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1. Introduction
Fixed point theory has great importance in science and mathematics. Since

this area has been developed very fast over the past two decades due to huge
applications in various fields such as nonlinear analysis, topology and engineering
problems, it has attracted considerable attention from researchers. The study of
expansive mappings is a very interesting research area in the fixed point theory.
Wang et al. [37] proved some fixed point theorems for expansion mappings, which
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correspond to some contractive mappings in metric spaces. In 1992, Daffer and
Kaneko [8] defined an expanding condition for a pair of mappings and proved some
common fixed point theorems for two mappings in complete metric spaces. In 1989,
Bakhtin [4] introduced the concept of a b-metric space as a generalization of metric
spaces, in which many researchers treated the fixed point theory. In 1993, Czerwik
[6, 7] extended many results related to the b-metric spaces. In 1994, Matthews
[24] introduced the concept of partial metric space in which the self-distance of any
point of space may not be zero. The concept of a D-metric space introduced by the
first author in [10]. Some specific examples of a D-metric space are presented in
Dhage [11]. The details of a D-metric space and its topological properties appear
in Dhage [12]. In [13], Dhage has proved some common fixed-point theorems for
coincidentally commuting single-valued mappings in D-metric spaces satisfying a
condition of generalized contraction. In [20], Jungck introduced more generalized
commuting mappings, called compatible mappings, which are more general than
commuting and weakly commuting mappings. Jungck and Rhoades [21, 22] defined
the concepts of δ-compatible and weakly compatible mappings which extend the
concept of compatible mappings in the single-valued setting to set-valued mappings.

Definition 1.1. [32] Let S and T be self-mappings of a set Y . A point y ∈ Y is
called a coincidence point of S and T iff Sy = Ty. In this case, v = Sy = Ty is
called a point of coincidence of S and T .

Definition 1.2. [20] Two single-valued mappings f and g of a metric space (X, d)
into itself are compatible if limn→∞ d(fgxn, gfxn) = 0 whenever {xn} is a sequence
in X such that limn→∞ fxn = limn→∞ gxn = t for some t in X.

Definition 1.3. [23] Two self-mappings S and T of a metric space (Y, d) are said
to be weakly compatible iff there is a point y ∈ Y which is a coincidence point of S
and T at which S and T commute; that is, STy = TSy.

Proposition 1.1. [2] Let S and T be weakly compatible selfmaps of a nonempty
set X. If S and T have a unique point of coincidence y = Sx = Tx, then y is the
unique common fixed point of S and T .

Theorem 1.1. [37] Let (Y, d) be a complete metric space and T a self mapping on
Y . If T is surjective and satisfies

d(Tx, Ty) ≥ γd(x, y) (1.1)

for all x, y ∈ Y, with γ > 1 then T has a unique fixed point in Y .
Sedghi et al. [31] introduced a new generalized metric space called an S-metric

space. The S-metric space is a space with three dimensions. Sedghi et al. [31]
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asserted that every G-metric is an S-metric, see [31, Remarks 1.3 and 2.2]. The
Example 2.1 and Example 2.2 of Dung et al. [15] shows that this assertion is not
correct. Moreover, the class of all S-metrics and the class of all G-metrics are
distinct. Souayah et al. [35] have introduced Sb-metric space and established some
fixed point theorems. Abbas et al. [1] introduced the notion of A-metric space,
which generalization of the S-metric space. Ughade et al. [36] introduced the notion
of Ab-metric space, which generalization of the Sb-metric space and A-metric space.

In this work, we introduce a fixed point theorem for expansive mapping as a
new tools in Ab-metric spaces. The obtained results generalize some facts in the
literature.

2. Preliminaries

In this part, some useful notions and facts will be given.

Definition 2.1. [36] Let X be a nonempty set and s ≥ 1 be a given real number. A
mapping Ab : Xn → R is called an Ab-metric on X if for all xi, a ∈ X, i = 1, 2, 3, ..n
and s ≥ 1, the following conditions hold:

(Ab1) Ab(x1, x2, x3, ..., xn−1, xn) ≥ 0;

(Ab2) Ab(x1, x2, x3, ..., xn−1, xn) = 0 if and only if x1 = x2 = ... = xn−1 = xn;

(Ab3) Ab(x1, x2, x3, ..., xn−1, xn) ≤ s[Ab(x1, x1, x1, ..., x1, a)
+Ab(x2, x2, x2, ..., x2, a) +Ab(x3, x3, x3, ..., x3, a) + ...
+Ab(xn−1, xn−1, xn−1, ..., xn−1, a) +Ab(xn, xn, xn, ..., xn, a)].
The pair (X,Ab) is called an Ab-metric space.

Note that the class of Ab-metric spaces is larger than the class of A-metric spaces.
Indeed, every A-metric space is an Ab-metric space with s = 1. However, the
converse is not always true. Also Ab-metric space is an n-dimensional Sb-metric
space. Therefore the Sb-metric are special cases of an Ab-metric with n = 3.

Example 2.1. [36] Let X = [1,+∞). Define Ab : Xn → [0,+∞) by

Ab(x1, x2, x3, ..., xn−1, xn) =
n∑
i=1

∑
i<j

|xi − xj|2

for all xi ∈ X, i = 1, 2, ...n. Then (X,Ab) is an Ab-metric space with s = 2 > 1.
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Example 2.2. [36] Let X = R. Define Ab : Xn → [0,+∞) by

Ab(x1, x2, x3, ..., xn−1, xn) = |
n∑
i=2

xi − (n− 1)x1|2 + |
n∑
i=3

xi − (n− 2)x2|2 + ...

+ |
n∑

i=n−3

xi − 3xn−3|2 + |
n∑

i=n−2

xi − 2xn−2|2 + |xn − xn−1|2

for all xi ∈ X, i = 1, 2, ...n. Then, (X,Ab) is an Ab-metric space with s = 2 > 1.

Lemma 2.1. [36] Let (X,Ab) be an Ab-metric space with s ≥ 1. Then for all
x, y ∈ X,

Ab(x, x, x, ..., x, y) ≤ sAb(y, y, y, ..., y, x)

Lemma 2.2. [36] Let (X,Ab) be an Ab-metric space with s ≥ 1. Then for all
x, y, z ∈ X,

Ab(x, x, x, ..., x, z) ≤ s[(n− 1)Ab(x, x, x, ..., x, y) + Ab(z, z, z, ..., z, y)]

and

Ab(x, x, x, ..., x, z) ≤ s[(n− 1)Ab(x, x, x, ..., x, y) + sAb(y, y, y, ..., y, z)]

Note also that the following implications hold.
G-metric space ⇒ D∗-metric space ⇒ S-metric space ⇒ A-metric space

⇓ ⇓ ⇓
Gb-metric space ⇒ Sb-metric space ⇒ Ab-metric space

Definition 2.2. [36] Let (X,Ab, s) be an Ab-metric space. Then

(1) A sequence {xk} is called convergent to x in (X,Ab) if

lim
k→+∞

Ab(xk, xk, xk, xk, ..., xk, x) = 0.

That is, for each ε > 0, there exists n0 ∈ N such that for all k ≥ n0, we have
Ab(xk, xk, xk, xk, ..., xk, x) < ε and we write

lim
k→+∞

xk = x.

(2) A sequence {xk} is called Cauchy in (X,Ab) if

lim
k,m→+∞

Ab(xk, xk, xk, xk, ..., xk, xm) = 0.

That is, for each ε > 0, there exists n0 ∈ N such that for all k,m ≥ n0, we
have Ab(xk, xk, xk, xk, ..., xk, xm) < ε.



Coincidence Points and Common Fixed Points of Expansive Mappings ... 387

(3) (X,Ab) is said to be complete if every Cauchy sequence in (X,Ab) is conver-
gent.

Lemma 2.3. [36] Let (X,Ab) be an Ab-metric space with s ≥ 1. If the sequence
{xk} in X converges to x, then x is unique.

Lemma 2.4. [36] Every convergent sequence in Ab-metric space (X,Ab) is a
Cauchy sequence.

Definition 2.3. [36] The Ab-metric space (X,Ab) is said to be bounded if there
exists a constant r > 0 such that Ab(x, x, x, ..., x, y) ≤ r for all x, y ∈ X. Otherwise,
X is unbounded.

Definition 2.4. [36] Given a point x0 in Ab-metric space (X,Ab) and a positive
real number r, the set

B(x0, r) = {y ∈ X : Ab(y, y, y, ..., y, x0) < r}

is called an open ball centered at x0 with radius r.
The set

B(x0, r) = {y ∈ X : Ab(y, y, y, ..., y, x0) ≤ r}
is called a closed ball centered at x0 with radius r.
Definition 2.5. [36] A subset G in Ab-metric space (X,Ab) is said to be an open
set if for each x ∈ G there exists an r > 0 such that B(x, r) ⊂ G. A subset F ⊂ X
is called closed if X/F is open.
Definition 2.6. [36] Let (X,Ab) be an Ab-metric space with s ≥ 1. A map
f : X → X is said to be contraction if there exits a constant λ ∈ [0, 1) such that

Ab(fx1, fx2, fx3, ..., fxn) ≤ λAb(x1, x2, x3, ..., xn)

for all x1, x2, x3, ..., xn ∈ X. In case

Ab(fx1, fx2, fx3, ..., fxn) < Ab(x1, x2, x3, ..., xn)

for all x1, x2, x3, ..., xn ∈ X, xi 6= xj for some i 6= j,i, j ∈ {1, 2, ..., n}, f is called
contractive mapping.
Definition 2.7. [36] Let (X,Ab) be an Ab-metric space with s ≥ 1. A map
f : X → X is said to be expansion mapping if there exits λ > 1 such that

Ab(fx1, fx2, fx3, ..., fxn) ≥ λAb(x1, x2, x3, ..., xn)

for all x1, x2, x3, ..., xn ∈ X. In case

Ab(fx1, fx2, fx3, ..., fxn) > Ab(x1, x2, x3, ..., xn)
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for all x1, x2, x3, ..., xn ∈ X, xi 6= xj for some i 6= j,i, j ∈ {1, 2, ..., n}, f is called
expansive mapping.

3. Main Results

Now, we give some fixed-point results for expansive mappings in a complete
Ab-metric space. Our first main result as follows.
Theorem 3.1. Let (X,Ab, s) be a complete Ab-metric space with the coefficient
s > 1. Suppose the mappings S, T : X → X satisfy the condition

Ab

(
Tx, Tx, ..., Tx︸ ︷︷ ︸, Ty
(n− 1)times

)
≥ αAb

(
Sx, Sx, ..., Sx︸ ︷︷ ︸, Sy
(n− 1)times

)
+ βAb

(
Tx, Tx, ..., Tx︸ ︷︷ ︸, Sx
(n− 1)times

)

+ γAb

(
Ty, Ty, ..., T y︸ ︷︷ ︸, Sy
(n− 1)times

)
(3.1)

for all x, y ∈ X, where α, β, γ are nonnegative real numbers with α + β + γ > s2.
Assume the following hypotheses: (i) β < 1 and α 6= 0, (ii) S(X) ⊆ T (X), (iii)
T (X) or S(X) is complete. Then T and S have a point of coincidence in X.
Moreover, if α > 1, then the point of coincidence is unique. If T and S are weakly
compatible and α > 1, then T and S have a unique common fixed point in X.
Proof. Let u0 ∈ X and choose u1 ∈ X such that Su0 = Tu1. This is possible since
S(X) ⊆ T (X). Continuing this process, we can construct a sequence {uk}k∈N in
X such that Tuk = Suk−1 for all k ≥ 1.
By (3.1), we have

Ab

(
Suk−1, Suk−1, ...Suk−1︸ ︷︷ ︸, Suk
(n− 1)times

)
= Ab

(
Tuk, Tuk, ..., Tuk︸ ︷︷ ︸, Tuk+1

(n− 1)times

)

≥ αAb

(
Suk, Suk, ..., Suk︸ ︷︷ ︸, Suk+1

(n− 1)times

)
+ βAb

(
Tuk, Tuk, ..., Tuk︸ ︷︷ ︸, Suk
(n− 1)times

)

+ γAb

(
Tuk+1, Tuk+1, ..., Tuk+1︸ ︷︷ ︸, Suk+1

(n− 1)times

)

⇒ Ab

(
Suk−1, Suk−1, ..., Suk−1︸ ︷︷ ︸, Suk
(n− 1)times

)
≥ αAb

(
Suk, Suk, ..., Suk︸ ︷︷ ︸, Suk+1

(n− 1)times

)

+ βAb

(
Suk−1, Suk−1, ..., Suk−1︸ ︷︷ ︸, Suk
(n− 1)times

)
+ γAb

(
Suk, Suk, ..., Suk︸ ︷︷ ︸, Suk+1

(n− 1)times

)
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The last inequality gives

Ab

(
Suk, Suk, ..., Suk︸ ︷︷ ︸, Suk+1

(n− 1)times

)
≤ λAb

(
Suk−1, Suk−1, ..., Suk−1︸ ︷︷ ︸, Suk
(n− 1)times

)

where λ = 1−β
α+γ

. It is easy to see that λ ∈
[
0,

1

s2

)
By induction, we get that

Ab

(
Suk, Suk, ..., Suk︸ ︷︷ ︸, Suk+1

(n− 1)times

)
≤ λkAb

(
Su0, Su0, ..., Su0︸ ︷︷ ︸, Su1
(n− 1)times

)
(3.2)

for all k ≥ 0.
For m, k ∈ N with m > k, we have by repeated use of (Ab3)

Ab

(
Suk, Suk, ..., Suk︸ ︷︷ ︸, Sum
(n− 1)times

)
≤ s(n− 1)Ab

(
Suk, Suk, ..., Suk︸ ︷︷ ︸, Suk+1

(n− 1)times

)

+ sAb

(
Sum, Sum, ..., Sum︸ ︷︷ ︸, Suk+1

(n− 1)times

)

≤ s(n− 1)Ab

(
Suk, Suk, ..., Suk︸ ︷︷ ︸, Suk+1

(n− 1)times

)
+ s2Ab

(
Suk+1, Suk+1, ..., Suk+1︸ ︷︷ ︸, Sum
(n− 1)times

)

≤ s(n− 1)Ab

(
Suk, Suk, ..., Suk︸ ︷︷ ︸, Suk+1

(n− 1)times

)

+ s3(n− 1)Ab

(
Suk+1, Suk+1, ..., Suk+1︸ ︷︷ ︸, Suk+2

(n− 1)times

)
+ s3Ab

(
Sum, Sum, ..., Sum︸ ︷︷ ︸, Suk+2

(n− 1)times

)

≤ s(n− 1)Ab

(
Suk, Suk, ..., Suk︸ ︷︷ ︸, Suk+1

(n− 1)times

)

+ s3(n− 1)Ab

(
Suk+1, Suk+1, ..., Suk+1︸ ︷︷ ︸, Suk+2

(n− 1)times

)
+ s4Ab

(
Suk+2, Suk+2, ..., Suk+2︸ ︷︷ ︸, Sum
(n− 1)times

)

≤ s(n− 1)Ab

(
Suk, Suk, ..., Suk︸ ︷︷ ︸, Suk+1

(n− 1)times

)
+ s3(n− 1)Ab

(
Suk+1, Suk+1, ..., Suk+1︸ ︷︷ ︸, Suk+2

(n− 1)times

)

+ s5(n− 1)Ab

(
Suk+2, Suk+2, ..., Suk+2︸ ︷︷ ︸, Suk+3

(n− 1)times

)
+ s6Ab

(
Sum, Sum, ..., Sum︸ ︷︷ ︸, Suk+3

(n− 1)times

)
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≤ s(n− 1)Ab

(
Suk, Suk, ..., Suk︸ ︷︷ ︸, Suk+1

(n− 1)times

)

+ s3(n− 1)Ab

(
Suk+1, Suk+1, ..., Suk+1︸ ︷︷ ︸, Suk+2

(n− 1)times

)

+ s5(n− 1)Ab

(
Suk+2, Suk+2, ..., Suk+2︸ ︷︷ ︸, Suk+3

(n− 1)times

)

+ s7(n− 1)Ab

(
Suk+3, Suk+3, ..., Suk+3︸ ︷︷ ︸, Suk+4

(n− 1)times

)
+ ...

+ s2m−2k−3(n− 1)Ab

(
Sum−2, Sum−2, ..., Sum−2︸ ︷︷ ︸, Sum−1
(n− 1)times

)

+ s2m−2k−2(n− 1)Ab

(
Sum−1, Sum−1, ..., Sum−1︸ ︷︷ ︸, Sum
(n− 1)times

)

≤ (n− 1)
[
sλk + s3λk+1 + ...+ s2m−2k−3λm−2

]
Ab

(
Su0, Su0, ..., Su0︸ ︷︷ ︸, Su1
(n− 1)times

)

+ s2m−2k−2λm−1Ab

(
Su0, Su0, ..., Su0︸ ︷︷ ︸, Su1
(n− 1)times

)

= (n− 1)sλk
[
1 + s2λ+ s4λ2 + ...+ s2m−2k−4λm−k−2

]
Ab

(
Su0, Su0, ..., Su0︸ ︷︷ ︸, Su1
(n− 1)times

)

+ s2m−2k−3λm−k−1Ab

(
Su0, Su0, ..., Su0︸ ︷︷ ︸, Su1
(n− 1)times

)

≤ (n− 1)sλk
[
1 + s2λ+ s4λ2 + s6λ3 + ...

]
Ab

(
Su0, Su0, ..., Su0︸ ︷︷ ︸, Su1
(n− 1)times

)

≤ (n− 1)
sλk

1− λs2
Ab

(
Su0, Su0, ..., Su0︸ ︷︷ ︸, Su1
(n− 1)times

)
(3.3)

Since λs2 < 1, λ ∈
[
0, 1

s2

)
⊆ [0, 1). By taking limit as k,m → +∞ in above

inequality, we get

lim
k,m→∞

Ab

(
Suk, Suk, ..., Suk︸ ︷︷ ︸, Sum
(n− 1)times

)
= 0.

for all m > k. Therefore, {Suk} is a Cauchy sequence in S(X). So {Suk} is a
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Cauchy sequence in S(X). Suppose that S(X) is a complete subspace of X. Then
there exists v ∈ S(X) ⊆ T (X) such that Tuk = Suk−1 → v. In case, T (X) is
complete, this holds also with v ∈ T (X). Let z ∈ X be such that Tz = v. By (3.1),
we have

Ab

(
Suk−1, Suk−1, ..., Suk−1︸ ︷︷ ︸, Tz
(n− 1)times

)
= Ab

(
Tuk, Tuk, ..., Tuk︸ ︷︷ ︸, Tz
(n− 1)times

)

≥ αAb

(
Suk, Suk, ..., Suk︸ ︷︷ ︸, Sz
(n− 1)times

)
+ βAb

(
Tuk, Tuk, ..., Tuk︸ ︷︷ ︸, Suk
(n− 1)times

)

+ γAb

(
Tz, Tz, ..., Tz︸ ︷︷ ︸, Sz
(n− 1)times

)
Taking k →∞ in the above inequality, we get

0 ≥ (α + γ)Ab

(
v, v, ..., v︸ ︷︷ ︸, Sz
(n− 1)times

)

This implies that Ab

(
v, v, ..., v︸ ︷︷ ︸, Sz
(n− 1)times

)
= 0, since α + γ > 0. Thus Sz = v and

then Tz = Sz = v. Therefore, v is a point of coincidence of S and T .
Now we suppose that α > 1. Let y be another point of coincidence of S and T . So
Tx = Sx = y for some x ∈ X. From (3.1), we have

Ab

(
v, v, ..., v︸ ︷︷ ︸, y
(n− 1)times

)
= Ab

(
Tz, Tz, ..., T z︸ ︷︷ ︸, Tx
(n− 1)times

)

≥ αAb

(
Sz, Sz, ..., Sz︸ ︷︷ ︸, Sx
(n− 1)times

)
+ βAb

(
Tz, Tz, ..., T z︸ ︷︷ ︸, Sz
(n− 1)times

)

+ γAb

(
Tx, Tx, ..., Tx︸ ︷︷ ︸, Sx
(n− 1)times

)

= αAb

(
v, v, ..., v︸ ︷︷ ︸, y
(n− 1)times

)
which implies that

(α− 1)Ab

(
v, v, ..., v︸ ︷︷ ︸, y
(n− 1)times

)
≤ 0
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Since α > 1, we have Ab

(
v, v, ..., v︸ ︷︷ ︸, y
(n− 1)times

)
= 0 and hence v = y. Therefore, S and

T have a unique point of coincidence in X.
If S and T are weakly compatible, then by Proposition 1.1, S and T have a unique
common fixed point in X.

Corollary 3.1. Let (X,Ab, s) be a complete Ab-metric space with the coefficient
s > 1. Suppose the mappings S, T : X → X satisfy the condition

Ab

(
Tx, Tx, ..., Tx︸ ︷︷ ︸, T y
(n− 1)times

)
≥ αAb

(
Sx, Sx, ..., Sx︸ ︷︷ ︸, Sy
(n− 1)times

)
(3.4)

for all x, y ∈ X, where α > s2 is a constant. If S(X) ⊆ T (X) and T (X) or S(X)
is complete, then T and S have a unique point of coincidence in X. Moreover, if
T and S are weakly compatible, then T and S have a unique common fixed point
in X.
Proof. It follows by taking β = γ = 0 in Theorem 3.1.
The following Corollary is the b-metric version of Banach’s contraction principle.

Corollary 3.2. Let (X,Ab, s) be a complete Ab-metric space with the coefficient
s > 1. Suppose the mappings S : X → X satisfies the contractive condition

Ab

(
Sx, Sx, ..., Sx︸ ︷︷ ︸, Sy
(n− 1)times

)
≤ λAb

(
x, x, ..., x︸ ︷︷ ︸, y
(n− 1)times

)
(3.5)

for all x, y ∈ X, where λ ∈
(

0,
1

s2

)
is a constant. Then S has a unique fixed point

in X. Furthermore, the iterative sequence {Snx} converges to the fixed point.
Proof. It follows by taking β = γ = 0 and T = I, the identity mapping on X, in
Theorem 3.1.

Corollary 3.3. Let (X,Ab, s) be a complete Ab-metric space with the coefficient
s > 1. Suppose the mappings T : X → X is onto and satisfies

Ab

(
Tx, Tx, ..., Tx︸ ︷︷ ︸, T y
(n− 1)times

)
≥ αAb

(
x, x, ..., x︸ ︷︷ ︸, y
(n− 1)times

)
(3.6)

for all x, y ∈ X, where α > s2 is a constant. Then T has a unique fixed point in
X.
Proof. Taking S = I and β = γ = 0 in Theorem 3.1, we obtain the desired result.
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Corollary 3.4. Let (X,Ab, s) be a complete Ab-metric space with the coefficient
s > 1. Suppose the mappings T : X → X is onto and satisfies the condition

Ab

(
Tx, Tx, ..., Tx︸ ︷︷ ︸, T y
(n− 1)times

)
≥ αAb

(
x, x, ..., x︸ ︷︷ ︸, y
(n− 1)times

)
+ βAb

(
Tx, Tx, ..., Tx︸ ︷︷ ︸, x
(n− 1)times

)

+ γAb

(
Ty, Ty, ..., T y︸ ︷︷ ︸, y
(n− 1)times

)
(3.7)

for all x, y ∈ X, where α, β, γ are nonnegative real numbers with β < 1, α 6= 0
α+ β + γ > s2. Then T has a fixed point in X. Moreover, if α > 1, then the fixed
point of T is unique.
Proof. It follows by taking S = I in Theorem 3.1.
We conclude with a example.

Example 3.1. Let X = [0, 1]. Define Ab : Xn → [0,+∞) by

Ab(x1, x2, x3, ..., xn−1, xn) =
n∑
i=1

∑
i<j

|xi − xj|2

for all xi ∈ X, i = 1, 2, ..., n. Therefore, (X,Ab) is an Ab-metric space with s = 2 >
1.
Let us define S, T : X → X as

Tu =
u

3
and Su =

u

9
− u2

27

for all u ∈ X. Then, for every x, y ∈ X, the condition (3.1) holds for α = 9, β =
γ = 0. Thus, we have all the conditions of Theorem 3.1 and 0 ∈ X is the unique
common fixed point of T and S.

4. Conclusions
Wang et al. [37], proved some fixed point theorems for expansive mappings,

which correspond to some contractive mappings in metric spaces. In the present
article, we introduce a new approach to expansive mappings in fixed point theory
by combining the ideas of Wang and establish a fixed point theorem for expansive
mappings as a new tool in Ab-metric spaces. The obtained results generalize some
facts in the literature.
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