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Abstract: This paper deals with reliability measure P (Y < X) using FGM copula,
when X and Y follow (a) Weibull and generalized gamma distributions, and (b)
Rathie-Swamee generalized folded logistic distributions. The use of copula is better
and widely employed than doing the classical joint distribution dependence. A few
particular cases are also indicated.
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1. Introduction
In literature, R = P (Y < X) is a measure of component reliability when the
component is subjected to a random stress Y and a random strength X. The
component fails when the applied stress exceeds the strength. In the book by [6],
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X and Y are assumed to be independent or having a joint distribution function.
The evaluation of R is more realistic when X and Y are assumed to be dependent.
The copula-based approach has been employed by [1, 2], and [10].

For positive X and Y , the measure R is given by

R = P (Y < X) =

∫ ∞
0

∫ x

0

h(x, y)dxdy, (1)

where

h(x, y) = c(F (x), G(y))f(x)g(y). (2)

In this article, we will use the Farlie-Gumbel-Morgenstern (FGM) copula den-
sity defined by

c(F (x), G(y)) = 1 + θ(1− 2F (x))(1− 2G(y)). (3)

Using (2) and (3) in (1), we arrive at the following expression for R:

R = RI + θD, (4)

where θ is the dependency parameter,

RI =

∫ ∞
0

G(x)f(x)dx (5)

and

D =

∫ ∞
0

G(x)(1−G(x))(1− 2F (x))f(x)dx. (6)

For reliability analysis P (Y < X), bivariate distributions for strength and stress
considered were: bivariate normal [3], bivariate exponential [9], bivariate gamma
[8], bivariate Pareto [5] and bivariate log-normal [4]. The advantage of copula lies
in separating the dependence from joint distribution in a more general setting.

The reliability R = P (Y < X) has applications in physics, engineering, quality
control, economics, medicine, etc. See, for example, [12], [11] and [13].

This paper is written as follows: Section 2 presents some known results, defini-
tions of generalized gamma, Weibull and Rathie-Swamee generalized folded logistic
distributions. In Section 3, reliability P (Y < X) using FGM copula is obtained
for X and Y following (a) Weibull and generalized gamma distributions, and (b)
folded Rathie-Swamee distributions, respectively. A few particular cases of the
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main theorems are mentioned which involve Weibull and folded logistic distribu-
tions. In the last section, we conclude the paper by providing a few conclusions
and outline of possible future work.

2. Known Results and Statistical Distributions

The H-function (see [7]), is defined by

Hm,n
p, q

[
x
∣∣∣( a1, A1), ... ,( an, An),( an+1, An+1), ... ,( ap, Ap)

( b1, B1), ... ,( bm, Bm),( bm+1, Bm+1), ... ,( bq , Bq)

]
=

1

2πi

∫
L

∏m
j=1 Γ(bj −Bjs)

∏n
j=1 Γ(1− aj + Ajs)∏q

j=m+1 Γ(1− bj +Bjs)
∏p

j=n+1 Γ(aj − Ajs)
xsds, (7)

where Aj and Bj are assumed to be positive quantities and all the aj and bj may be
complex. The contour L runs from c− i∞ to c+ i∞ such that poles of Γ(bj−Bjs),
j = 1, . . . ,m, lie to the right of L and the poles of Γ(1 − aj + Ajs), j = 1, . . . , n,
lie to the left of L.

The H-function can be expressed in computable form as (see [7]):

When the poles of
∏m

j=1 Γ(bj −Bjs) are simple, we have

Hm,n
p, q (x) =

m∑
h=1

∞∑
ν=0

m∏
j=16=h

Γ

(
bj −Bj

bh + ν

Bh

)
q∏

j=m+1

Γ

(
1− bj +Bj

bh + ν

Bh

)

×

n∏
j=1

Γ

(
1− aj + Aj

bh + ν

Bh

)
p∏

j=n+1

Γ

(
aj − Aj

bh + ν

Bh

) (−1)νx(bh+ν)/Bh

ν!Bh

, (8)

for x 6= 0 if δ > 0 and for 0 < |x| < w if δ = 0, where δ =
∑q

j=1Bj −
∑p

j=1Aj and

w =
∏p

j=1A
Aj
j /
∏q

j=1B
Bj
j .
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When the poles of
∏n

j=1 Γ(1− aj + Ajs) are simple, we have

Hm,n
p, q (x) =

n∑
h=1

∞∑
ν=0

∏n
j=16=h Γ

(
1− aj − Aj 1−ah+νAh

)
∏p

j=n+1 Γ
(
aj + Aj

1−ah+ν
Ah

)
×

∏m
j=1 Γ

(
bj +Bj

1−ah+ν
Ah

)
∏q

j=m+1 Γ
(

1− bj −Bj
1−ah+ν
Ah

) (−1)ν(1/x)(1−ah+ν)/Ah

ν!Ah
, (9)

for x 6= 0 if δ < 0 and for |x| > w if δ = 0.

Iλ,λ1s,a,b =

∫ ∞
0

ys−1 exp(−ayλ − byλ1)dy (10)

(using [7, p.60])

= λ−1a−
s
λH1, 1

1, 1

[
ba

−λ1
λ

∣∣∣∣ (1− sλ ,−λ1λ )

(0,1)

]
(11)

(using(8))

= λ−1a−
s
λ

∞∑
ν=0

Γ

(
s+ λ1ν

λ

)
(−ba−

λ1
λ )ν

ν!
, (12)

valid for Re(a, b, λ, λ1, s) > 0.
Generalized-Gamma distribution has density and distribution functions given

by

f(x) =
γ1β

α1
γ1
1

Γ
(
α1

γ1

)xα1−1 exp(−β1xγ1) (13)

and

F (x) =
(β1x

γ1)
α1
γ1

Γ
(

1 + α1

γ1

)1F1

(
α1

γ1
;
α1

γ1
+ 1;−β1xγ1

)
, (14)

respectively, where α1, β1, γ1, x > 0.
Alternately, (14) may be written as

F (x) = a

∞∑
r=0

arx
γ1r+α1 , (15)
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where

a =
β
α1
γ1
1

Γ
(
α1

γ1

) (16)

and

ar =
(−β1)r

r!(α1

γ1
+ r)

. (17)

Weibull distribution has density and distribution functions as

g(x) =β2γ2x
γ2−1 exp(−β2xγ2) (18)

and

G(x) = 1− exp(−β2xγ2), (19)

respectively, where β2, γ2, x > 0.
For X ∼ RS(a, b, p), a, b ≥ 0 (both a and b are not zeros simultaneously),

p ≥ −1, x ∈ (0,∞), the Rathie-Swamee [14, 15] density and distribution functions
are defined as

f(x) =
2[a+ b(p+ 1)xp] exp[−x(a+ bxp)]

{1 + exp[−x(a+ bxp)]}2
(20)

and

F (x) =
1− exp[−x(a+ bxp)]

1 + exp[−x(a+ bxp)]
=

2

1 + exp[−x(a+ bxp)]
− 1. (21)

3. Reliability using FGM Copula
In this section, we derive two main theorems for the reliability R using FGM

copula given in (1) when (a) X has generalized gamma distribution and Y has
Weibull distribution and (b) X and Y have folded Rathie-Swamee distributions
with different parameters.

3.1. Reliability using Weibull and Generalized Gamma Distributions
The following theorem for reliability R = P (Y < X) is established in this

section:

Theorem 1. Let X ∼ GG(α1, β1, γ1) and Y ∼ GG(γ2, β2, γ2) . Then

R = P (Y < X) = RI + θD, (22)
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where

RI = 1− γ1β
α1
γ1
1

Γ
(
α1

γ1

)Iγ1,γ2α1,β1,β2
(23)

and

D = γ1a

[
Iγ1,γ2α1,β1,β2

− Iγ1,γ2α1,β1,2β2
− 2a

∞∑
r=0

arI
γ1,γ2
2α1+γ1r,β1,β2

+ 2a
∞∑
r=0

arI
γ1,γ2
2α1+γ1r,β1,2β2

]
,

(24)

with Iλ,λ1s,a,b , a, ar given respectively in (10), (16) and (17).
Proof. From (5), (13) and (19), we have

RI =

∫ ∞
0

[1− exp(−β2xγ2)]
γ1β

α1
γ1
1

Γ
(
α1

γ1

)xα1−1 exp(−β1xγ1)dx

= 1− γ1β
α1
γ1
1

Γ
(
α1

γ1

) ∫ ∞
0

xα1−1 exp(−β1xγ1 − β2xγ2)dx

= 1− γ1β
α1
γ1
1

Γ
(
α1

γ1

)Iγ1,γ2α1,β1,β2
.

Also, from (6), (13), (14) and (19) we get

D =

∫ ∞
0

G(x)[1−G(x)][1− 2F (x)]f(x)dx

=

∫ ∞
0

[1− exp(−β2xγ2)] exp(−β2xγ2)

(
1− 2a

∞∑
r=0

arx
γ1r+α1

)
γ1ax

α1−1 exp(−β1xγ1)dx

= γ1a

∫ ∞
0

xα1−1 exp(−β1xγ1 − β2xγ2)
[
1− exp(−β2xγ2)

−2a
∞∑
r=0

arx
γ1r+α1 + 2a

∞∑
r=0

arx
γ1r+α1 exp(−β2xγ2)

]
dx

= γ1a

[
Iγ1,γ2α1,β1,β2

− Iγ1,γ2α1,β1,2β2
− 2a

∞∑
r=0

arI
γ1,γ2
2α1+γ1r,β1,β2

+ 2a
∞∑
r=0

arI
γ1,γ2
2α1+γ1r,β1,2β2

]
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The following particular case of Theorem 1 for X ∼ GG(φ1, θ1, φ1) and Y ∼
GG(φ2, θ2, φ2) can be derived or proved independently:

Corollary 1. For the Weibull distributions, the reliability R is given by

R = RI + θD (25)

where

RI = 1− θ1φ1I
φ1,φ2
φ1,θ1,θ2

(26)

and

D = θ1φ1

[
2Iφ1,φ2φ1,2θ1,θ2

+ Iφ1,φ2φ1,θ1,2θ2
− 2Iφ1,φ2φ1,2θ1,2θ2

− Iφ1,φ2φ1,θ1,θ2

]
. (27)

3.2. Reliability using Folded Rathie-Swamee Distribution
In this subsection, we obtain the reliability R when X and Y follow generalized

folded logistic distribution.

Theorem 2. The probability P (Y < X), X ∼ RS(a1, b1, p) and Y ∼ RS(a2, b2, p),
is given by

R = P (Y < X) = RI + θD, (28)

where

RI = 4I1,2 − 1 (29)

and

D = 4(9I1,2 − 6I2,2 − 3/2− 12I1,3 + 8I2,3 + 4I0,3), (30)

with Iα,β given in (33) with Iλ,λ1s,a,b in (10).
Proof. For X ∼ RS(a1, b1, p) and Y ∼ RS(a2, b2, p) with distribution functions
F (x) and G(y), respectively, D is given by

D =

∫ ∞
0

{
2

1 + exp[−x(a2 + b2xp)]
− 1

}
2

{
1− 1

1 + exp[−x(a2 + b2xp)]

}
{

3− 4

1 + exp[−x(a1 + b1xp)]

}
2[a1 + b1(p+ 1)xp] exp[−x(a1 + b1x

p)]

{1 + exp[−x(a1 + b1xp)]}2
dx.

(31)
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Let D1 = 1 + exp[−x(a1 + b1x
p)] and D2 = 1 + exp[−x(a2 + b2x

p)], then

D =4

∫ ∞
0

[
9

D2

− 6

D2
2

− 3− 12

D1D2

+
8

D2
2D1

+
4

D1

]
[a1 + b1(p+ 1)xp] exp[−x(a1 + b1x

p)]

D2
1

dx

=4

∫ ∞
0

[a1 + b1(p+ 1)xp] exp[−x(a1 + b1x
p)][

9

D2D2
1

− 6

D2
2D

2
1

− 3

D2
1

− 12

D2D3
1

+
8

D2
2D

3
1

+
4

D3
1

]
dx

=4[9I1,2 − 6I2,2 − 3I0,2 − 12I1,3 + 8I2,3 + 4I0,3], (32)

where

Iα,β =

∫ ∞
0

{a1 + b1(p+ 1)xp] exp[−x(a1 + b1x
p)]}D−α2 D−β1 dx

=
∞∑
r=0

(−1)r(α)r
r!

∞∑
s=0

(−1)s(β)s
s!

∫ ∞
0

[a1 + b1(p+ 1)xp]

exp[−x(a1 + b1x
p)− rx(a2 + b2x

p)− sx(a1 + b1x
p)]dx

=
∞∑
r=0

∞∑
s=0

(−1)r+s(α)r(β)s
r!s!

∫ ∞
0

[a1 + b1(p+ 1)xp]

exp{−x[a1(1 + s) + a2r]− xp+1[b1(1 + s) + b2r]}dx

=
∞∑
r=0

∞∑
s=0

(−1)r+s(α)r(β)s
r!s!

[
a1I

1, p+1
1, a1(1+s)+a2r, b1(1+s)+b2r

+b1(p+ 1)I1,p+1
p+1, a1(1+s)+a2r, b1(1+s)+b2r

]
. (33)

(1 + x)−γ =
∞∑
r=0

(γ)r(−x)r

r!
, (34)

D−12 =
∞∑
r=0

(−1)r exp[−rx(a2 + b2x
p)], (35)

D−22 =
∞∑
r=0

(1 + r)(−1)r exp[−rx(a2 + b2x
p)], (36)

D−21 =
∞∑
s=0

(1 + s)(−1)s exp[−sx(a1 + b1x
p)], (37)
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D−31 =
1

2

∞∑
s=0

(2 + s)(1 + s)(−1)s exp[−sx(a1 + b1x
p)]. (38)

Now

RI =

∫ ∞
0

G(x)f(x)dx

=

∫ ∞
0

{
2

1 + exp[−x(a2 + b2xp)]
−1

}
2[a1 + b1(p+ 1)xp] exp[−x(a1 + b1x

p)]

{1 + exp[−x(a1 + b1xp)]}2
dx

= J1 − J2, (39)

where

J1 = 4

∫ ∞
0

[a1 + b1(p+ 1)xp] exp[−x(a1 + b1x
p)]

{1 + exp[−x(a2 + b2xp)]}{1 + exp[−x(a1 + b1xp)]}2
dx = 4I1,2 (40)

and

J2 = 2

∫ ∞
0

[a1 + b1(p+ 1)xp] exp[−x(a1 + b1x
p)]

{1 + exp[−x(a1 + b1xp)]}2
dx = 2I0,2 = 1. (41)

Hence,

RI = 4I1,2 − 1.

For b1 = 0 = b2, in (33), we have

Iα,β =
∞∑
r=0

∞∑
s=0

(−1)r+s(α)r(β)s
r!s!

[
a1I

1, p+1
1, a1(1+s)+a2r, 0

]
=a1

∞∑
r=0

∞∑
s=0

(−1)r+s(α)r(β)s
r!s!

[a1(1 + s) + a2r]
−1 . (42)

For b = 0, we get

Iλ,λ1t,a,0 = λ−1a−t/λΓ(t/λ). (43)

Corollary 2. For b1 = b2 = 0, we deduce the following result for the reliability for
folded logistic distribution:

P (Y < X) = RI + θD, (44)
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where

RI = 4I1,2 − 1

= 4
∞∑
r=0

∞∑
s=0

(−1)r+s(1)r(2)s
r!s!

[
a1I

1, p+1
1, a1(1+s)+a2r, 0 + 0

]
− 1

(using(43))

= 4
∞∑
r=0

∞∑
s=0

(−1)r+s(1 + s)a1[a1(1 + s) + a2r]
−1Γ(1)− 1

= 4a1

∞∑
r=0

∞∑
s=0

(−1)r+s
1 + s

a1(1 + s) + a2r
− 1 (45)

and

D = 4[9I1,2 − 6I2,2 − 3/2− 12I1,3 + 8I2,3 + 4I0,3]

= 4a1

∞∑
r=0

∞∑
s=0

(−1)r+s

r!s!
[a1(1 + s) + a2r]

−1Ar,s − 6, (46)

where

Ar,s = [9(1)r(2)s − 6(2)r(2)s − 12(1)r(3)s + 8(2)r(3)s + 4(0)r(3)s]

= 9r!(s+ 1)!− 6(1 + r)!(1 + s)!− 6r!(2 + s)! + 4(1 + r)!(2 + s)!

= 3r!s![3(s+ 1)− 2(1 + r)(1 + s)− 2(2 + s)(1 + s) +
4

3
(1 + r)(2 + s)(1 + s)]

= r!s!(s+ 1)(1− 2r)(7 + 2s). (47)

Hence

D = 4a1

∞∑
r=0

∞∑
s=0

(−1)r+s[a1(1 + s) + a2r]
−1 [(s+ 1)(7 + 2s)(1− 2r)]− 6. (48)

Corollary 3. For X and Y independent, we have

P (Y < X) = RI = 4I1,2 − 1, (49)

where

I1,2 =
∞∑
r=0

∞∑
s=0

(−1)r+s(1)r(2)s
r!s!

[
a1I

1, p+1
1, a1(1+s)+a2r, b1(1+s)+b2r

+b1(p+ 1)I1,p+1
p+1, a1(1+s)+a2r, b1(1+s)+b2r

]
, (50)
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with Iλ,λ1t,a,b given in (10).
For p = 0 in (50), we have

I1,2 =
∞∑
r=0

∞∑
s=0

(−1)r+s(1 + s)
[
a1I

1,1
1, a1(1+s)+a2r, b1(1+s)+b2r

+ b1I
1,1
1, a1(1+s)+a2r, b1(1+s)+b2r

]
=
∞∑
r=0

∞∑
s=0

(−1)r+s(1 + s)(a1 + b1)

(a1 + b1)(1 + s) + (a2 + b2)r
. (51)

Thus with p = 0, X and Y independent:

P (Y < X) = 4(a1 + b1)
∞∑
r=0

∞∑
s=0

(−1)r+s(1 + s)

(a1 + b1)(1 + s) + (a2 + b2)r
− 1. (52)

Corollary 4. When b1 = b2 = 0, and X and Y independent folded logistic distri-
butions, we have the following result on using (45):

P (Y < X) = 4a1

∞∑
r=0

∞∑
s=0

(−1)r+s(1 + s)

a1(1 + s) + a2r
− 1. (53)

4. Conclusions
Mathematical expressions for the reliability measure P (Y < X) are obtained

by using FGM copula when X and Y follow (a) generalized gamma and Weibull
distributions, and (b) Rathie-Swamee generalized folded logistic distributions. A
few particular cases of importance are mentioned.

In a future paper, the authors plan to apply FGM and other copulas to other
statistical distributions to calculate the reliability P (Y < X) and to analyze real
data sets as possible applications.
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