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1. Introduction
The history of partitions goes by fits and starts. Euler’s deep analysis on par-

titions stood for over a century before other mathematicians made considerable
progress. According to Euler’s insight, the different kinds of two sets of partitions
is seen to have the same count of elements. The most eminent of these outcomes
are called the Rogers–Ramanujan identities (RRI). These identities were first dis-
covered by Rogers in 1894 but were appreciated only after Ramanujan rediscovered
these in 1913.

∞∑
α=0

qα
2

(q; q)α
=

(q2, q3; q5)∞
(q; q)∞

,

∞∑
α=0

qα(α+1)

(q; q)α
=

(q, q4; q5)∞
(q; q)∞

,
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where

(x1, x2, · · · , xr; q)∞ =
∞∏
j=0

(1− x1qj) · · · (1− xrqj).

It was MacMahon, who first analysed these combinatorially in [8] as follows.
First Rogers-Ramanujan Identity. The number of partitions of α into parts
with minimal difference 2 equals the number of partitions of α into parts which are
congruent to ±1(mod 5).
Second Rogers-Ramanujan Identity. The number of partitions of α with min-
imal part 2 and minimal difference 2 equals the number of partitions of α into parts
which are congruent to ±2(mod 5).
There are several mathematicians who gave interesting proofs for RRI. Among
them, Schur was apparently the one who gave the first bijective proof of these
identities in [10] and these identities are used in the solutions of hard hexagon
model [5]. Recently, these identities combinatorial interpretations in terms of n-
color partitions have been studied by Sharma and second author of this paper in
[11]. The n-color partitions are introduced by Agarwal and Andrews in [2] and this
partition object is linked with several other combinatorial objects such as lattice
paths, generalized Frobenius partitions, and plane partitions [1, 3, 5].

Definition 1.1. An n–color partition is a partition where a part n can appear in n
colors denoted by subscripts: n1, n2, · · · , nn. The parts are ordered first by size and
then by color. For any integer t ≥ 0, an (n + t)–color partition, is a partition in
which a part ‘n’ can appear in (n+ t)–colors as n1, n2, · · · , nn+t. Note that if t > 0
the partition can contain a part of size 0 but only one copy of zero ‘ 0t’ is allowed.
The weighted difference of two parts mx, ny, m ≥ n in an (n + t)–color partition
(mr)xr + (mr−1)xr−1 + · · ·+ (m1)x1 such that (mr)xr ≥ (mr−1)xr−1 ≥ · · · ≥ (m1)x1 ,
is m− n− x− y and denoted by

(
(mx − ny)

)
.

Analogues to n–color partitions, Lovejoy and Mallet in [7] introduced n–color over-
partitions, and Mallet in [9] extended it to (n+ t)–color overpartitions.

Definition 1.2. The n–color overpartition is an n–color partition in which the
final occurrence of a part nj may be overlined.

Example 1.1. For α = 3, there are 16 n–color overpartitions.

33 33 2211 2111 111111

32 32 2211 2111 111111

31 31 2211 2111

2211 2111
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In this paper, we provide the combinatorial interpretations of fourteen Rogers–
Ramanujan type identities (RRTI) in terms of (n+ t)–color overpartitions. These
identities are listed in Table 1. The first identity appeared in [12] as Identity No.
29 and remaining identities are from [6] as Identity No. 104, 102, 29, 27, 25, 195,
45, 46, 11, 12, 37, 106, 40 respectively. The sum side of RRTI is the generator for
the partitions enumerated by Ml(α) in terms of (n + t)–color overpartitions and
the product side is enumerated by Nl(α) with ordinary partitions which lead to
the two-way combinatorial interpretations and satisfies

hl(q) =
∞∑
α=0

Ml(α)qα =
∞∑
α=0

Nl(α)qα, 1 ≤ l ≤ 14 (1.1)

for all non-negative integral values of α.

Table 1

Sr.no.
∑∞

α=0Ml(α)qα
∑∞

α=0Nl(α)qα

1.
∑∞

α=0
(−q;q2)αqα

2

(q;q)2α

(−q;q2)∞
(q2;q2)∞

[−q2,−q4, q6; q6]∞

2.
∑∞

α=0
(−q;q2)αqα(α+1)

(q;q2)α+1(q2;q2)α
1

(q;q)∞
[q4, q8, q12; q12]∞

3.
∑∞

α=0
(−q;q2)αqα(α+2)

(q;q2)α+1(q2;q2)α
1

(q;q)∞
[q2, q10, q12; q12]∞

4.
∑∞

α=0
(−1)α(q;q2)αqα

2

(−q;q2)α(q4;q4)α
(−q;q2)∞
(q2;q2)∞

[q5,−q2,−q3; q5]∞

5.
∑∞

α=0
(−1)α(q;q2)αqα(α+2)

(−q;q2)α(q4;q4)α
(−q;q2)∞
(q2;q2)∞

[q5,−q,−q4; q5]∞

6.
∑∞

α=0
(−1)α(q;q2)αqα(α+2)

(−q;q2)α+1(q4;q4)α

(−q;q2)∞
(q2;q2)∞

[q5,−q5,−q5; q5]∞

7.
∑∞

α=1
(−q2;q2)α−1qα

2

(q;q)2α

[q16,q2,q14;q16]∞[q20,q12;q32]∞
(q;q)∞

8.
∑∞

α=0
(−1;q2)αqα(α+1)

(q;q)2α

(−q2;q2)∞
(q2;q2)∞

[q6,−q3,−q3; q6]∞

9.
∑∞

α=0
(−q2;q2)αqα(α+1)

(q;q)2α+1

(−q2,q2)∞
(q2;q2)∞

[q6,−q,−q5; q6]∞

10.
∑∞

α=0
(−1;q4)αqα

2

(q;q2)α(q4;q4)α

(−q;q2)∞
(q2;q2)∞

[−q4,−q, q3;−q4]∞

11.
∑∞

α=0
(−1;q4)αqα(α+2)

(q;q2)α(q4;q4)α

(−q;q2)∞
(q2;q2)∞

[−q4, q,−q3;−q4]∞
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12.
∑∞

α=0
(−1;q)αqα

2

(q;q2)α(q;q)α

(−q;q)∞
(q;q)∞

[q6, q3, q3; q6]∞

13.
∑∞

α=1
(−q;q)α−1qα

2

(q;q2)α(q;q)α

[q12,−q5,−q7;q12]∞
(q;q)∞

14.
∑∞

α=0
(−q;q)αqα(α+1)

(q;q2)α+1(q;q)α

(−q;q)∞
(q;q)∞

[q6, q, q5; q6]∞

2. Combinatorial interpretations using (n+ t)–color overpartitions

Theorem 2.1. For α ≥ 0, let M1(α) represent the number of n–color overparti-
tions of α satisfying;

(2.1.a) mk ≡ xk (mod 2), ∀ k

(2.1.b) In the overlined part the subscripts are always greater than 1.

(2.1.c)
(
((mk)xk − (mk−1)xk−1

)
)
≥ 0 and ≡ 0 (mod 2) ∀ k > 1.

Let N1(α) represent the count of partitions of α such that the odd parts are dis-
tinct, even parts are ≡ ±2,±4(mod 12) and two copies of the parts which are
≡ ±2(mod 12) are used.

Example 2.1. For α = 8, M1(8) = N1(8) = 18 the relevant n–color overpartitions
of M1(8) are

88 82 84 6222 7511 7311

86 88 82 6222 7511 7111

84 86 6222 6222 7311 5131.

And the partitions corresponding to N1(8) are

8 44 431 42222 321221 21212222

71 5211 42121 321211 21212121 21222222

53 5221 42122 322221 21212122 22222222.

Theorem 2.2. For α ≥ 0, let M2(α) represent the number of (n + 1)–color over-
partitions satisfying (2.1.b), (2.1.c) and x1 = m1 + 1 with (m1)x1 is not overlined.
Let N2(α) represent the count of partitions of α in which the parts are ≡ ±1, ±2,
±3, ±5, 6(mod 12).

Theorem 2.3. For α ≥ 0, let M3(α) represent the number of (n + 2)–color over-
partitions satisfying (2.1.a)–(2.1.c) and x1 = m1 + 2 with (m1)x1 is not overlined.
Let N3(α) represent the count of partitions of α in which the parts are ≡ ±1, ±3,
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±4, ±5, 6(mod 12).

Theorem 2.4. For α ≥ 0, let M4(α) represent the number of n–color overparti-
tions satisfying the following conditions along with (2.1.a) and (2.1.b)

(2.4.a) m1 − x1 ≡ 0 (mod 4),

(2.4.b)
(
((mk)xk − (mk−1)xk−1

)
)
≥ 0 and ≡ 0 (mod 4). ∀ k > 1

LetN4(α) =
∑α

i=0X4(α−i)Y4(i), whereX4(α) represent the count of partitions of α
into distinct parts such that two copies of 5(mod 10) and one copies of ±1(mod 10)
are allowed and Y4(α) represent the count of partitions of α into two copies of
±2(mod 10) are allowed.

Theorem 2.5. For α ≥ 0, let M5(α) represent the number of n–color overparti-
tions satisfying (2.1.a), (2.1.b), (2.4.b) and m1 ≥ 3 with m1 − x1 ≡ 2 (mod 4).
Let N5(α) =

∑α
i=0X5(α− i)Y5(i), where X5(α) represent the count of partitions of

α in which the two copies of distinct parts 5(mod 10) and one copies of ±3(mod 10)
are allowed and Y5(α) represent the count of partitions of α into the two copies of
±4(mod 10) are allowed.

Theorem 2.6. For α ≥ 0, let M6(α) represent the number of (n + 1)–color over-
partitions satisfying (2.1.b), (2.2.c) and (2.4.d).
Let N6(α) =

∑α
i=0X6(α − i)Y6(i), where X6(α) represent the count of partitions

of α in which the parts are ≡ ±1,±3(mod 10) and Y6(α) represent the count of
partitions of α in which the parts are ≡ ±2,±4(mod 10).

Theorem 2.7. For α ≥ 0, let M7(α) represent the number of n–color overparti-
tions satisfying the following conditions along with (2.1.a)

(2.7.a) the occurrence of m1 is not overlined,

(2.7.b)
(
((mk)xk − (mk−1)xk−1

)
)
≥ 0 and ≡ 0 (mod 2) ∀ k > 1. For

(
((mk)xk −

(mk−1)xk−1
)
)

= 0, mk is not overlined.

Let N7(ν) represent the count of partitions of α in which the parts are ≡ ±1, ±3,
±5, ±6(mod 32).

Theorem 2.8. For α ≥ 0, let M8(α) represent the number of n–color overparti-
tions satisfying (2.1.a) and

(2.8.a) for m1 = x1, the occurrence of m1 is not overlined,

(2.8.b)
(
((mk)xk − (mk−1)xk−1

)
)
≥ −2 and ≡ 0 (mod 2) ∀ k > 1. For

(
((mk)xk −

(mk−1)xk−1
)
)

= −2, mk is not overlined.
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Let N8(α) =
∑α

i=0X8(α − i)Y8(i), where X8(α) represent the count of partitions
of α in which the parts are ≡ ±2,±3,±4(mod 12) and Y8(α) represent the count
of partitions of α into distinct parts ≡ ±2,±3,±4(mod 12).

Theorem 2.9. For α ≥ 0, let M9(α) represent the number of (n + 1)–color over-
partitions satisfying (2.7.b) and x1 = m1 + 1 with (m1)x1 is not overlined.
Let N9(α) =

∑α
i=0X9(α− i)Y9(i), where X9(α) represent the count of partitions of

α in which the parts are ≡ 2, 4(mod 6) and Y9(α) represent the count of partitions
of α into distinct parts are ≡ 0,±1,±2(mod 6).

Theorem 2.10. For α ≥ 0, let M10(α) represent the number of n–color overpar-
titions satisfying

(2.10.a) m1 ≡ x1 (mod 4),

(2.10.b) the occurrence of m1 is not overlined,

(2.10.c)
(
((mk)xk − (mk−1)xk−1

)
)
≥ 0 and ≡ 0 (mod 4) ∀ k > 1. For

(
((mk)xk −

(mk−1)xk−1
)
)

= 0 then mk is not overlined.

Let N10(α) =
∑α

i=0X10(α − i)Y10(i), where X10(α) represent the count of parti-
tions of α in which the parts are ≡ ±1, 4(mod 8) and Y10(α) represent the count of
partitions of α in which the parts are ≡ 0,±1, 4(mod 8).

Theorem 2.11. For α ≥ 0, let M11(α) represent the number of n–color overpar-
titions satisfying (2.10.a)–(2.10.c) and m1 > 2 with m1 − x1 ≡ 2 (mod 4).
Let N11(α) =

∑α
i=0X11(α − i)Y11(i), where X11(α) represent the count of parti-

tions of α in which the parts are ≡ ±3, 4(mod 8) and Y11(α) represent the count of
partitions of α into distinct parts are ≡ ±3, 4(mod 8).

Theorem 2.12. For α ≥ 0, let M12(α) represent the number of n–color overpar-
titions satisfying

(2.12.a) the occurrence of m1 is not overlined,

(2.12.b)
(
((mk)xk− (mk−1)xk−1

)
)
≥ 0 ∀ k > 1 if

(
((mk)xk− (mk−1)xk−1

)
)

= 0 then
mk is not overlined.

Let N12(α) =
∑α

i=0X12(α−i)Y12(i), where X12(α) represent the count of partitions
of α in which the parts are ≡ ±1,±2(mod 6) and Y12(α) represent the count of
partitions of α into distinct parts are ≡ ±1,±2(mod 6).

Theorem 2.13. For α ≥ 0, let M13(α) represent the number of n–color overpar-
titions satisfying (2.12.a) and (2.12.b)
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Let N13(α) =
∑α

i=0X13(α−i)Y13(i), where X13(α) represent the count of partitions
of α in which the parts are ≡ ±1,±2,±3,±4,±5, 6(mod 12) and Y13(α) represent
the count of partitions of α in which the parts are ≡ ±5(mod 12).

Theorem 2.14. For α ≥ 0, let M14(α) represent the number of (n + 1)–color
overpartitions satisfying (2.12.b) and x1 = m1 + 1 with (m1)x1 is not overlined.
Let N14(α) =

∑α
i=0X14(α − i)Y14(i), where X14(α) represent the count of parti-

tions of α in which the parts are ≡ ±2, 3(mod 6) and Y14(α) represent the count of
partitions of α into distinct parts.

3. Proofs
Before constructing the proofs of Theorem 2.1-2.14, let us consider

hl(w, q) =
∞∑
α=0

∞∑
r=0

Ml(r, α)wrqα, (3.1)

for l = 1–14 and Ml(α) denote the partitions with some conditions in any number
of parts and Ml(r, α) will denote the partitions with the same conditions into r
parts.

Proof of Theorem 2.1. We split the partitions enumerated by M1(r, α) into four
classes, viz.,

(i) those that have 11 as a part,

(ii) those that have a part like 22 or 22,

(iii) those that don’t have a part like (mk)mk or (mk), and

(iv) those that have a part of the form (mk)mk or (mk) for k ≥ 3.

In the first class, partitions contain 11 as the least part. Deleting 11 and subtracting
2 from all the remaining parts without any change in the subscripts, it will not
disturb the inequalities between the parts and transformed partitions will be of the
type enumerated by M1(r − 1, α − 2r + 1). We first delete 22 or 22, as the case
may be, and then subtract 4 from each of the remaining parts. The transformed
partition will be of the type enumerated by M1(r−1, α−4r+2). Third class contains
the partitions that do not have (xk)xk or (xk)xk as the least part. Transform the
partition by subtracting 2 from subsequent parts without disturbing subscripts.
The transformed partitions are enumerated by M1(r, α− 2r). In the last class, the
partition involves (xk)xk (xk ≥ 2) or (xk)xk (xk ≥ 3) as a part. Transformed by
replacing (xk)xk by (xk − 1)xk−1 or (xk)xk by (xk − 1)xk−1 and subtract 2 from the
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remaining parts without disturbing the subscripts. This will result in partitions
enumerated by M1(r, α−2r+1). It should be noted here that we are obtaining those
partitions of α−2r+1 which have a part of the type (xk)xk and (xk)xk so the number
of partitions in this class enumerated by M1(r, α−2r+1)−M1(r, α−4r+1). Thus,
the transformed partition are enumerated by M1(r, α− 2r+ 1)−M1(r, α− 4r+ 1).
Hence we get the following recurrence formula for M1(r, α)

M1(r, α) =M1(r − 1, α− 2r + 1) +M1(r − 1, α− 4r + 2) +M1(r, α− 2r)

+M1(r, α− 2r + 1)−M1(r, α− 4r + 1), (3.2)

where M1(0, 0) = 1 and M1(r, α) = 0 for α < 0.
For |q| < 1 and |w| < |q|−1, let h1(w, q) be defined by

h1(w, q) =
∞∑
α=0

∞∑
r=0

M1(r, α)wrqα. (3.3)

Substitute M1(r, α) from (3.2) in (3.3), we get q–functional equation

h1(w, q) =wqh1(wq
2, q) + wq2h1(wq

4, q) + h1(wq
2, q)

+ q−1h1(wq
2, q)− q−1h1(wq4, q). (3.4)

Setting

h1(w, q) =
∞∑
α=0

z1(α, q)w
α. (3.5)

Using (3.4) in (3.5) and then examining the coefficients of wα, we get

z1(α, q) =
q2α−1(1 + q2α−1)

(1− q2α)(1− q2α−1)
z1(α− 1, q). (3.6)

Iterating (3.6) α times and note that z1(0, q) = 1, we find that

z1(α, q) =
(−q; q2)αqα

2

(q2; q2)α(q; q2)α
. (3.7)

Therefore,

h1(w, q) =
∞∑
α=0

(−q; q2)αqα
2

(q2; q2)α(q; q2)α
wα

=M1(w, q), (3.8)
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and

∞∑
α=0

M1(α)qα =
∞∑
α=0

(
∞∑
r=0

M1(r, α)

)
qα

= h1(1, q)

= h1(q).

Proof of Theorem 2.2. M2(r + 1, α) represent the color overpartitions enumer-
ated by M2(α) of α into r+ 1 columns. The partitions enumerated by M2(r+ 1, α)
split into two classes, first containing the partitions with 01 and second containing
the partitions with (xk)xk , xk > 0. The partitions in the first class are enumerated
by M1(r, α − r) and in the second class are enumerated by M2(r + 1, α − 2r − 1).
Thus the recurrence relation becomes

M2(r + 1, α) = M1(r, α− r) +M2(r + 1, α− 2r − 1)
∞∑

r+1=0

M2(r + 1, α)wr+1qα =
∞∑

r+1=0

M1(r, α− r)wr+1qα

+
∞∑

r+1=0

M2(r + 1, α− 2r − 1)wr+1qα

∞∑
r=0

M2(r, α)wrqα = w
∞∑
r=0

M1(r − 1, α− r + 1)(wq)r−1q(α−r+1)

+q−1
∞∑
r=0

M2(r, α− 2r + 1)(wq2)rqα−2r+1.

We follow the same technique as interpreting M1(α) and the corresponding q–
functional equation becomes

h2(w, q) = wh2(wq, q) + q−1h1(wq
2, q). (3.9)

Sketch proofs of Theorem 2.3–2.6

� The proof of Theorem 2.3 can be supplied by the reader on lines of Theorem
2.2

� Splitting the partitions enumerated by M4(r, α) into four classes:
Class (i): that contains 11 as the least part,
Class (ii): that contains 22 as the least part,
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Class (iii): that does not contains (xk)xk or (xk)xk as the least part,
Class (iv): that contains (xk)xk (x ≥ 2) and (xk)xk (x ≥ 3) as a least part.
Proceeding as Theorem 2.1, one can easily obtain the following q–functional
equation,

h4(w, q) = wqh4(wq
2, q) + wq2h4(wq

4, q) + h4(wq
4, q)

+q−1h4(wq
2, q)− q−1h4(wq6, q).

� For the proof of Theorem 2.5 one can proceed as Theorem 2.2 and get fol-
lowing q–functional equation,

h5(w, q) = wh5(wq, q) + q−1h4(wq
2, q).

� Proceeding as Theorem 2.3 one can easily obtain the proof of Theorem 2.6
and corresponding q–functional equation as follows,

h6(w, q) = wh6(wq, q) + q−1h4(wq
2, q).

Proofs of Theorem 2.7–Theorem 2.14
To interpret Ml(α), k = 7–14 in terms of n–color overpartition we have to consider
some more q–series listed in Table 2.

Table 2

Sr no.
∑∞

α=0Wj(α)qα

1.
∑∞

α=0
(−q2;q2)αqα

2

(q;q)2α

2.
∑∞

α=0
(−q2;q2)αqα(α+1)

(q;q)2α

3.
∑∞

α=0
(−q4;q4)αqα

2

(q4;q4)α(q;q2)α

4.
∑∞

α=0
(−q4;q4)αqα(α+2)

(q;q2)α(q4;q4)α

5.
∑∞

α=0
(−q;q)αqα

2

(q;q2)α(q;q)α

Firstly, we enumerate Wj(α), 1 ≤ j ≤ 5 in terms of n–color overpartitions. Let
Wj(r, α, ) denote the partitions enumerated by Wj(α) into r parts, and so we let

gj(w, q) =
∞∑
α=0

∞∑
r=0

Wj(r, α)wrqα. (3.10)
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And noting that hl(q), l = 8, 10–12 can be rewritten in terms of ĥl(q) where,

h8(q) =
∞∑
α=0

M8(α)qα

=
∞∑
α=0

(−1; q2)αq
α(α+1)

(q; q)2α

=1 + 2
∞∑
α=1

(−q2; q2)α−1qα(α+1)

(q; q)2α

=1 + 2
∞∑
α=1

M̂8(α)qα

=1 + 2ĥ8(q), and ĥl(q) =
∞∑
α=1

M̂l(α)qα. (3.11)

For the interpretations of M̂l(α), l = 8, 10–12 suppose

ĥl(w, q) =
∞∑
α=0

∞∑
r=0

M̂l(r, α)wrqα. (3.12)

Lemma 3.1. For α ≥ 0, let W1(α) represent the number of n–color overpartitions
of α such that

(2.3.1.a) mk ≡ xk (mod 2), ∀ k

(2.3.1.b) if m1 = x1 then the occurrence of m1 is not overlined,

(2.3.1.c)
(
((mk)xk−(mk−1)xk−1

)
)
≥ 0 and ≡ 0 (mod 2) ∀ k if

(
((mk)xk−(mk−1)xk−1

)
)

= then mk is not overlined.

Proof. Let W1(α) denote the number of n–color overpartition of α enumerated by
W1(α) into r parts. Divide the partitions into four classes. First class has partitions
that do not involve (xk)xk or (xk)xk−2 as a part. Subtracting 2 from all the parts,
we get transformed partition enumerated by W1(r, α − 2r). The second class has
the partitions that involve 11 as a part. Deleting 11 part and then subtracting 2
from all the remaining parts, corresponding transformed partition enumerated by
W1(r− 1, α− 2r+ 1). The next class has the partitions which involve 31 as a part.
Deleting 31 and subtracting 4 from the remaining parts. The transformed partition
enumerated by W1(r−1, α−4r+1). The last class has the partitions which involve
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(xk)xk(xk ≥ 2) and (xk)xk−2(xk ≥ 4) as a part. Replace (xk)xk by (xk − 1)xk−1 and
(xk)xk−2 by (xk − 1)xk−3 and subtract 2 from the remaining parts. This will result
in partitions enumerated by W1(r, α− 2r+ 1). It should be noted here that we are
obtaining only those partitions of α−2r+1 which involve a part of the type (xk)xk
and (xk)xk−2 and any other repeated part is added correspondingly, so the number
of partitions in last class is enumerated by W1(r, α−2r+1)−W1(r, α−4r+1). The
transformed classes are reversible. There is one to one correspondence between the
classes enumerated by W1(r, α) and those by

W1(r, α) =W1(r, α− 2r) +W1(r − 1, α− 2r + 1) +W1(r − 1, α− 4r + 1)

+W1(r, α− 2r + 1)−W1(r, α− 4r + 1), (3.13)

where W1(0, 0) = 1 and W1(r, α) = 0 for α < 0. For |q| < 1 and |w| < |q|−1 and let
g1(w, q) be defined by

g1(w, q) =
∞∑
α=0

∞∑
r=0

W1(r, α)wrqα (3.14)

Now substituting (3.14) in (3.13) and we get the q-functional equation as,

g1(w, q) = g1(wq
2, q) + wqg1(wq

2, q) + wq3g1(wq
4, q)

+q−1g1(wq
2, q)− q−1g1(wq4, q).

By proceeding in the same manner as in the proof of Theorem 2.1, we can get the
desired result.
Sketch proof of Theorem 2.7
Now, we shall prove

∞∑
α=0

M7(α)qα =
∞∑
α=0

(−q2; q2)α−1qα
2

(q; q)2α
.

Split the partitions enumerated by M7(r, α) into four classes. In the first class,
partitions contain 11 as their least part. Remove 11 and subtract 2 from all the
remaining parts. Transformed partitions are enumerated by W1(r− 1, α− 2r+ 1).
Second class contains the partitions which have 31. By removing 31 and subtracting
4 from all the remaining parts, we get the partition enumerated by W1(r − 1, α−
4r + 1). The partition in the third class contains the partitions which do not have
(xk)xk and (xk)xk−2 as the least part. Subtracting 4 from all the parts and we get
the partitions enumerated by M7(r, α− 4r). The last class contains the partitions
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of the form (xk)xk and (xk)xk−2. Replace (xk)xk into (xk − 1)xk−1 or (xk)xk−2 into
(xk − 1)xk−3 and then subtract 2 from remaining parts and can get enumerated by
M7(r, α− 2r+ 1)−M1(r, α− 6r+ 1). Thus, the recurrence relation for M7(r, α) is
given by

M7(r, α) = W1(r − 1, α− 2r + 1) +W1(r − 1, α− 4r + 1)

+M7(r, α− 4r) +M7(r, α− 2r + 1)−M7(r, α− 6r + 1),

and the corresponding q-functional equation is

h7(w, q) = wqg1(wq
2, q) + wq3g1(wq

4, q) + h7(wq
4, q)

+q−1h7(wq
2, q)− q−1h7(wq6, q).

Proceeding in the same manner as in the proof of Lemma 3.1, we get the desired
result.

Now, we give the enumeration of Wj(α) 2 ≤ j ≤ 5 in following Lemma 3.2–3.5
respectively. Then, we give only necessary outlines of the proofs. Using these Lem-
mas, one can elaborates the proofs of Theorem 2.8–2.14.

Lemma 3.2. For α ≥ 0, let W2(α) represent the number of n–color overpartitions
satisfying (2.1.a), (2.8.b), m1, x1 ≥ 2, and if m1 = x1 then the occurrence of m1 is
not overlined.

Lemma 3.3. For α ≥ 0, let W3(α) represent the number of n–color overpartitions
satisfying (2.10.a), (2.10.c) and if m1 = x1 then the occurrence of m1 is not over-
lined.

Lemma 3.4. For α ≥ 0, let W4(α) represent the number of n–color overpartitions
satisfying (2.10.a), (2.10.c), m1 ≥ 3, m1− x1 ≡ 2 (mod 4) and if x1 = m1− 2 then
the occurrence of m1 is not overlined.

Lemma 3.5. For α ≥ 0, let W5(α) represent the number of n–color overpartitions
satisfying (2.12.b) and if m1 = x1 then the occurrence of m1 is not overlined.
Sketch proofs of Lemma 3.2–3.5 Since the proofs of Lemma 3.2–3.5 are similar
to that of Lemma 3.1, we omit the details and give only the q–functional equations
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which is used in each case.

g2(w, q) = wq2g2(wq
2, q) + wq4g2(wq

4, q) + g2(wq
2, q)

+q−1g2(wq
2, q)− q−1g2(wq4, q).

g3(w, q) = wqg3(wq
2, q) + wq5g3(wq

6, q) + g3(wq
4, q)

+q−1g3(wq
2, q)− q−1g3(wq6, q).

g4(w, q) = wq3g4(wq
2, q) + wq7g4(wq

6, q) + g4(wq
4, q)

+q−1g4(wq
2, q)− q−1g4(wq6, q).

g5(w, q) = wqg5(wq
2, q) + wq2g5(wq

3, q) + g5(wq, q)

+q−1g5(wq
2, q)− q−1g5(wq3, q).

The proofs of the Theorem 2.7–2.14 are also established by splitting partitions
enumerated by Ml(α) into classes. Also, it is evident from the proof of Theorem
2.7 that classes depend on the least part of the partitions. One can easily establish
proofs so only q–functional equations are provided.

Table 3

Enumerator class 1 class 2
class 3
do not

contains

class 4
contains

M8(α) 22 42 (xk)xk or (xk)xk−2
(xk)xk (xk ≥ 3) or
(xk)xk−2 (xk ≥ 5)

M9(α) 11 (xk)xk

M10(α) 11 51 (xk)xk or (xk)xk−4
(xk)xk (xk ≥ 2) or
(xk)xk−4 (xk ≥ 6)

M11(α) 33 73 (xk)xk or (xk)xk−4
(xk)xk (xk ≥ 4) or
(xk)xk−4 (xk ≥ 8)

M12(α) 11 21 (xk)xk or (xk)xk−1
(xk)xk (xk ≥ 2) or
(xk)xk−1 (xk ≥ 3)

M14(α) 11 (xk)xk
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Remark 3.1. The classes for M13(α) is same as M12(α).

ĥ8(w, q) = ĥ8(wq
4, q) + wq2g2(wq

2, q) + wq4g2(wq
4, q)

+q−1ĥ8(wq
2, q)− q−1ĥ8(wq6, q).

h9(w, q) = wqg1(wq
2, q) + q−1h9(wq

2, q).

ĥ10(w, q) = ĥ10(wq
8, q) + wqg3(wq

2, q) + wq5g3(wq
6, q)

+q−1ĥ10(wq
2, q)− q−1ĥ10(wq10, q).

ĥ11(w, q) = ĥ11(wq
8, q) + wq3g4(wq

2, q) + wq7g4(wq
6, q)

+q−1ĥ11(wq
2, q)− q−1ĥ11(wq10, q).

ĥ12(w, q) = ĥ12(wq
2, q) + wqg5(wq

2, q) + wq2g5(wq
3, q)

+q−1ĥ12(wq
2, q)− q−1ĥ12(wq4, q).

h13(w, q) = ĥ12(w, q).

h14(w, q) = wqg5(wq
2, q) + q−1h14(wq

2, q).

Remark 3.2. To calculate the q-functional equations of h9(q) and h14(q), follow a
displacement of α 7→ α + 1 due to the factor (1 + qα+1).
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