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1. Introduction
For q < 1 and real or complex a, the q-shifted factorial is defined as

(a; q)n =

{
1 if n = 0;
(1− a)(1− aq)(1− aq2) . . . (1− aqn−1) if n ∈ N (1.1)
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For any complex number α,

(a; q)α =
(a; q)∞

(aqα; q)∞
(1.2)

The general basic hypergeometric series rφs [2, (1.2.22), p.4] is defined as

rφs

 a1, a2, . . . , ar
; q, z

b1, b2, . . . , bs

 =
∞∑
n=0

(a1; q)n . . . (ar; q)n
(q; q)n(b1; q)n . . . (bs; q)n

[
(−1)nqn(n−1)/2

]1+s−r
zn.

(1.3)
where q 6= 0 when r > s + 1.The series rφs terminates if one of the numerator
parameters is of the form q−m with m = 0, 1, 2 . . . , and q 6= 0.
Another form of the general basic hypergeometric series ( cf. Slater [5]), is defined
as

rφs

 a1, a2, . . . , ar
; q, z

b1, b2, . . . , bs

 =
∞∑
n=0

(a1; q)n(a2; q)n . . . (ar; q)n
(b1; q)n(b2; q)n . . . (bs; q)n

zn

(q; q)n
(1.4)

in which there are always r of the a parameters and s of the b parameters.
The q-Gauss summation formula is given by

2φ1(a, b; c; q, c/ab) =
(c/a, c/b; q)∞
(c, c/ab; q)∞

|c/ab| < 1 (1.5)

In 1944, Bailey established a remarkably simple and useful transformation formula
which is given in the following form:
If

βn =
n∑
r=0

αrun−rvn+r (1.6)

and

γn =
∞∑
r=0

δr+nurvr+2n (1.7)

where αr,δr,ur and vr are functions of r only such that the series of γn exists,
then

∞∑
n=0

αnγn =
∞∑
n=0

βnδn (1.8)
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In this paper, we shall use the following results due to Verma and Jain [6].

4Φ3

 a, q
√
a,−q

√
a, q−n;−q 1

2
+n

√
a,−
√
a, aq1+n

 =
(aq; q)n(−q−1/2; q)n

2
√
a

×

×
[

1

(
√
aq; q)n(−q

√
a; q)n−1

− 1

(−√aq; q)n(q
√
a; q)n−1

]
(1.9)

3Φ2

 a, q
√
a, q−n;−q1+n

√
a, aq1+n

 =
(aq,−1; q)n

2
√

2

[
(1 +

√
a)

(aq; q2)n
− (1−

√
a)

(
√
a; q)n(−q

√
a; q)n

]
(1.10)

2Φ1

 a, q−n;−q 3
2
+n

aq1+n

 =
(aq,−√q; q)n

2
×

×
[

(1 +
√
a)

(−√aq; q)n(q
√
a; q)n

− (1−
√
a)

(
√
aq; q)n(−q

√
a; q)n

]
(1.11)

We shall also use the following results (cf. Gasper and Rahman [2]).

4φ3

 a,−q
√
a, b, q−n

; q,
√
aq1+n

b

−
√
a, aq/b, aq1+n

 =
(aq, q

√
a/b; q)n

(q
√
a, aq/b; q)n

(1.12)

6φ5

 a,−q
√
a, q
√
a, b, c, q−n

; q,
√
aq1+n

bc

−
√
a,
√
a, aq/b, aq/c, aq1+n

 =
(aq, aq/bc; q)n
(aq/b, aq/c; q)n

(1.13)

The main object of the present article is to establish transformations formulae by
use of Bailey’s transform and known results [1, 2, 5, 6]. For more details and
further results, the interested reader may be referred to the works presented in [3,
7] (see also the related recent works [ 4, 8]).

2. Main Results

5Φ5

 a, q
√
a, −q

√
a, b, c; q,

−a√q
bc

√
a,−
√
a, aq/b, aq/c, 0

 =
1

2
√
a

∏ aq, aq/bc; q

aq/b, aq/c

×



78 South East Asian J. of Mathematics and Mathematical Sciences

×

√a 3Φ2

 b, c,−q− 1
2 ; q, aq

2

bc

√
aq,−q

√
a

+ 3Φ2

 b, c,−q− 1
2 ; q, aq

bc

√
aq,−q

√
a


−
√
a 3Φ2

 b, c,−q− 1
2 ; q, aq

2

bc

−√aq, q
√
a

+ 3Φ2

 b, c,−q− 1
2 ; q, aq

2

bc

−√aq, q
√
a

 (2.1)

4φ4

 a, q
√
a, b, c

; q,−aq2

bc√
a, aq/b, aq/c, 0

 =
1

2
√

2

∏ aq, aq/bc; q

aq/b, aq/c

×
(1 +

√
a) 3Φ2

 b, c,−1; q, aq
bc

√
aq,−√aq

− (1−
√
a)3Φ2

 b, c,−1; q, aq
bc

√
a,−q

√
a

 (2.2)

3φ3

 a, b, c

; q,−aq5/2

bc

aq/b, aq/c, 0

 =
1

2
√

2

∏ aq, aq/bc; q

aq/b, aq/c

×
(1 +

√
a) 3Φ2

 b, c,−√q; q, aq
bc

−√aq, q
√
a

− (1−
√
a)3Φ2

 b, c,−√q; q, aq
bc

√
aq,−q

√
a

 (2.3)

5Φ5

 a, −q
√
a, b, α, β

; q, a
3/2q2

b2c√
a, aq/b, aq/α, aq/β, 0


=
∏ aq, aq/αβ; q

aq/α, aq/β


3φ2

 α, β, q
√
a/b

; q, aq
αβ

aq/b, q
√
a

 (2.4)

7Φ7

 a, q
√
a, −q

√
a, b, c, α, β

; q, a
2q2

αβbc

−
√
a,
√
a, aq/b, aq/c, aq/α, aq/β, 0


=
∏ aq, aq/αβ; q

aq/α, aq/β


3φ2

 α, β, q
√
a/b

; q, aq
αβ

aq/b, q
√
a

 (2.5)
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3. Proof of the Main Results
To prove the result (2.1).

Take αr =
(a, q
√
a,−q

√
a; q)r

(q,
√
a,−
√
a; q)r

qr(r−1)/2qr/2, ur =
1

(q; q)r
, vr =

1

(aq; q)r
and δr =

(b, c; q)r

(aq
bc

)r
in the equations (1.6) and (1.7), we get

βn =
∞∑
n=0

(a, q
√
a,−q

√
a; q)rq

r(r−1)/2qr/2

(q,
√
a,−
√
a; q)r(q; q)n−r(aq; q)n+r

and

γn =
∞∑
r=0

(b, c; q)n+r
(q; q)r(aq; q)2n+r

(aq
bc

)r
these on simplification give

βn =
1

(q; q)n(aq; q)n

∞∑
n=0

(a, q
√
a,−q

√
a, q−n; q)r

(
−q 1

2
+n
)r

(q,
√
a,−
√
a, aq1+n; q)r

and

γn =
(b, c; q)n
(aq; q)2n

(aq
bc

)n ∞∑
r=0

(bqn, cqn; q)r
(q; q)r(aq1+2n; q)r

(aq
bc

)r
.

Now using (1.9) and (1.5) respectively we get the following

βn =
(−q−1/2; q)n
2
√
a(q; q)n

[
1

(
√
aq; q)n(−q

√
a; q)n−1

− 1

(−√aq; q)n(q
√
a; q)n−1

]
and

γn =
∏ aq/b, aq/c; q

aq, aq/bc

 (b, c; q)n
(aq/b, aq/c; q)n

(aq
bc

)n
Using these the equation (1.8) can be written as

∞∑
n=0

(a, q
√
a,−q

√
a; q)n

(q,
√
a,−
√
a; q)n

qn(n−1)/2qn/2
∏ aq/b, aq/c; q

aq, aq/bc

 (b, c; q)n
(aq/b, aq/c; q)n

(aq
bc

)n

=

∞∑
n=0

(−q−1/2; q)n
2
√
a(q; q)n

[
1

(
√
aq; q)n(−q

√
a; q)n−1

− 1

(−√aq; q)n(q
√
a; q)n−1

]
(b, c; q)n

(aq
bc

)n
This on simplification, finally gives the result (2.1).
Proofs of the results (2.2) and (2.3) can be achieved similarly.
To prove (2.4).
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Take αr =
(a,−q

√
a, b; q)r

(q,−
√
a, aq/b; q)r

qr(r−1)/2
(
−q
√
a

b

)r
, ur =

1

(q; q)r
, vr =

1

(aq; q)r
and

δr = (α, β; q)r

(
aq

αβ

)r
in the equations (1.6) and (1.7), we get

βn =
∞∑
n=0

(a,−q
√
a, b; q)rq

r(r−1)/2

(q,−
√
a, aq/b; q)r(q; q)n−r(aq; q)n+r

(
−q
√
a

b

)r
and

γn =
∞∑
r=0

(α, β; q)n+r
(q; q)r(aq; q)2n+r

(
aq

αβ

)r
these on simplification give

βn =
1

(q; q)n(aq; q)n

∞∑
n=0

(a,−q
√
a, b, q−n; q)r

(q,−
√
a, aq/b, aq1+n; q)r

(
−
√
aq1+n

b

)r
and

γn =
(α, β; q)n
(aq; q)2n

(
aq

αβ

)n ∞∑
r=0

(αqn, βqn; q)r
(q; q)r(aq1+2n; q)r

(
aq

αβ

)r
.

Now using (1.12) and (1.5) respectively we get the following

βn =
(q
√
a/b; q)n

(q, q
√
a, aq/b; q)n

and γn =
∏ aq/α, aq/β; q

aq, aq/αβ

 (α, β; q)n
(aq/α, aq/β; q)n

(
aq

αβ

)n
Using these, the equation (1.8) can be written as

∞∑
n=0

(a,−q
√
a, b; q)n

(q,−
√
a, aq/b; q)n

qn(n−1)/2
(
−q
√
a

b

)n∏ aq/α, aq/β; q

aq, aq/αβ

×
× (α, β; q)n

(aq/α, aq/β; q)n

(
aq

αβ

)n
=
∞∑
n=0

(q
√
a/b; q)n

(q, q
√
a, aq/b; q)n

(α, β; q)n

(
aq

αβ

)n
This on simplification, finally gives the result (2.4).
Proof of the results (2.5) can be achieved similarly.
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