DOMINATION POLYNOMIALS OF THE JEWEL GRAPH AND ITS COMPLEMENT

E. Selvi and R. Kala
Department of Mathematics, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627012, Tamil Nadu, INDIA E-mail : selvie173@gmail.com, karthipyi91@yahoo.co.in

(Received: Jan. 17, 2021 Accepted: Jul. 19, 2021 Published: Aug. 30, 2021)
Abstract: Let $G=(V(G), E(G))$ be a simple graph. The Jewel graph J_{n} is a graph with vertex set $V\left(J_{n}\right)=\left\{u, v, x, y, u_{i}: 1 \leq i \leq n\right\}$ and edge set $E\left(J_{n}\right)=$ $\left\{u x, u y, x y, x v, y v, u u_{i}, v u_{i}: 1 \leq i \leq n\right\}$. The domination polynomial of a graph G of order n is the polynomial $D(G, x)=\sum_{i=\gamma(G)}^{n} d(G, i) x^{i}$, where $d(G, i)$ is the number of dominating sets of G of cardinality i. In this paper, we present various domination polynomials of the Jewel graph J_{n}. Also we determine the same results for the complement of the Jewel graph.
Keywords and Phrases: Domination polynomial, Jewel graph..
2020 Mathematics Subject Classification: 05C31, 05C69.

1. Introduction

Let $G=(V, E)$ be a simple graph with vertex set $V=V(G)$ and edge set $E=E(G)$. A set $D \subseteq V$ is a dominating set if every vertex in $V-D$ is adjacent to a vertex in D. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set in G. A dominating set with cardinality $\gamma(G)$ is called a γ-set. For a detailed treatment of this parameter the reader is referred to [8].

A dominating set $D_{i} \subseteq V(G)$ is an independent dominating set [5] if the induced subgraph $\left\langle D_{i}\right\rangle$ has no edges. Independent domination number is the minimum size of an independent dominating set of G and is denoted by $i(G)$. A dominating set $D_{t} \subseteq V(G)$ is a total dominating set [5] if the induced subgraph $\left\langle D_{t}\right\rangle$ has
no isolated vertices. The total domination number $\gamma_{t}(G)$ of a graph G is the minimum cardinality of a total dominating set. A dominating set $D_{c} \subseteq V(G)$ is a connected dominating set [10] if the induced subgraph $\left\langle D_{c}\right\rangle$ is connected. The connected domination number $\gamma_{c}(G)$ is the minimum cardinality of a connected dominating set. A dominating set $D_{c l} \subseteq V(G)$ is a dominating clique [6] if the induced subgraph $\left\langle D_{c l}\right\rangle$ is a complete graph. The clique domination number $\gamma_{c l}(G)$ of G is the minimum cardinality of a dominating clique. For a detailed treatment of the above parameters the reader is referred to [9].

The complement \bar{G} of a graph G also has $V(G)$ as its vertex set, but two vertices are adjacent in \bar{G} if and only if they are not adjacent in G.

2. Preliminaries

Domination Polynomial in graphs was first introduced by Arocha and Llano [3] in 2000. Later in 2014, Alikhani and Peng made a slight modification of that definition and investigated its properties in [2]. The definition that we follow in this paper is that of Alikhani and Peng. Alikhani and others have contributed a lot to this concept by publishing many research articles and made this concept to reach greater heights in the field of graph theory.
Definition 2.1. [2] The domination polynomial of a graph G of order n is the polynomial $D(G, x)=\sum_{i=\gamma(G)}^{n} d(G, i) x^{i}$, where $d(G, i)$ is the number of dominating sets of G of cardinality i.

We need the following theorems to prove our main results. They have been proved by S. Alikhani and Y. H. Peng [2].
Theorem 2.1. [2] If a graph G consists of m components G_{1}, \ldots, G_{m} then $D(G, x)=D\left(G_{1}, x\right) \ldots D\left(G_{m}, x\right)$.

Theorem 2.2. [2] Let G be a graph with $|V(G)|=n$. If G is connected, then $d(G, n)=1$ and $d(G, n-1)=n$.
Lemma 2.1. [2] For every $n \in N, D\left(K_{n}, x\right)=(1+x)^{n}-1$.
Theorem 2.3. [2] Let G_{1} and G_{2} be graphs of order n_{1} and n_{2} respectively. Then $D\left(G_{1}+G_{2}, x\right)=\left((1+x)^{n_{1}}-1\right)\left((1+x)^{n_{2}}-1\right)+D\left(G_{1}, x\right)+D\left(G_{2}, x\right)$.
Theorem 2.4. [11] Let G be a complete graph K_{n} of n vertices. Then $D_{i}\left(K_{n}, x\right)=n x$.
Theorem 2.5. [11] For any two graphs G_{1} and G_{2},
$D_{i}\left(G_{1}+G_{2}, x\right)=D_{i}\left(G_{1}\right)+D_{i}\left(G_{2}\right)$.
Theorem 2.6. [11] Let $G=G_{1} \cup G_{2}$. Then $D_{i}(G, x)=D_{i}\left(G_{1}, x\right) D_{i}\left(G_{2}, x\right)$.

Theorem 2.7. [4] For a complete graph K_{n} with $n \geq 2$ vertices, $D_{t}\left(K_{n}, x\right)=\sum_{i=2}^{n}\binom{n}{i} x^{i}$.
Theorem 2.8. [4] Let G_{1} and G_{2} be two connected graphs without isolated vertices. Then $D_{t}\left(G_{1}+G_{2}, x\right)=D_{t}\left(K_{\left|V_{1}\right|,\left|V_{2}\right|}, x\right)+D_{t}\left(G_{1}, x\right)+D_{t}\left(G_{2}, x\right)$, where $V\left(G_{1}\right)=V_{1}$ and $V\left(G_{2}\right)=V_{2}$.
Theorem 2.9. [4] For a complete bipartite graph $G \cong K_{r, s}$ with $r, s \geq 2$ vertices, $D_{t}(G, x)=D_{t}\left(K_{r+s}, x\right)-D_{t}\left(K_{r}, x\right)-D_{t}\left(K_{s}, x\right)$.
Theorem 2.10. [4] Let $G_{1}, G_{2}, \ldots, G_{k}$ be nontrivial connected graphs. Then $D_{t}\left(G_{1} \cup G_{2} \cup \ldots \cup G_{k}, x\right)=\prod_{i=1}^{k} D_{t}\left(G_{i}, x\right)$.

3. Main Results

Definition 3.1. The Jewel graph J_{n} is a graph with vertex set $V\left(J_{n}\right)=\left\{u, v, x, y, u_{i}\right.$: $1 \leq i \leq n\}$ and edge set $E\left(J_{n}\right)=\left\{u x, u y, x y, x v, y v, u u_{i}, v u_{i}: 1 \leq i \leq n\right\}$.
Example 1. The Jewel graph J_{2} is shown in Figure 1.

Figure 1: J_{2}
Observation 3.1. The complement $\overline{J_{n}}$ of the Jewel graph J_{n} has two components. Let the vertex set be $V\left(\overline{J_{n}}\right)=V\left(J_{n}\right)$ and edge set be $E\left(\overline{J_{n}}\right)=\left\{u v, x u_{i}, y u_{i}: 1 \leq\right.$ $i \leq n\}$. It can be written as $\overline{J_{n}}=\left(K_{n}+2 K_{1}\right) \cup P_{2}$ or $\overline{J_{n}}=\left(K_{n-1}+P_{3}\right) \cup P_{2}$.
Example 2. The complement of the Jewel graph $J_{2}, \overline{J_{2}}$ is shown in Figure 2.

Figure 2: $\overline{J_{2}}$
Theorem 3.1. Let J_{n} be the Jewel graph and $\overline{J_{n}}$ be its Complement. Then
(i) $D\left(J_{n}, x\right)=(1+x)^{n+4}-(1+x)^{n+2}+x^{n+2}+2 x^{n+1}-2 x$.
(ii) $D\left(\overline{J_{n}}, x\right)=\left((1+x)^{n+2}-1-2 x\right)\left(x^{2}+2 x\right)$.

Proof. (i) The Jewel graph has $n+4$ vertices. $S=\{u, v\}$ is a minimum dominating set and so $\gamma\left(J_{n}\right)=2$. Let i be a natural number, $2 \leq i \leq n+4$. Any subset $D \subseteq V\left(J_{n}\right)$ with $|D| \geq 2$ containing at least one of u, v is a dominating set of J_{n}. Among the subsets of $V\left(J_{n}\right)-\{u, v\}$, there are only three sets which are dominating namely, $\left\{u_{1}, u_{2}, \ldots, u_{n}, x, y\right\},\left\{u_{1}, u_{2}, \ldots, u_{n}, x\right\}$ and $\left\{u_{1}, u_{2}, \ldots, u_{n}, y\right\}$. The first is of cardinality $n+2$ and the other two are of cardinality $n+1$.
Hence for $2 \leq i \leq n, d\left(J_{n}, i\right)=\binom{n+4}{i}-\binom{n+2}{i}$
$\left.d\left(J_{n}, n+1\right)=\binom{n+4}{n+1}-\binom{n+2}{n+1}-2\right)$
$d\left(J_{n}, n+2\right)=\left(\begin{array}{c}n+4 \\ n+4 \\ n+2\end{array}\right)$
By Theorem 2.2, for $i=n+3$ and $n+4, d\left(J_{n}, i\right)=\binom{n+4}{i}$ so,

$$
\begin{aligned}
D\left(J_{n}, x\right)= & \sum_{i=2}^{n}\left(\binom{n+4}{i}-\binom{n+2}{i}\right) x^{i}+\left(\binom{n+4}{n+1}-\left(\binom{n+2}{n+1}-2\right)\right) \\
& x^{n+1}+\sum_{i=n+2}^{n+4}\binom{n+4}{i} x^{i} \\
= & (1+x)^{n+4}-1-(n+4) x-\left(\binom{n+2}{2} x^{2}+\binom{n+2}{3} x^{3}+\ldots\right. \\
& \left.+\binom{n+2}{n} x^{n}\right)-n x^{n+1} \\
= & (1+x)^{n+4}-1-(n+4) x-(1+x)^{n+2}+1+(n+2) x- \\
& n x^{n+1}+\binom{n+2}{n+1} x^{n+1}+\binom{n+2}{n+2} x^{n+2} \\
D\left(J_{n}, x\right)= & (1+x)^{n+4}-(1+x)^{n+2}+x^{n+2}+2 x^{n+1}-2 x .
\end{aligned}
$$

(ii) The complement of the Jewel graph J_{n} is $\overline{J_{n}}=\left(K_{n}+2 K_{1}\right) \cup P_{2}$
$D\left(K_{n}, x\right)=(1+x)^{n}-1$
$D\left(P_{2}, x\right)=x^{2}+2 x$
By applying Theorem 2.3, with $G_{1}=K_{n}$ and $G_{2}=2 K_{1}$, we get
$D\left(K_{n}+2 K_{1}\right)=\left((1+x)^{n+2}-1-2 x\right)$
Now, by Theorem 2.1, we have the result.
Theorem 3.2. Let J_{n} be the Jewel graph and $\overline{J_{n}}$ be its Complement. Then (i) $D_{i}\left(J_{n}, x\right)=2 x^{n+1}+x^{2}$.
(ii) $D_{i}\left(\overline{J_{n}}, x\right)=\left(x^{2}+(n+2) x\right)(2 x)=2 x^{3}+(n+2) 2 x^{2}$.

Proof. (i) Note that $S=\{u, v\}$ is the only minimum independent dominating set and so $i\left(J_{n}\right)=2$. Both u and v are adjacent with all the other vertices. So, the subsets $D \subseteq V\left(J_{n}\right)$ containing at least one of u, v is not a independent dominating set. Among the subsets of $V\left(J_{n}\right)-\{u, v\}$ there are only two sets which are independent dominating namely, $\left\{u_{1}, u_{2}, \ldots, u_{n}, x\right\}$ and $\left\{u_{1}, u_{2}, \ldots, u_{n}, y\right\}$ with cardinality $n+1$. Hence $D_{i}\left(J_{n}, x\right)=2 x^{n+1}+x^{2}$.
(ii) By applying Theorem 2.5, with $G_{1}=K_{n}$ and $G_{2}=2 K_{1}$ we get $D_{i}\left(K_{n}+2 K_{1}\right)=n x+x^{2}+2 x$ and by Theorem 2.6, we have the result.
Theorem 3.3. Let J_{n} be the Jewel graph and $\overline{J_{n}}$ be its Complement. Then
(i) $D_{t}\left(J_{n}, x\right)=(1+x)^{n+4}-(1+x)^{n+2}-x^{2}-2 x$.
(ii) $D_{t}\left(\overline{J_{n}}, x\right)=\left(\sum_{i=2}^{n+2}\binom{n+2}{i} x^{i}-x^{2}\right) x^{2}$

Proof. (i) Any subset $D \subseteq V\left(J_{n}\right)$ with $|D|=2$ containing one of u, v is a minimum total dominating set and so $\gamma_{t}\left(J_{n}\right)=2$. Both u and v are adjacent with all the other vertices but these two are not adjacent. So $\{u, v\}$ is not a total dominating set and any subset $D \subseteq V\left(J_{n}\right)$ with $|D|>2$ containing both u and v is a total dominating set of J_{n}. Among the subsets of $V\left(J_{n}\right)-\{u, v\}$, there is no total dominating set. Hence for $i=2, d\left(J_{n}, i\right)=\binom{n+4}{2}-\binom{n+2}{2}-1$,
And for $3 \leq i \leq n+2, d\left(J_{n}, i\right)=\binom{n+4}{i}-\binom{n+2}{i}$ Clearly for $i=n+3$ and $n+4$, $d\left(J_{n}, i\right)=\binom{n+4}{i}$ So,

$$
\begin{aligned}
D_{t}\left(J_{n}, x\right)= & \left(\binom{n+4}{2}-\binom{n+2}{2}-1\right) x^{2}+\sum_{i=3}^{n+2}\left(\binom{n+4}{i}-\binom{n+2}{i}\right) x^{i} \\
& +\sum_{i=n+3}^{n+4}\binom{n+4}{i} \\
= & (1+x)^{n+4}-(n+4) x-1-(1+x)^{n+2}+(n+2) x-x^{2} \\
D_{t}\left(J_{n}, x\right)= & (1+x)^{n+4}-(1+x)^{n+2}-x^{2}-2 x
\end{aligned}
$$

(ii) The complement of the Jewel graph J_{n} is $\overline{J_{n}}=\left(K_{n-1}+P_{3}\right) \cup P_{2}$. $D_{t}\left(P_{3}, x\right)=x^{3}+2 x^{2}$. By Theorem 2.7, $D_{t}\left(K_{n-1}, x\right)=\sum_{i=2}^{n}\binom{n-1}{i} x^{i}$. By Theorem 2.8, $D_{t}\left(K_{n-1}+P_{3}, x\right)=D_{t}\left(K_{n-1,3}, x\right)+D_{t}\left(K_{n-1}, x\right)+D_{t}\left(P_{3}, x\right)$ Now by Theorem 2.9, we have $D_{t}\left(K_{n-1}+P_{3}, x\right)=D_{t}\left(K_{n-1+3}, x\right)-D_{t}\left(K_{n-1}, x\right)-D_{t}\left(K_{3}, x\right)+$ $D_{t}\left(K_{n-1}, x\right)+D_{t}\left(P_{3}, x\right)=D_{t}\left(K_{n+2}, x\right)-D_{t}\left(K_{3}, x\right)+D_{t}\left(P_{3}, x\right)=\sum_{i=2}^{n+2}\binom{n+2}{i} x^{i}-x^{2}$ 。 Now by Theorem 2.10, we have the result.

Theorem 3.4. If J_{n} is the Jewel graph, then Connected domination polynomial of Jewel graph J_{n} is
$D_{c}\left(J_{n}, x\right)=(1+x)^{n+4}-(1+x)^{n+2}-x^{2}-2 x$.
Proof. The proof is similar.
Theorem 3.5. If J_{n} is the Jewel graph, then Clique domination polynomial of Jewel graph J_{n} is
$D_{c l}\left(J_{n}, x\right)=2 x^{3}+(2 n+4) x^{2}$.
Proof. Let $S=\{u, y\}$ is a minimum clique dominating set and so $\gamma_{c l}\left(J_{n}\right)=2$. For $i=2$, any subset $D \subseteq V\left(J_{n}\right)$ with $|D|=2$ containing one of u, v is a clique dominating set. So, $d\left(J_{n}, 2\right)=\binom{n+4}{2}-\binom{n+2}{2}-1$. For $i=3$, there are only two sets which are clique dominating namely, $\{u, x, y\}$ and $\{v, x, y\}$. So, $d\left(J_{n}, 3\right)=2$. Trivially there are no clique dominating sets for $i \geq 4$. Thus $D_{c l}\left(J_{n}, x\right)=2 x^{3}+(2 n+4) x^{2}$.
Remark 3.1. Since the complement of the Jewel graph is not connected, connected domination polynomial and clique domination polynomial of this graph does not exist.

Acknowledgement

The authors sincerely thank the referees for their valuable suggestions and comments.

References

[1] Alikhani S., On the domination polynomial of some graph operations, ISRN Combin. (2013), Article ID 146595.
[2] Alikhani S. and Peng Y. H., Introduction to domination polynomial of a graph, Ars Combinatoria, 114 (2014), 257-266.
[3] Arocha J. L. and Llano B., Mean value for the matching and dominating polynomial, Discuss. Math. Graph theory, 20(1) (2000), 57-70.
[4] Chaluvaraju B. and Chaitra V., Total domination polynomial of a graph, Journal of Informatics and Mathematical Sciences, Vol. 6 (2014), 87-92.
[5] Cockayne E. J. and Hedetniemi S. T., Towards a theory of domination in graphs, Networks, 7 (1977), 247-261.
[6] Cozzens M. B. and Kelleher 1., Dominating Cliques in graphs, Discrete Mathematics, 86 (1990), 101-116.
[7] Harary F., Graph Theory, Addison-Wesley, Reading-Mass, (1969).
[8] Haynes T. W., Hedetniemi S. T., Slater P. J., Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[9] Kulli V. R., Theory of domination in graphs, Vishwa international publications, (2010)
[10] Sampathkumar E. and Walikar H. B., The connected domination number of a graph, Jour. Math. Phy. Sci., Vol. 13, No. 6, (1979).
[11] Shivaswamy P. M., Soner N. D. and Alwardi Anwar, Independent Dominating Polynomial in Graphs, IJSIMR Vol. 2, (2014), 757-763.

