EDGE ITALIAN DOMINATION IN GRAPHS

Jyothi V and J. Suresh Kumar
Department of Mathematics, NSS Hindu College, Changanacherry, Kottayam - 686102, Kerala, INDIA

E-mail : jyothivnair15@gmail.com, jsuresh.maths@gmail.com
(Received: Oct. 04, 2020 Accepted: May 15, 2021 Published: Aug. 30, 2021)
Abstract: An edge Italian dominating function (EIDF) of a graph $G=(V, E)$ is a function $f: E(G) \rightarrow\{0,1,2\}$ such that every edge e with $f(e)=0$ is adjacent to some edge e^{\prime} with $f\left(e^{\prime}\right)=2$ or at least two edges e_{1}, e_{2} with $f\left(e_{1}\right)=f\left(e_{2}\right)=1$. The weight of an edge Italian dominating function is $\sum_{e \in E(G)} f(e)$. The edge Italian domination number of a graph G is defined as the minimum weight of an edge Italian dominating function of G and is denoted by $\gamma_{I}^{\prime}(G)$. In this paper, we initiate a study on the edge Italian domination in graphs.
Keywords and Phrases: Roman Domination, Italian Domination, Edge Italian Domination, Edge Italian dominating function, Edge Italian Domination number.

2020 Mathematics Subject Classification: 05C70.

1. Introduction

Let G be a simple connected graph with vertex set $V(G)$ and edge set $E(G)$. A subset S of the vertex set V is called a dominating set of G if every vertex not in S is adjacent to some vertex in S. The domination number, $\gamma(G)$, of G is the minimum cardinality taken over all dominating sets of G.

Mitchell and Hedetniemi [7] introduced the concept of edge domination in graphs. A subset F of edges of a graph G is called an edge dominating set of G if every edge not in F is adjacent to some edge in F. The edge domination number of G, denoted by γ^{\prime}, is the minimum cardinality taken over all edge dominating sets of G.

Motivated by Stewart [10] on defending the Roman Empire, Cockayne et al. [3] introduced Roman Dominating Function. A function $f: V(G) \rightarrow\{0,1,2\}$ such that every vertex v with $f(v)=0$ is adjacent to some vertex u with $f(u)=2$ is called a Roman dominating function. The weight of a Roman dominating function is the value $\sum_{v \in V(G)} f(v)$. The Roman domination number of a graph G, denoted by $\gamma_{R}(G)$, is the minimum weight of a Roman dominating function on G.

In order to reduce the cost of defending the Roman Empire, Henning and Hedetniemi [5] introduced the concept of weak Roman dominating function. Let $G=(V, E)$ be a graph. Define a function $f: V(G) \rightarrow\{0,1,2\}$. A vertex u with $f(u)=0$ is said to be undefended with respect to f if it is not adjacent to a vertex with positive weight. The function f is called a weak Roman dominating function (WRDF) if each vertex u with $f(u)=0$ is adjacent to a vertex v with $f(v)>0$ such that the function $f^{\prime}: V(G) \rightarrow\{0,1,2\}$, defined by $f^{\prime}(u)=1, f^{\prime}(v)=f(v)-1$ and $f^{\prime}(w)=f(w)$, if $w \in V-\{u, v\}$, has no undefended vertex. The weight of f is $\sum_{u \in V(G)} f(u)$. The minimum weight of a WRDF on G is called the weak Roman domination number and is denoted by $\gamma_{r}(G)$.

Roushini Leely Pushpam et al. [8] introduced edge version of Roman Domination. An edge Roman Dominating Function of a graph G is a function, f : $E(G) \rightarrow\{0,1,2\}$ such that every edge e with $f(e)=0$ is adjacent to some edge e_{1} with $f\left(e_{1}\right)=2$. The edge Roman domination number of G, denoted by $\gamma_{R}^{\prime}(G)$, is the minimum weight of an edge Roman dominating function of G.

Roushini Leely Pushpam and TNM Mai [9] introduced edge version of weak Roman domination. Let f be a function $f: E(G) \rightarrow\{0,1,2\}$. An edge x with $f(x)=0$ is called undefended with respect to f if it is not incident to an edge with positive weight. f is called a weak edge Roman dominating function (WERDF) if each edge x with $f(x)=0$ is incident to an edge y with $f(y)>0$ such that the function, $f^{\prime}: E(G) \rightarrow\{0,1,2\}$, defined by $f^{\prime}(x)=1$, by $f^{\prime}(y)=f(y)-1$ and $f^{\prime}(z)=f(z)$, if $z \in E(G)-\{x, y\}$, has no undefended edge. The weight of f is $\sum_{x \in E(G)} f(x)$. The minimum weight of a WERDF on G is called the weak edge Roman domination number and is denoted by $\gamma_{W R}^{\prime}(G)$.

An Italian dominating function of a graph G is a function $f: V(G) \rightarrow\{0,1,2\}$ such that every vertex v with $f(v)=0$ is adjacent to some vertex u with $f(u)=2$ or is adjacent to at least two vertices x, y with $f(x)=f(y)=1$. The weight of an Italian dominating function is $\sum_{v \in V(G)} f(v)$. The minimum weight of such a function on G is called the Italian domination number of G and is denoted by $\gamma_{I}(G)$. Italian domination was first introduced as Roman $\{2\}$-domination by Chellali et al. [2]. It was further researched and renamed as Italian domination by Henning and Klostermeyer [6]. For the terms and definitions not explicitly defined here,
refer Harary [4].
The following are some of the results connecting Domination, Roman Domination and its variations which will be used in the sequel.
Theorem 1.1. For every graph $G, \gamma(G) \leq \gamma_{R}(G) \leq 2 \gamma(G)$ (Henning, Hedetniemi [5]).
Theorem 1.2. For every graph $G, \gamma(G) \leq \gamma_{\{R 2\}}(G) \leq \gamma_{R}(G)$ and $\gamma_{r}(G) \leq$ $\gamma_{\{R 2\}}(G)$, where $\gamma_{\{R 2\}}(G)$ is $\gamma_{I}(G)$ (Chellali M, Haynes T, Hedetniemi S T [2]).
Theorem 1.3. $\gamma_{R}^{\prime}\left(P_{n}\right)=\left\lfloor\frac{2 n}{3}\right\rfloor$ and $\gamma_{R}^{\prime}\left(C_{n}\right)=\left\lceil\frac{2 n}{3}\right\rceil$ (Roushini Leely Pushpam et al [8]).
Theorem 1.4. For any connected graph G of even order $p, \gamma^{\prime}\left(K_{p}\right)=\frac{p}{2}$ if and only if G is isomorphic to K_{p} or $K_{p / 2, p / 2}$ (Arumugam, S., and S. Velammal [1]).

2. Edge Italian Dominating Function and Edge Italian Domination Number

In this paper, we introduce the edge variant of the Italian dominating function. An edge Italian dominating function (EIDF) of a graph $G=(V, E)$ is a function $f: E(G) \rightarrow\{0,1,2\}$ such that every edge e with $f(e)=0$ is adjacent to some edge e^{\prime} with $f\left(e^{\prime}\right)=2$ or at least two edges e_{1} and e_{2} with $f\left(e_{1}\right)=f\left(e_{2}\right)=1$. The weight of an edge Italian dominating function is $\sum_{e \in E(G)} f(e)$.

The edge Italian domination number of G, denoted by $\gamma_{I}^{\prime}(G)$, is the minimum weight of all edge Italian dominating functions of G. Let E_{0}, E_{1}, E_{2} be the partitions of the edge set E, such that $E_{i}=\{e \in E: f(e)=i\}$ for $i=0,1,2$. We also denote the function $f: E(G) \rightarrow\{0,1,2\}$ by $f=\left(E_{0}, E_{1}, E_{2}\right)$.

We begin with an inequality connecting the edge domination number, the edge Italian domination number and the edge Roman domination number.
Theorem 2.1. For any graph $G, \gamma^{\prime}(G) \leq \gamma_{I}^{\prime}(G) \leq \gamma_{R}^{\prime}(G)$.
Proof. Since every edge Roman dominating function is an edge Italian dominating function, it follows that $\gamma_{I}^{\prime}(G) \leq \gamma_{R}^{\prime}(G)$. To obtain the lower bound, consider the partitions E_{0}, E_{1}, E_{2} of the edge set $E(G)$ in any edge Italian dominating function. Then $E_{1} \cup E_{2}$ is a dominating set so that $\gamma^{\prime}(G) \leq\left|E_{1}\right|+\left|E_{2}\right| \leq\left|E_{1}\right|+2\left|E_{2}\right|=\gamma_{I}^{\prime}(G)$. Hence, $\gamma^{\prime}(G) \leq \gamma_{I}^{\prime}(G) \leq \gamma_{R}^{\prime}(G)$.

Chellali M, Haynes T, Hedetniemi S T [2] proved that every Italian dominating function is a weak Roman dominating function. We now present the edge version of it.

Theorem 2.2. For every graph, $G, \gamma_{W R}^{\prime}(G) \leq \gamma_{I}^{\prime}(G)$.
Proof. Let f be a an edge Italian dominating function with minimum weight
$\gamma_{I}^{\prime}(G)$. Let $e \in E_{0}$ with $f(e)=0$. Then either e is adjacent to e^{\prime} with $f\left(e^{\prime}\right)=2$ or e is adjacent to two edges x and y with $f(x)=1$ and $f(y)=1$. In the former case we can obtain a weak edge Roman dominating function g by reassigning the weights of e and e^{\prime} such that $g(e)=1, g\left(e^{\prime}\right)=1$ and $g\left(e^{\prime \prime}\right)=f\left(e^{\prime \prime}\right)$, otherwise. In the latter case also, we can obtain a weak edge Roman dominating function g by reassigning the weights of e and x with $f(e)=1, g(x)=0$ and $g(y)=f(y)=1$ and $g(z)=f(z)$, if $z \in E(G)-\{x, y\}$. Hence every edge Italian dominating function is a weak edge Roman dominating function and the result follows.

Theorem 2.3. For any graph G, if $\gamma_{I}^{\prime}(G)=2$, then $\operatorname{diam}(G) \leq 3$.
Proof. Suppose, $\gamma_{I}^{\prime}(G)=2$. Then three cases to consider:
Case 1. If G has exactly two edges, then G is isomorphic to P_{3} and $\operatorname{diam}(G)=2$.
Case 2. If G has exactly three edges, then G is isomorphic to $P_{4}, K_{1,3}$ or C_{3}. Then $\operatorname{diam}(G) \leq 3$ for all these three graphs.
Case 3. If G has more than three edges, since $\gamma_{I}^{\prime}(G)=2$, either there exists an edge $e=u v$ with $f(e)=2$ and all other edges have weight 0 and are adjacent to e or there are two edges e_{1} and e_{2} with $f\left(e_{1}\right)=1$ and $f\left(e_{2}\right)=1$ and all other edges have weight 0 and are adjacent to both e_{1} and e_{2}. In any case, $\operatorname{diam}(G) \leq 3$.

The converse of this theorem is not true. That is, all graphs with $\operatorname{diam}(G) \leq 3$ need not have $\gamma_{I}^{\prime}(G)=2$. For example, let G be the graph obtained from the cycle, C_{4} by adding a pendant edge to one of the vertices. Then $\operatorname{diam}(G)=3$ and $\gamma_{I}^{\prime}(G)=3$.
Theorem 2.4. If G is a tree, then $\gamma_{I}^{\prime}(G)=2$ if and only if $2 \leq \operatorname{diam}(G) \leq 3$.
Proof. Let G be a tree with $\gamma_{I}^{\prime}(G)=2$. Then by theorem 2.3 , $\operatorname{diam}(G) \leq 3$. Since $\gamma_{I}^{\prime}(G)=2, G$ has at least 2 edges. So, $\operatorname{diam}(G) \geq 2$.

Conversely, let G be a tree with $2 \leq \operatorname{diam}(G) \leq 3$. So, $\max \{d(u, v): u, v \in$ $V(G)\} \leq 3$. In fact, $\operatorname{diam}(G)=2$ or 3 . If $\operatorname{diam}(G)=3$, then, the shortest path connecting u and v is of length 3 . Let $u e_{1} w_{1} e_{2} w_{2} e_{3} v$ be the shortest path. Then no edge of G can be adjacent to u or v because in that case $\operatorname{diam}(G)$ will be greater than 3. So all the edges of G must be adjacent to e_{2}. So, giving the weight 2 to the edge e_{2} and the weight 0 to all other edges we get $\gamma_{I}^{\prime}(G)=2$.

If $\operatorname{diam}(G)=2$, since G is a tree, all the edges must be adjacent to each other. Giving the weight 2 to any one edge and weight 0 to all other edges or giving the weight 1 to any two edges and weight 0 to all other edges gives a minimum EIDF. Thus, $\gamma_{I}^{\prime}(G)=2$.

3. The Edge Italian Domination Number of some Special Types of Graphs

Theorem 3.1. For the path graph $P_{n}, \gamma_{I}^{\prime}\left(P_{n}\right)=\left\lceil\frac{n}{2}\right\rceil, n \geq 2$.
Proof. Let $P_{n}=\left(v_{1}, e_{1}, v_{2}, e_{2}, \ldots, v_{n-1}, e_{n-1}, v_{n}\right) ; e_{i}=\left\{v_{i}, v_{i+1}\right\}$ be a path graph. In any minimum EIDF, $f=\left(E_{0}, E_{1}, E_{2}\right)$ of P_{n}, between two edges in E_{1} there can be at most one edge in E_{0}. In this case both the pendant edges must have the weight 1. Also, every edge in E_{2} can be adjacent to at most two edges in E_{0}. In any case, $\sum f(e) \geq\left\lceil\frac{n}{2}\right\rceil$.
Now, define a function, $f: E\left(P_{n}\right) \rightarrow\{0,1,2\}$ as follows
Case 1. n is even

$$
f\left(e_{i}\right)= \begin{cases}1, & \text { if } i \text { is odd } \\ 0, & \text { otherwise }\end{cases}
$$

Since there are only $\frac{n}{2}$ such edges with weight, 1 , we have $\sum f(e)=\frac{n}{2} \leq\left\lceil\frac{n}{2}\right\rceil$.
Case 2. n is odd

$$
f\left(e_{i}\right)= \begin{cases}1, & \text { if } i \text { is odd or } i=n-1 \\ 0, & \text { otherwise }\end{cases}
$$

Then, $\sum f(e)=\frac{(n-1)}{2}+1=\frac{n+1}{2}=\left\lceil\frac{n}{2}\right\rceil$. Thus, $\sum f(e) \leq\left\lceil\frac{n}{2}\right\rceil$ for all n. Therefore $\gamma_{I}^{\prime}\left(P_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$.
Theorem 3.2. For the cycle graph $C_{n}, \gamma_{I}^{\prime}\left(C_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$.
Proof. $C_{n}=\left(v_{1}, e_{1}, v_{2}, e_{2}, \ldots, v_{n}, e_{n}, v_{1}\right) ; e_{i}=\left\{v_{i}, v_{i+1}\right\}$ be a cycle graph. Let $f=\left(E_{0}, E_{1}, E_{2}\right)$ be an EIDF on C_{n}. If $E_{2}=\varnothing$, every edge in E_{0} must be adjacent to two edges of E_{1}. If we assign the weights $1,0,1,0,1,0 \ldots$ in order to the edges, at most two edges of E_{1} can be adjacent to each other. Hence, $\sum f(e)=\left|E_{1}\right| \geq\left\lceil\frac{n}{2}\right\rceil$. If $E_{2} \neq \varnothing$, since f is minimum every edge of E_{2} can be adjacent to at most two edges of E_{0}. In this case, $\sum f(e)=\left|E_{1}\right|+2\left|E_{2}\right| \geq\left\lceil\frac{n}{2}\right\rceil$.
Now, define $f: E(G) \rightarrow\{0,1,2\}$ by

$$
f\left(e_{i}\right)= \begin{cases}1, & \text { if } i \text { is odd } \\ 0, & \text { otherwise }\end{cases}
$$

Then, $\sum f(e)=\frac{n}{2} \leq\left\lceil\frac{n}{2}\right\rceil, n$ is even and $\sum f(e)=\frac{(n+1)}{2} \leq\left\lceil\frac{n}{2}\right\rceil, n$ is odd.
Thus $\sum f(e) \leq\left\lceil\frac{n}{2}\right\rceil$, for all n . Therefore $\gamma_{I}^{\prime}\left(C_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$.
Remark 3.3. $\gamma^{\prime}\left(C_{5}\right)=2$, $\gamma_{I}^{\prime}\left(C_{5}\right)=3, \gamma_{R}^{\prime}\left(C_{5}\right)=4$. So, for $G=C_{5}, \gamma^{\prime}(G)<$ $\gamma_{I}^{\prime}(G)<\gamma_{R}^{\prime}(G)$.

The Wheel graph $W_{n}, n \geq 3$, is the join of the graphs C_{n} and K_{1} and hence is a graph with $n+1$ vertices and $2 n$ edges. It is formed by connecting a single vertex
to all vertices of a cycle of length n. We call the vertices of C_{n} as rim vertices and the other single vertex as apex vertex.

Theorem 3.4. For the Wheel graph $W_{n}, \gamma_{I}^{\prime}\left(W_{n}\right)=\left\lceil\frac{n+2}{2}\right\rceil, n \geq 3$.
Proof. Let $W_{n}=(V, E)$ be a Wheel graph. Let the edge set E be partitioned into two sets X, Y where, $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, the set of central edges joining the apex vertex to the rim vertices and $Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$, the set of rim edges. Then the set Y form a cycle on n vertices and by theorem 3.2, $\gamma_{I}^{\prime}\left(C_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$. Also note that the minimum EIDF of C_{n} is an assignment of weights $(1,0,1,0, \ldots)$ to y_{i} in order, so that $y_{n}=0$ or 1 according as n is even or odd. If one of the central edges is assigned the weight 1 and all other edges the weight 0 , we can get a minimum EIDF of W_{n}.
So, $\gamma_{I}^{\prime}\left(W_{n}\right)=\left\lceil\frac{n}{2}\right\rceil+1=\left\lceil\frac{n+2}{2}\right\rceil$.
Theorem 3.5. Let $G=K_{m, n}$ be a complete bipartite graph with $m \geq 2$, then for $m<n, \gamma_{I}^{\prime}\left(K_{m, n}\right)=\left\{\begin{array}{ll}n, & \text { if } n<2 m \\ 2 m, & \text { if } n \geq 2 m\end{array}\right.$ and $\gamma_{I}^{\prime}\left(K_{n, n}\right)=n, \forall n$.
Proof. Let $K_{m, n}=(V, E)$ be a complete bipartite graph. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ be a bipartition of the vertex set V.
Case 1. $m<n$ and $n<2 m$.
Define $f: E\left(K_{m, n}\right) \rightarrow\{0,1,2\}$ by $f\left(x_{i} y_{i}\right)=1 \forall i=1,2, \ldots, m$ and $f\left(x_{m-k} y_{n-k}\right)=1$, for $k=0,1,2, \ldots, n-m-1$ and $f\left(x_{i} y_{j}\right)=0$, otherwise.
Then, $\sum f(e) \leq m+n-m=n$.
Consider the EIDF defined on E by assigning the weight 1 to at least one edge incident at each vertex, x_{i}, y_{i} and the weight 0 to all other edges. Then, there will be minimum n edges with weight 1 .
So, $\sum f(e) \geq n$. Therefore, $\gamma_{I}^{\prime}\left(K_{m, n}\right)=n$.
Case 2. $m<n$ and $n \geq 2 m$.
Now define $f: E\left(K_{m, n}\right) \rightarrow\{0,1,2\}$ by $f\left(x_{i} y_{i}\right)=1 \forall i=1,2, \ldots, m$ and $f\left(x_{m-k} y_{n-k}\right)$ $=1$, for $k=0,1,2, \ldots, m-1$ and $f\left(x_{i} y_{j}\right)=0$, otherwise.
Then, $\sum f(e) \leq m+m=2 m$.
Next we define an EIDF on E in which one of the edges incident at each x_{i} is given the weight 2 . Since all other edges of $K_{m, n}$ are incident at one of these x_{i}^{\prime} s they can be given the weight 0 . Then f is minimum and hence $\sum f(e) \geq m+m=2 m$.
Case 3. $\mathrm{m}=\mathrm{n}$.
Define $f: E\left(K_{n, n}\right) \rightarrow\{0,1,2\}$ by $f\left(x_{i} y_{i}\right)=1 \forall i=1,2, \ldots, n$ and $f\left(x_{i} y_{j}\right)=0$, otherwise.
So, $\sum f(e) \leq n$.
Arumugam and Velammal [1] showed that $\gamma^{\prime}\left(K_{n, n}\right)=n$. So there are n edges
in the minimum edge dominating set of $K_{n, n}$. Define an EIDF on E by assigning the weight 1 to each of these n edges and weight 0 to all other edges of $K_{n, n}$. Then, $\sum f(e) \geq n$.
Therefore, $\gamma_{I}^{\prime}\left(K_{n, n}\right)=n$.
Proposition 3.6. For the Star graph $K_{1, n}, \gamma_{I}^{\prime}\left(K_{1, n}\right)=2$, when $n \geq 2$.
Proof. In the Star graph $K_{1, n}$, all the edges are adjacent each other. Assign the weight 1 to any two edges or weight 2 to one of the edges and weight 0 to all other edges. Then we get a minimum EIDF.
Hence, $\gamma_{I}^{\prime}\left(K_{1, n}\right)=2, \forall n \geq 2$.
Proposition 3.7. For complete graphs K_{n} of even order, $\gamma_{I}^{\prime}\left(K_{n}\right)=\frac{n}{2}$.
Proof. Arumugam and Velammal [1] proved that $\gamma^{\prime}\left(K_{n}\right)=\frac{n}{2}$, when n is even. So, the minimum edge dominating set of K_{n} has $\frac{n}{2}$ edges. Assign the weight 1 to each of these edges and weight 0 to all other edges. Then we get a minimum EIDF.
Hence, $\gamma_{I}^{\prime}\left(K_{n}\right)=\frac{n}{2}$, when n is even.

References

[1] Arumugam, S., and Velammal S., Edge domination in graphs, Taiwanese journal of Mathematics, 2,2 (1998), 173-179.
[2] Chellali M, Haynes T. W., Hedetniemi S. T., and McRae A. A., Roman 2-domination, Discrete Appl. Math., 204 (2016), 22-28.
[3] Cockayne E. J., Dreyer Jr. P. M., Hedetniemi S. M., and Hedetniemi S. T., On Roman domination in graphs, Discrete Math., 278 (2004), 11-22.
[4] Harary Frank, Graph Theory, Addison Wesley, Reading Mass, (1969)
[5] Henning M. A., Hedetniemi S. T., Defending the Roman Empire-a new strategy, Discrete Math., 266 (2003), 239-251.
[6] Henning M. A. and Klostermeyer W. F., Italian domination in trees, Discrete Appl. Math, 217 (2017), 557-564.
[7] Mitchell S. and Hedetniemi S. T., Edge domination in trees, Congr. Numer., 19 (1977), 489-509.
[8] Roushini Leely Pushpam P., Malini Mai T. N. M., Edge Roman domination in graphs, J. Combin. Math. Combin. Comput, 69 (2009), 175-182.
[9] Roushini Leely Pushpam P., Malini Mai T. N. M., Weak edge Roman domination in graphs, Australas. J Comb., 51 (2011), 125-138.
[10] Stewart I., Defend the Roman Empire, Sci. Am., 281 (6) (1999), 136-139.

