3
$$

\n
$$
f(u_{4j+3}) = 5 \ (j \ge 1) \ where \ 4j+3 \le n+3
$$

Thus there is no possibility for any path on four vertices to be bicoloured. Hence $\chi_s(shad(T_{3,n})) = 5.$

3. Conclusion

The Star Chromatic Number of the Middle Graphs of path (P_n) ; Shadow Graphs of path (P_n) and Tadpole graphs $(T_{3,n})$; m- fold Triangular Snake graphs $(S(C_3, m, n))$ are found in this paper. The Star Colouring of Honeycomb Network $(HC(n))$, the Middle and Total Graphs of cycle (C_n) , complete graph (K_n) , Closed Helm Graphs and m- fold Triangular Snake Graphs are under investigation.

References

- [1] Bapat Mukund V., Some Vertex Prime Graphs and a New Type of Graph Labelling, International Journal of Mathematics Trends and Technology (IJMTT), Volume 47, Number 1 (2017).
- [2] Bondy J. A. and Murty U. S. R., Graph Theory and Applications, London, MacMillan, (1976).
- [3] Fertin Guillaume, Raspaud Andre, Reed Bruce, Star Colouring of Graphs, Graph Theoretic ideas in Computer Science, 27th International Workshop, Springer Lecture Notes in Computer Science, 2204 (2001), 140-153.
- [4] Gr¨unbaum B., Acyclic Colourings of Planar Graphs, Israel J. Math., Vol. 14 (1973), 390-408.