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1. Introduction, Notations and Definitions
Gaussian hypergeometric series is defined as,

oF) [a,b;c; 2] = Z %, (1.1)
where (a), =a(a+1)...(a+n—1) = M, and (a)y = 1.

For the convergence of the series (1.1), |z| < 1 is needed.
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Confluent hypergeometric series is defined as,

’I'L

> CL
VFy[a; b; 2] :nzzo Byl (1.2)

where for convergence |z| < oo i.e. the series (1.2) is convergent in the whole
complex plane. Binomial theorem is defined as,

1hola; = 2] = (1= 2)7, (1.3)
provided |z| < 1.

Basic hypergeometric series is defined as,

2‘131[@,197 c; q, Z] = o0 [ Z’b; ¢:= }

o0

(a;q)n(b; q)n
, z| < 1, 1.4
= G (14)

where (a; q), = (1—a)(1—aq)...(1—ag"™"), n=1,2,3,...and (a;q)o = 1, (a;q)0e =

H(l —aq"). 9P, series given in (1.4) is the basic analogue of o F} series given in
r=0
(1.1). Taking b = ¢ in (1.4) we have,

[e.9]

lq)() -4z Z |Z| < ]‘7 (]‘5>
n=0
which is the basic analogue of (1.3).
Basic binomial theorem is given as,
\Dola; —; q; 2 Z (a: q - ((“;qq))w, where |2| < 1. (1.6),
n=0 ? I oo

2. Generalized Stieltjes Transform and its Basic Analogue
The Stieltjes transform comes out naturally by repeated application of Laplace
transform. If

g(s) = /000 e P (u)du, (2.1)

where

O(u) = /000 e “g(t)dt, (2.2)
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then

If the integral are convergent then

g(s) = /000 q(t) {/000 e_(s+t)“du} dt
-, e
[

95

(2.4)

(2.4) is the special case of the general Stieltjes transform, which is defined as

gals) = / T o)y

(s + 1)
provided g¢(t) is bounded in the interval [0, co] and Re(a) > 0.
t
Taking z = —— in (1.3) we have
s

t t\ “ 5%
Folan— —=| =14+ = = ided
1L0 |:C¥, ) S] < S> (S t)a’ provide

From (2.5) and (2.6) we have

ga(s) = s /000 1 Fo {Oz; - ——] g(t)dt.

(2.7) can also be expressed as

9al(s) = Sa/o 2 Fy {a,ﬁ;ﬂ; —2] g(t)dt.

(2.5)

(2.8)

Replacing 1 Fyy series in (2.7) by its basic analogue (1.5), we get the basic Stieltjes

transform as
t

Ygals) =5"" /OOO 1Po [a;—;q; —;} g(t)d,(t).

(2.9)

The integral in (2.9) is g—integar]l defined as [Gasper and Rahman: 1; (1.11.4),

p.10],
/0 Fdt=1-a) S @)

n=—oo

(2.10)
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3. Certain Properties of Basic Stieltjes Transform

In this section we shall discuss certain properties of g—Stieltjes transform.

Making use of (1.6) in (2.9) we find,

Gga(s) =577 /000 %g(t)dqt.

(—549).

Making use of (2.10) in (3.1) we obtain

ga(s) = i-9 Z %g(qn)qn

For a = 1, (3.2) yields

For a = ¢, (3.2) gives

gqq(S)* (1_Q) i (1_’_%)9((]”) n

IO I (o

NS (ff’z)qn.

Putting o = 0 in (3.2) we find,

o0

_ (1—-gq) 1 "
9g.0(s) = = > < 8,q>ng(q )q".

o0 N=—0o0

(3.1)

(3.2)

(3.5)

These are certain interesting special cases of basic Stieltjes transform. For details

about the Stieltjes transform one is referred [2].
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