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1. Introduction
Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more

briefly, a geodesic from x to y in X) is a map c from a closed interval [0, l] ⊂ R to
X such that c(0) = x, c(l) = y, and d(c(t), c(t

′
)) = |t − t′| for all t, t

′ ∈ [0, l]. In
particular, c is an isometry and d(x, y) = l The image of c is called a geodesic (
or metric) segment joining x and y. In case this geodesic segment is unique, it is
denoted by [x, y]. The space (X, d) is said to be geodesic space if every two points
of X are joined by a geodesic, and X is said to be uniquely geodesic if there is
exactly one geodesic joining x and y for each x, y ∈ X. A subset Y ⊆ X is said to
be convex if Y includes every geodesic segment joining any two of its points.

A geodesic triangle ∆(x1, x2, x3) in a geodesic metric space (X, d) consists of
three points x1, x2, x3 in X ( referred as the vertices of ∆) and a geodesic segment
between each pair of vertices (referred as the edges of ∆). A comparison trian-
gle for the geodesic triangle ∆(x1, x2, x3) in (X, d) is a triangle ∆(x1, x2, x3) :=
∆(x1, x2, x3, ) in the Euclidean plane E2 such that dE2(xi, xj) = d(xi, xj) for
i, j ∈ {1, 2, 3}.

A geodesic space is said to be a CAT(0) space if all geodesic triangles of appro-
priate size satisfy the following comparison axiom : Let ∆ be a geodesic triangle
in (X, d) and let ∆ be a comparison triangle for ∆. Then ∆ is said to satisfy the
CAT(0) inequality if for all x, y ∈ ∆ and all comparison points x, y ∈ ∆, such that

d(x, y) ≤ dE2(x, y).

If x, y1, y2 are points in a CAT(0) space and if y0 is the midpoint of the segment
[y1, y2], then the CAT(0) inequality implies

d(x, y0)
2 ≤ 1

2
d(x, y1)

2 +
1

2
d(x, y2)

2 − 1

4
d(y1, y2)

2.

On the other hand, Martinet [31] introduced the proximal point algorithm
(PPA) which is a method for finding a minimizers of convex lower semicontinu-
ous (lsc) function defined on Hilbert space. The proximal point algorithm since
become extremely popular among the various researchers inclination in the theory
of optimization and also exposed many challenging mathematical problems. The
rich literature on PPA has become too extensive (see e.g. [7-9, 12, 21, 24, 37, 38,
40]). In particular, the PPA has been studied in the framework of CAT(0) space
[8, 15-17, 36, 43], Riemannian manifold [10, 20] and in Hadamard manifold [1, 3,
4, 11, 29, 44].

In 2017, Suparatulatorn et al. [43] has been introduced modified proximal
point algorithm in complete CAT(0) space (X, d) for nonexpansive mapping T as
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follows : Assume that f is convex, proper and lower semi-continuous function on
X. The modified proximal point algorithm is given by for x1, u ∈ X and λn > 0{

yn = argmin
{
f(y) + 1

2λn
d(y, xn)2

}
xn+1 = αnu⊕ (1− αn)Tnyn n ∈ N.

(1.1)

Also it was proved that if f has minimizer and {λn}, {αn} satisfy some conditions,
Then sequence generated by (1.1) strongly converges to its minimizer.

In 2018, Phuengrattana et al. [36] has been introduced modified proximal
point algorithm in complete CAT(0) space (X, d) for countably infinite family for
nonexpansive mapping T as follows : Assume that f is convex, proper and lower
semi-continuous function on X. The modified proximal point algorithm is given
by for x1, u ∈ X and λn > 0

yn = argmin{f(y) + 1
2λn

d(y, xn)2}
zn = αnu⊕ (1− αn)Tnyn
xn+1 = βnxn ⊕ (1− βn)Tnzn n ∈ N.

(1.2)

Also it was proved that if f has minimizer and {λn}, {αn}, {βn} satisfy some
conditions. Then sequence generated by (1.2) strongly converges to its minimizer.

Motivating and inspiring by the research in this direction, the following ques-
tion arises :
Question 1.Can we construct an iterative process for obtaining common fixed
points of minimizers of proper, convex, lower semi-continuous function and count-
ably infinite family of nonexpansive mappings in complete CAT(0) spaces ?

In this paper, we propose an iterative algorithm and then prove the strong con-
vergence of proposed algorithm in framework of CAT(0) space and Hilbert space for
approximating the common fixed point of countably infinite family of nonexpansive
mappings and minimizer of proper, convex, lower semicontinuous function. Then
we implement the proposed algorithm to solve constrained minimization problem
and system of linear equations. Our result generalizes the results of Bacak [8], Ba-
cak et al. [9], Cholamijak et al. [17], Phuengrattana et al. [36] and Suparatulatorn
et al. [43].

2. Preliminaries
Let (X, d) be a metric space and C a nonempty subset of X. Then a mapping
T : C −→ C is called nonexpansive mapping, if d(Tx, Ty) ≤ d(x, y) for all x, y ∈ X.
An element x ∈ X is called fixed point of T , if Tx = x. F (T ) is the set of all
fixed point of T. In 2003, Kirk [26] studied the fixed point theory for CAT(0)
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space. Recently many authors worked on fixed point theory (see [2, 30, 33-35]) and
particularly in CAT(0) space for nonexpansive theory (see [17, 27, 28, 41]).
Let C be a nonempty convex subset of CAT(0) space. Then the mapping f : C −→
C is
(i) lower semi-continuous at the point x ∈ C, if for each sequene {xn} such that
limn→∞ xn = x, we have

f(x) ≤ lim inf
n→∞

f(xn).

(ii) lower semi-continuous on C, if f is lower semi-continuous at every point of C.
(iii) convex, if foγ is convex, where γ : [0, 1] −→ C is any geodesic.
The Moreau-Yosida resolvent of function f in the CAT(0) space is given by

Jλ(x) = argminy∈C

[
f(y) +

1

2λ
d(y, x)2

]
for any λ > 0 and for all x ∈ C.
Remark 1. The resolvent Jλ of function f is nonexpansive for all λ > 0 (see [23]).
Remark 2. If f is convex, proper and lower semi-continuous function, then the set
of fixed point of the resolvent associated with f coincides with the set of minimizers
of f (see [7]).

Lemma 2.1. Suppose that (X, d) is a CAT(0) space. Then the following results
are true.
(i) For each y, z ∈ X and λ > 0 (see [23, 22])

1

2λ
d(Jλy, z)

2 − 1

2λ
d(y, z)2 +

1

2λ
d(Jλy, y)2 ≤ f(z)− f(Jλx).

(ii) For each y ∈ X and λ > µ > 0 (see [5])

Jλy = Jµ

(λ− µ
λ

Jλy ⊕
µ

λ
y
)
.

Proposition 2.2. [43] Let (X, d) be a complete CAT(0) space. The mapping
f : X −→ (−∞,∞) is convex, proper and lower semi-continuous function. Assume
that T is nonexpansive mapping on X such that for all λ, F (T )∩F (Jλ) 6= φ. Then
FoJλ = F (T ) ∩ F (Jλ) for any λ > 0.
Next, we will use the following lemma for proving our main results (see [39, 41]).

Lemma 2.3. Suppose that C is nonempty convex subset of a complete CAT(0)
space (X, d) and T : C −→ C is nonexpansive mapping. Assume that u ∈ C is
fixed. For each τ ∈ (0, 1), the mapping Vτ : C −→ C given by Vτx = τx⊕(1−τ)Tx
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for x ∈ C has a unique fixed point yτ ∈ C, i.e., yτ = Vτyτ = τx⊕ (1− τ)Tyτ .

Lemma 2.4. Assume that T and C are as above lemma. Then {yτ} remains
bounded as τ → 0 if and only if F (T ) 6= φ . Then the following results are true.
(i) {yτ} converges to unique fixed point z of mapping T , where z is nearest point
to u.
(ii) d(u, y) ≤ µnd(u, xn)2 for all Banach limit µ and all bounded sequences {xn}
with limn→∞ d(xn, Txn) = 0.

Aoyama et al. [6] in 2007 introduced the AKTT condition as follows:

Definition 1. Assume that C is nonempty subset of a complete CAT(0) space
(X, d) and {Tn} is a countably infinite family of mappings from C into C. Then
{Tn} satisfies AKTT condition, if for each bounded subset D of C,

∞∑
n=1

sup
z∈D

{
d(Tn+1z, Tnz)

}
<∞.

Remark 3. If C is closed subset of X and {Tn} satisfies the AKTT condition.
Define the mapping T : C → C by Tx = limn→∞ Tnx for all x ∈ C and we can say
that ({Tn}, T ) satisfies AKTT condition.
Using the above definition, we get the following result from [6, Lemma 3.2].

Lemma 2.5. Assume that ({Tn}, T ) satisfies AKTT condition, then limn→∞
supz∈D {d(Tz, Tnz)} = 0 for all bounded subsets D of C.

We know that l∞ is Banach space of bounded and real sequences. Assume that µ
is continuous linear functional on l∞ and (c1, c2, ....) ∈ l∞. Write µn(cn) in place of
µ((c1, c2, ..)). µ is Banach limit, if µ satisfies ‖µ‖ = µ(1, 1, ...) = 1 and µn(cn) =
µn(cn+1) for each (c1, c2, ...) ∈ l∞. For a Banach limit µ, we have lim infn→∞ cn ≤
µn(cn ≤) lim supn→∞ cn for all (c1, c2, ...) ∈ l∞. If (c1, c2, ...) ∈ l∞ with limn→∞ cn =
c∗, then µn(cn) = c∗; (see [14]).

Lemma 2.6. [42] Suppose that (c1, c2, ...) ∈ l∞ with µn(cn) ≤ 0 for all Banach
limit µ. If lim supn→∞(cn+1 − cn) ≤ 0, then lim supn→∞ cn ≤ 0.

Lemma 2.7. [6] Suppose that {wn} is a sequence of nonnegative real numbers and
{αn} is sequence of real numbers in [0, 1] with

∑∞
n=1 an = ∞, {γn} is sequence of

real numbers with lim supn→∞ βn ≤ 0. If

wn+1 ≤ (1− αn)wn + αnβn + γn, ∀n ∈ N,

then limn→∞wn = 0.
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The following condition for a geodesic metric space (X, d) to be a CAT(0) space:
For any x, y, z ∈ X and α ∈ [0, 1],

d(x, αy ⊕ (1− α)z)2 ≤ αd(x, y)2 + (1− α)d(x, z)2 − α(1− α)d(y, z)2. (2.1)

In particular, for any x, y, z ∈ X and α ∈ [0, 1],

d(x, αy ⊕ (1− α)z)2 ≤ αd(x, y)2 + (1− α)d(x, z)2. (2.2)

The following are basic results of CAT(0) spaces.

Lemma 2.8. Suppose that (X, d) is a CAT(0) space. Then the following results
are true.
(a) (X, d) is uniquely geodesic (see [13]).
(b) If h : [0, 1] −→ [y, z] is a function given by h(α) = αy ⊕ (1 − α)z, then h is
continuous and bijective (see [19]).
(c) If p, y, z,∈ X and α ∈ [0, 1], then (see [19])

d(αp⊕ (1− α)y, αp⊕ (1− α)z) ≤ (1− α)d(y, z).

(d) Let y, z ∈ X. For each α ∈ [0, 1], there exists a unique point x = αy⊕ (1− α)z
such that

d(x, y) = (1− α)d(y, z) and d(x, z) = αd(y, z) (see [25]).

3. Main Results

Theorem 3.1. Let C be a nonempty closed onvex subset of a complete CAT(0)
space (X, d) and f : C −→ (−∞,∞) be a proper, convex and lower semicontinuous
function. Suppose that u, x1 ∈ C are arbitrarily chosen and {xn} is a sequence of
a C generated by

wn = argminw∈C{f(w) + 1
2λn

d(w, xn)2}
yn = αnu⊕ (1− αn)Tnwn
zn = βnyn ⊕ (1− βn)Tnyn
xn+1 = γnzn ⊕ (1− γn)Tnzn n ∈ N,

(3.1)

where {Tn} is a countably infinite family of nonexpansive mapping of C into itself
with Ω =

⋂∞
n=1 F (Tn) ∩ argminy∈C f(y) 6= φ and {αn}, {βn}, {γn}, {λn} are the

sequences which satisfy the following axioms:
(A1) 0 < αn < 1, limn→∞ αn = 0,

∑∞
n=1 αn =∞ and

∑∞
n=1 |αn+1 − αn| <∞.

(A2) βn ∈ (b, 1] for some b ∈ (0, 1) and
∑∞

n=1 |βn+1 − βn| <∞.
(A3) γn ∈ (c, 1] for some c ∈ (0, 1) and

∑∞
n=1 |γn+1 − γn| <∞.
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(A4) λn ≥ λ > 0 for some λ ∈ (0,∞) and
∑∞

n=1 |λn+1 − λn| <∞.
Suppose that {{Tn}, T} satisfies the AKTT condition and F (T ) = ∩∞n=1F (Tn).
Then the sequence {xn} converges strongly to a point in Ω which is nearest to u.
Proof. Let q ∈ Ω and wn = Jλnxnfor all n ∈ N . Then using Lemma 2.1, we have

d(xn+1, q) ≤ γnd(zn, q) + (1− γn)d(Tnzn, q)

≤ γnd(zn, q) + (1− γn)d(zn, q)

= d(zn, q)

≤ βnd(yn, q) + (1− βn)d(Tnyn, q)

≤ βnd(yn, q) + (1− βn)d(yn, q)

= d(yn, q)

≤ αnd(u, q) + (1− αn)d(Tnwn, q)

≤ αnd(u, q) + (1− αn)d(wn, q)

≤ αnd(u, q) + (1− αn)d(Jλnxn, q)

≤ αnd(u, q) + (1− αn)d(xn, q)

≤ max{d(u, q), d(xn, q)}
d(xn+1, q) ≤ max{d(u, q), d(xn, q)}

which implies that the sequence {xn} is bounded. Thus {yn}, {zn}, {wn}, {xn},
{Tnxn}. {Tnyn}, {Tnzn}, {Jλnxn} and {Txn} are bounded.
Let λn > λn−1, using Proposition 2.2 and Condition (A4), we have

d(wn, wn−1) ≤ d(wn, Jλnxn−1) + d(Jλnxn−1, wn−1)

= d(Jλnxn, Jλnxn−1) + d(Jλnxn−1, Jλn−1xn−1)

≤ d(xn, xn−1) + d
(
Jλn−1

(λn − λn−1
λn

Jλnxn−1 ⊕
λn−1
λn

xn−1
)
, Jλn−1xn−1

)
≤ d(xn, xn−1) + d

(λn − λn−1
λn

Jλnxn−1 ⊕
λn−1
λn

xn, xn−1

)
= d(xn, xn−1) +

|λn − λn+1|
λn

d(Jλnxn−1, xn−1)

≤ d(xn, xn−1) +
|λn − λn+1|

λ
d(Jλnxn−1, xn−1).

By definition of {yn} and Lemma 2.8 (c), (d), we have

d(yn, yn+1) = d(αnu⊕ (1− αn)Tnwn, αn−1u⊕ (1− αn−1)Tn−1wn−1)
≤ d(αnu⊕ (1− αn)Tnwn, αnu⊕ (1− αn−1)Tnwn−1)

+d(αnu⊕ (1− αn)Tnwn−1, αnu⊕ (1− αn−1)Tn−1wn−1)
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+d(αnu⊕ (1− αn)Tn−1wn−1, αn−1u⊕ (1− αn−1)Tn−1wn−1)
≤ (1− αn)d(wn, wn−1) + (1− αn)d(Tnwn−1, Tn−1wn−1)

+|αn − αn−1|d(u, Tn−1wn−1)

≤ (1− αn)(d(xn, xn−1) +
|λn − λn−1|

λn
d(Jλnxn, xn−1))

+(1− αn)d(Tnwn−1, Tn−1wn−1) + +|αn − αn−1|d(u, Tn−1wn−1)

≤ (1− αn)(d(xn, xn−1) +
|λn − λn−1|

λ
d(Jλnxn, xn−1))

+(1− αn)d(Tnwn−1, Tn−1wn−1) + +|αn − αn−1|d(u, Tn−1wn−1).

Again by definition of {zn} and Lemma 2.8 (c), (d), we have

d(zn, zn+1) = d(βnyn ⊕ (1− βn)Tnyn, βn−1yn−1 ⊕ (1− βn−1)Tn−1yn−1)
≤ d(βnyn ⊕ (1− βn)Tnyn, βnyn ⊕ (1− βn−1)Tn−1yn−1)

+d(βnyn ⊕ (1− βn)Tn−1yn−1, βnyn−1 ⊕ (1− βn)Tn−1yn−1)

+d(βnyn ⊕ (1− βn)Tn−1yn−1, βn−1yn−1 ⊕ (1− βn−1)Tn−1yn−1)
≤ (1− βn)d(Tnyn, Tn−1yn−1) + βnd(yn, yn−1)

+|βn − βn−1|d(yn−1, Tn−1yn−1)

≤ βnd(yn, yn−1) + (1− βn)(d(Tnyn, Tnyn−1) + d(Tnyn−1, Tn−1yn−1))

+|βn − βn−1|d(yn−1, Tn−1yn−1)

≤ βnd(yn, yn−1) + (1− βn)(d(yn, yn−1) + d(Tnyn−1, Tn−1yn−1))

+|βn − βn−1|d(yn−1, Tn−1yn−1)

≤ d(yn, yn−1) + (1− βn)d(Tnyn−1, Tn−1yn−1)

+|βn − βn−1|d(yn−1, Tn−1yn−1).

Now,

d(xn, xn+1) = d(γnzn ⊕ (1− γn)Tnzn, γn−1zn−1 ⊕ (1− γn−1)Tn−1zn−1)
≤ d(γnzn ⊕ (1− γn)Tnzn, γnzn ⊕ (1− γn−1)Tn−1zn−1)

+d(γnzn ⊕ (1− γn)Tn−1zn−1, γnzn−1 ⊕ (1− γn)Tn−1zn−1)

+d(γnzn ⊕ (1− γn)Tn−1zn−1, γn−1zn−1 ⊕ (1− γn−1)Tn−1zn−1)
≤ (1− γn)d(Tnzn, Tn−1zn−1) + γnd(zn, zn−1)

+|γn − γn−1|d(zn−1, Tn−1zn−1)

≤ γnd(zn, zn−1) + (1− γn)(d(Tnzn, Tnzn−1) + d(Tnzn−1, Tn−1zn−1))

+|γn − γn−1|d(zn−1, Tn−1zn−1)
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≤ γnd(zn, zn−1) + (1− γn)(d(zn, zn−1) + d(Tnzn−1, Tn−1zn−1))

+|γn − γn−1|d(zn−1, Tn−1zn−1)

≤ d(zn, zn−1) + (1− γn)d(Tnzn−1, Tn−1zn−1) + |γn − γn−1|d(zn−1, Tn−1zn−1)

≤ d(yn, yn−1) + (1− βn)d(Tnyn−1, Tn−1yn−1)) + |βn − βn−1|d(yn−1, Tn−1yn−1)

+(1− γn)d(Tnzn−1, Tn−1zn−1) + |γn − γn−1|d(zn−1, Tn−1zn−1)

≤ (1− αn)
(
d(xn, xn−1) +

|λn − λn−1|
λ

d(Jλnxn, xn−1)
)

+(1− αn)d(Tnwn−1, Tn−1wn−1) + |αn − αn−1|d(u, Tn−1wn−1)

+(1− βn)d(Tnyn−1, Tn−1yn−1) + |βn − βn−1|d(yn−1, Tn−1yn−1)

+(1− γn)d(Tnzn−1, Tn−1zn−1) + |γn − γn−1|d(zn−1, Tn−1zn−1)

≤ (1− αn)d(xn, xn−1)
(

(1− αn)
|λn − λn−1|

λ
+ |αn − αn−1|

+|βn − βn−1|+ |γn − γn−1|
)
M

+(1− αn)d(Tnwn−1, Tn−1wn−1) + (1− βn)d(Tnyn−1, Tn−1yn−1)

+(1− γn)d(Tnzn−1, Tn−1zn−1)

where

M = max
{

sup
n
d(Jλnxn−1, xn−1), sup

n
d(u, Tn−1wn−1),

sup
n
d(yn−1, Tn−1yn−1), sup

n
d(zn−1, Tn−1zn−1)

}
.

Assume that

δn =
(

(1− αn)
|λn − λn−1|

λ
+ |αn − αn−1|+ |βn − βn−1|+ |γn − γn−1|

)
M

+d(Tnwn−1, Tn−1wn−1) + d(Tnyn−1, Tn−1yn−1) + d(Tnzn−1, Tn−1zn−1),

which implies that

∞∑
n=2

δn ≤M
∞∑
n=2

(
(1− αn)

|λn − λn−1|
λ

+ |αn − αn−1|+ |βn − βn−1|+ |γn − γn−1|
)

+
∞∑
n=2

sup{d(Tnw, Tn−1w) : w ∈ {zk}}+
∞∑
n=2

sup{d(Tnw, Tn−1w) : w ∈ {yk}}

+
∞∑
n=2

sup{d(Tnw, Tn−1w) : w ∈ {xk}}.
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Now, by conditions (A1)− (A4), Lemma 2.5 and AKTT condition, we have

lim
n→∞

d(xn+1, xn) = 0. (3.2)

Using Lemma 2.1, we have

1

λn
d(wn, q)

2 − 1

λn
d(xn, q)

2 +
1

λn
d(xn, wn)2 ≤ f(q)− f(wn).

Since f(q) ≤ f(wn) for all n ∈ N , therefore

d(wn, q)
2 ≤ d(xn, q)

2 − d(xn, wn)2. (3.3)

Now by (3.3) and definition of {xn}, we have

d(xn+1, q)
2 ≤ d(γnzn ⊕ (1− γn)Tnzn, q)

2

≤ γnd(zn, q)
2 + (1− γn)d(Tnzn, q)

2 − γn(1− γn)d(zn, Tnzn)2

≤ d(zn, q)
2

= d(βnyn ⊕ (1− βn)Tnyn, q)
2

≤ d(yn, q)
2

= d(αnu⊕ (1− αn)Tnwn, q)
2

≤ αnd(u, q)2 + (1− αn)d(Tnwn, q)
2 − αn(1− αn)d(u, Tnwn)2

≤ (1− αn)d(Tnwn, q)
2 + αn

(
d(u, q)2 − (1− αn)d(u, Tnwn)2

)

(1− αn)d(xn, wn) ≤ d(xn, q)
2 − d(xn+1, q)

2 + αn

(
d(u, q)2 − d(xn, q)

2

−(1− αn)d(u, Tnwn)2
)

≤ |d(xn, q)− d(xn+1, q)|d(xn, q) + d(xn+1, q)

+αn

(
d(u, q)2 − d(xn, q)

2 − (1− αn)d(u, Tnwn)2
)

≤ d(xn+1, xn)
(
d(xn, q) + d(xn+1, q)

)
+ αnd(u, q)2

d(xn, wn)2 ≤ 1

1− αn

(
d(xn+1, xn)(d(xn, q) + d(xn+1, q)) + αnd(u, q)2

)
.

Thus by (3.3) and condition (A1), we have

lim
n→∞

d(xn, wn) = 0. (3.4)
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Since λn > λ > 0 and by Lemma 2.1, we have

d(Jλxn, wn) = d
(
Jλxn, Jλ

(λn − λ
λn

Jλnxn ⊕
λ

λn
xn

))
≤ d

(
xn,
(λn − λ

λn

)
Jλnxn ⊕

λ

λn
xn

)
≤

(
1− λ

λn
d(xn, yn)

)
.

Therefore by (3.4)
lim
n→∞

d(Jλnxn, wn) = 0. (3.5)

By condition (A1), we have

d(yn, Tnwn) = d(αnu⊕ (1− αn)Tnwn, Tnwn) = αnd(u, Tnwn)→ 0. (3.6)

Now

d(zn, yn) = d(βnyn + (1− βn)Tnyn, yn)

= (1− βn)d(Tnyn, yy)

d(zn, yn)→ 0. (3.7)

Thus, by (3.6) and (3.7)

d(zn, Tnwn) ≤ d(zn, yn) + d(yn, Tnwn)→ 0. (3.8)

Now, we have

d(xn+1, zn) = d(γnzn ⊕ (1− γn)Tnzn, zn)

= (1− γn)d(zn, Tnzn)

≤ (1− b)d(zn, Tnwn) + d(Tnwn, Tnxn) + d(Tnxn, Tnxn+1)

+d(Tnxn+1, Tnzn)

≤ (1− b)d(zn, Tnwn) + d(wn, xn) + d(xn, xn+1) + d(xn+1, zn)

d(xn+1, zn) ≤ 1− b
b

(
d(zn, Tnwn) + d(wn, xn) + d(xn, xn+1)

)
.

Therefore by (3.2), (3.3) and (3.8), we have

lim
n→∞

d(xn+1, zn) = 0.
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Now, using (3.2), (3.4), (3.8) and (3.9), we have

d(Tnxn, xn) ≤ d(Tnxn, Tnwn) + d(Tnwn, zn) + d(zn, xn+1) + d(xn+1, xn)

−→ 0. (3.9)

Thus, by (3.3), (3.5) and (3.9), we have

d(TnoJλxn, xn) ≤ d(TnoJλxn, Tnwn) + d(Tnwn, Tnxn) + d(Tnxn, xn)

≤ d(Jλxn, wn) + d(wn, xn) + d(Tnxn, xn)

−→ 0. (3.10)

Therefore, by Lemma 2.5 and (3.10), we have

d(ToJλxn, xn) ≤ d(ToJλxn, TnoJλxn) + d(TnoJλxn, xn)

≤ sup{d(Tq, Tnq) : q ∈ {Jλxk}}+ d(ToJλxn, xn)

−→ 0. (3.11)

Suppose that zτ , for each τ ∈ [0, 1], is a unique point in C such that zτ = τu ⊕
(1− τ)V zτ , where V = ToJλ. Therefore by Proposition 2.2, Lemma 2.4 and (3.11),
the sequence {zτ} converges to a point z ∈ F (V ) = F (ToJλ) = F (T ) ∩ F (Jλ) =
∩∞n=0F (Tn) ∩ F (Jλ) = Ω, which is the nearest to u. For all Banach limit µ’s,

d(u, z)2 ≤ µnd(u, xn)2

which implies that

µn(d(u, z)2 − d(u, xn)) ≤ 0.

lim
n→∞

sup
{

(d(u, z)2 − d(u, xn+1)
2)− (d(u, z)2 − d(u, xn)2

}
= 0. (3.12)

By (3.3) and (3.9), we have

d(xn, Tnwn) ≤ d(xn, Tnxn) + d(Tnxn, Tnwn)

≤ d(xn, Tnxn) + d(xn, wn)

−→ 0. (3.13)

By Lemma 2.6 and (3.13), we have

lim
n→∞

sup{d(u, z)2 − (1− αn)d(u, Tnwn)2}

= lim
n→∞

sup{d(u, z)2 − d(u,wn)2}

≤ 0. (3.14)
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Now we will show that
lim
n→∞

sup{d(xn, z) = 0.

d(xn+1, z)
2 ≤ d(γnzn ⊕ (1− γnTnzn, z)2)
≤ γnd(zn, z)

2 + (1− γn)d(Tnzn, z)
2

≤ d(zn, z)
2

= d(βnyn ⊕ (1− βn)Tnyn, z)
2

≤ βnd(yn, z)
2 + (1− βn)d(Tnyn, z)

≤ d(yn, z)
2

≤ d(αnu⊕ (1− αn)Tnwn, z)
2

≤ αnd(u, z)2 + (1− αn)d(Tnwn, z)
2 − αn(1− αn)d(u, Tnwn)2

≤ αnd(u, z)2 + (1− αn)d(wn, z)
2 − αn(1− αn)d(u, Tnwn)2

≤ αnd(u, z)2 + (1− αn)d(Jλnwn, z)
2 − αn(1− αn)d(u, Tnwn)2

≤ (1− αn)d(xn, z)
2 + αn

(
d(u, z)2 + (1− αn)d(u, Tnwn)2

)
.

By Lemma 2.6, (3.14) and
∑∞

n=0 αn =∞, we have

lim
n→∞

d(xn, z)
2 = 0.

Therefore {xn} strongly converges to z of Ω, which is the nearest to u.
The following result can be obtained from Theorem 3.1 because every Hilbert space
is CAT(0) space.

Corollary 3.2. Let C be a nonempty closed convex subset of a Hilbert space H and
f : C −→ (−∞,∞) be a proper, convex and lower semicontinuous function. Sup-
pose that u, x1 ∈ C are arbitrarily chosen and {xn} is a sequence of a C generated
by 

wn = argminw∈C{f(w) + 1
2λn

d(w, xn)2}
yn = αnu⊕ (1− αn)Tnwn
zn = βnyn ⊕ (1− βn)Tnyn
xn+1 = γnzn ⊕ (1− γn)Tnzn n ∈ N,

(3.15)

where {Tn} is a countably infinite family of nonexpansive mapping of C into itself
with Ω =

⋂∞
n=1 F (Tn) ∩ argminy∈C f(y) 6= φ and {αn}, {βn}, {γn}, {λn} are the

sequences which satisfy the following axioms:
(A1) 0 < αn < 1, limn→∞ αn = 0,

∑∞
n=1 αn =∞ and

∑∞
n=1 |αn+1 − αn| <∞.

(A2) βn ∈ (b, 1] for some b ∈ (0, 1) and
∑∞

n=1 |βn+1 − βn| <∞.
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(A3) γn ∈ (c, 1] for some c ∈ (0, 1) and
∑∞

n=1 |γn+1 − γn| <∞.
(A4) λn ≥ λ > 0 for some λ ∈ (0,∞) and

∑∞
n=1 |λn+1 − λn| <∞.

Suppose that {{Tn}, T} satisfies the AKTT condition and F (T ) = ∩∞n=1F (Tn).
Then the sequence {xn} converges strongly to a point in Ω which is nearest to u.

4. Numerical Results for Proposed Proximal Point Algorithm
In this section, we will discuss the numerical results for proposed proximal point

algorithm. The software Scilab is used for solving the numerical results.

4.1. Solution of Constrained Convex Minimization Problem
The following result can be obtained by Theorem 3.2.

Theorem 4.1. Let C be a nonempty closed convex subset of a Hilbert space H and
f : C −→ (−∞,∞] be a proper, convex and lower semicontinuous function such
that f attains minimizer. Suppose that u, x1 ∈ C are arbitrarilty chosen and {xn}
is a sequence of a C generated by{

wn = argminw∈C{f(w) + 1
2λn

d(w, xn)2}
xn+1 = αnzn + (1− αn)wn n ∈ N, (4.1)

where {αn} and {λn} are the sequences which satisfy the folllowing axioms:
(A1) 0 < αn < 1, limn→∞ αn = 0,

∑∞
n=1 αn =∞ and

∑∞
n=1 |αn+1 − αn| <∞.

(A2) λn ≥ λ > 0 for some λ ∈ (0,∞) and
∑∞

n=1 |λn+1 − λn| <∞.
Then the sequence {xn} converges strongly to minimizer of f .

Example 1. Consider the following minimization problem.

min
x∈R7
‖x‖1 +

1

2
‖x‖2 + (4, 5,−6, 7, 6,−5,−4)tx + 11 (4.2)

where x = (v1, , v2, v3, v4, v5, v6, v7)
t and −200 ≤ v1, v2, v3, v4, v5, v6, v7 ≤ 200.

Suppose that

f(x) = min
x∈R7
‖x‖1 +

1

2
‖x‖2 + (4, 5,−6, 7, 6,−5,−4)tx + 11.

Then it is clear that f is convex, proper and lower continuous function. Now, by
using soft threshholding operator [22] and proximality operator [18], we have

J1(x) = argminw∈C

[
f(w) +

1

2
‖w − x‖

]
= proxfx

= prox ‖.‖1
2

(x− (4, 5,−6, 7, 6,−5,−4)t

2

)
=

(
max

{ |v1 − 4| − 1

2
, 0
}

sgn(v1 − 1),
{ |v2 − 5| − 1

2
, 0
}

sgn(v2 − 1),
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{ |v3 + 6| − 1

2
, 0
}

sgn(v3 − 1),
{ |v4 − 7| − 1

2
, 0
}

sgn(v4 − 1),{ |v5 − 6| − 1

2
, 0
}

sgn(v5 − 1),
{ |v6 + 5| − 1

2
, 0
}

sgn(v6 − 1),{ |v7 + 4| − 1

2
, 0
}

sgn(v7 − 1)
)

where sgn(.) is signum function given by for δ ∈ R

sgn(δ) =


1, δ > 0
0, δ = 0
−1 δ < 0.

(4.3)

We select the initial value x = (3, , 7 − 8, 6, 4,−2, 5)t, u = (3, 4, 4, 8, 5, 6, 4)t and
αn = 1

950n
. Then we have numerical results in Table 1. From Table 1, it is clear

Table 1: Numerical result for Example 1 with initial value x1 = (3, , 7 −
8, 6, 4,−2, 5)t

n xn = (vn
1 ,v

n
2 ,v

n
3 ,v

n
4 ,v

n
5 ,v

n
6 ,v

n
7 )

t

1 3.000000000 7.000000000 -8.000000000 6.000000000 4.000000000 -2.000000000 5.000000000
2 0.002210526 0.001894737 4.496631579 1.501473684 1.504421053 0.506631579 0.007473684
3 0.001105263 0.000947368 4.498315789 1.500736842 1.502210526 0.503315789 0.003736842
...

...
...

...
...

...
...

49 0.000046053 0.000039474 4.499929825 1.500030702 1.500092105 0.500138158 0.000155702
50 0.000045113 0.000038668 4.499931257 1.500030075 1.500090226 0.500135338 0.000152524
...

...
...

...
...

...
...

68 0.000032993 0.00002828 4.499949725 1.500021995 1.500065986 0.500098979 0.000111548
69 0.000032508 0.000027864 4.499950464 1.500021672 1.500065015 0.500097523 0.000109907
70 0.000032037 0.00002746 4.499951182 1.500021358 1.500064073 0.50009611 0.000108314

that sequence {xn} strongly converges the point (0, 0, 5, 1.5, 1.5, 0.5, 0)t which is
minimizer of function f .

4.2. Solution of system of linear equations
Example 2. Assume that X = R5 with the Euclidean norms and C = {x =
(v1, v2, v3, v4, v5)

t ∈ R5 : 0 ≤ v1, v2, v3, v4, v5 ≤ 100}. Define the mapping Tn for
each x = (v1, v2, v3, v4, v5)

t ∈ C as follows:

Tnx =
(v1 + 5

7n
,
v2 − 4n+ 1

9n
,
v3 + 11

13n
,
v4

17n
,
v5 + 7n

19n

)t
∀n ∈ N.

Define a mapping f :−→ (−∞,∞] by

f(x) =
1

2
‖Ax− b‖2,
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where A =


2 5 −7 8 9
1 4 2 3 −6
9 −2 4 6 2
5 −3 9 5 7
5 7 −2 4 5

 and b =


48
18
43
65
43

 It is clear that the mapping

f is convex, proper and lower semi-continuous and the mapping Tn is nonexpansive.
By [18],

J1(x) = argminw∈C

[
f(w) +

1

2
‖w − x‖2

]
= proxfx

= (I + AtA)−1(x + Atb),

where I is identity matrix. Thus the algorithm (3.15) becomes
wn = J1xn = (I + AtA)−1(xn + Atb)
yn = αnu⊕ (1− αn)Tnwn

zn = βnyn ⊕ (1− βn)Tnyn
xn+1 = γnxn + (1− γn)Tnzn n ∈ N.

(4.4)

Consider αn = 1
20n
, βn = 11n

23n+4
, γn = n

45n+7
, u = (2, 7, 4, 6, 4)t. It is clear that all the

assumptions of Theorem 3.1 are satisfied. Take initial value x1 = (1, 1, 4, 6, 2)t, we
have the numerical results in Table 2.

Table 2: Numerical result for modified proximal point algorithm with initial value
x1 = (1, 1, 4, 6, 2)t

n xn = (vn
1 ,v

n
2 ,v

n
3 ,v

n
4 ,v

n
5 )

t

1 1.000000000 1.000000000 4.000000000 6.000000000 2.000000000
2 0.171310107 1.584728790 2.511663762 5.002374445 2.003307657
3 0.677274751 1.809970545 2.779011014 5.000380611 2.000563415
4 0.802556501 1.878141412 2.857522366 5.000141169 2.000218585
5 0.858139232 1.910531053 2.894911652 5.000072935 2.000116979
6 0.889386246 1.929376730 2.916765928 5.000044899 2.000074087
7 0.909379373 1.941685507 2.931098452 5.000030762 2.000051964
8 0.923261869 1.950349551 2.941221310 5.000022637 2.000038999
9 0.933460682 1.956776481 2.948751302 5.000017523 2.000030699
10 0.941268952 1.961732577 2.954571379 5.000014083 2.000025031
...

...
...

...
...

...

50 0.989693099 1.993159073 2.991804811 5.000001136 2.000002331
...

...
...

...
...

...

58 0.991152297 1.994124388 2.992959004 5.000000945 2.000001953
59 0.991306151 1.994226231 2.993080814 5.000000926 2.000001914
60 0.991454746 1.994324603 2.993198482 5.000000907 2.000001876

It is clear that from Table 2 the sequence {xn} strongly converges to unique fixed
point (1, 2, 3, 5, 2)t. The point (1, 2, 3, 5, 2)t is solution of set of common fixed point
of countably infinite family of nonexpansive mappings.
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Now, consider the system of linear equations whose solution is (1, 2, 3, 5, 2)t as
follows.

2v1 + 5v2 − 7v3 + 8v4 + 9v5 = 48

v1 + 4v2 + 2v3 + 3v4 − 6v5 = 18

9v1 − 2v2 + 4v3 + 6v4 − 2v5 = 43

5v1 − 3v2 + 9v3 + 5v4 + 7v5 = 65

5v1 + 7v2 − 2v3 + 4v4 + 5v5 = 43.

4.3. Solution of constrained minimization problem
Assume that A is bounded linear operator on a subset C of H and b ∈ C.

Consider the constrained linear system

Ax = b. (4.5)

Define a mapping f : C −→ (−∞,∞] by

f(x) =
1

2
‖Ax− b‖2, (4.6)

and constrained convex minimization problem

min
x∈C

f(x) = min
x∈C

1

2
‖Ax− b‖2. (4.7)

Then by Theorem 3.1, x′ is the solution of constrained convex minimization problem
(4.7) with minimizer equal to 0 if and only if x′ is the solution of constrained linear
equation (4.5).
The following result can be obtained by using proximality operator [18].

Theorem 4.2. Let C be a nonempty closed convex subset of a Hilbert space H and
A : C −→ C bounded and linear operator and b ∈ C. Suppose that u, x1 ∈ C are
arbitrarilty chosen and {xn} is a sequence in C generated by

xn+1 = αnu+ (1− αn)(I + AtA)(xn + Atb), ∀n ∈ N, (4.8)

where {αn} is the sequences satisfies the condition :
(A1) 0 < αn < 1, limn→∞ αn = 0,

∑∞
n=1 αn =∞ and

∑∞
n=1 |αn+1 − αn| <∞.

If the equation (4.5) is consistent, then the sequence {xn} strongly converges to
solution of linear system.
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Example 3. Consider the following linear system:

7v1 + 8v2 − 3v3 − 7v4 + 4v5 + 9v6 + 6v7 =126

2v1 + 3v2 + 4v3 − 4v42v5 − 6v6 + 8v7 =43

v1 − 5v2 + 4v3 + 3v4 − 2v5 − 2v6 + 7v7 =31

8v1 − 6v2 − 5v3 + 5v4 + 4v5 + 2v6 + v7 =66

4v1 + 3v2 − 2v3 − 2v4 + 5v5 + 6v6 + 9v7 =135

6v1 + 2v2 − 3v3 − 5v4 − 8v5 + 7v6 + 6v7 =50

7v1 − 7v2 + 4v3 + 4v4 − 2v5 + v6 + 5v7 =37 (4.9)

subject to −250 ≤ v1, v2, v3, v4, v5, v6, v7 ≤ 250.

Take A =



7 8 −3 7 4 9 6
2 3 4 −4 2 −6 8
1 −5 4 3 −2 −2 7
8 −6 −5 5 4 2 1
4 3 −2 −2 5 6 9
6 2 −3 −5 −8 7 6
7 −7 4 4 −2 −1 5


, x =



v1
v2
v3
v4
v5
v6
v7


and b =



123
23
35
61
133
47
41


Select αn = 1

750n
, u = (2.1, 1.8, 1.3, 2.9, 5.7, 6.8, 7.1)t and initial value x1 = (3.5, 2.7,

2.8, 2.6, 5.5, 6.5, 6.3)t. By algorithm (4.8) and Theorem 4.2, we have the numerical
results in Table 3.

Table 3: Numerical result for algorithm 4.8 with initial value x1 =
(3.7, 2.7, 2.8, 2.6, 5.5, 6.8, 7.1)t

n xn = (vn
1 ,v

n
2 ,v

n
3 ,v

n
4 ,v

n
5 ,v

n
6 ,v

n
7 )

t

1 3.7 2.7 2.8 2.6 5.5. 6.8 7.1
2 2.208678658 1.608403386 1.095457942 3.620931366 4.832835438 6.93138019 6.980946888
3 2.208751207 1.608275485 1.095321399 3.621412629 4.832256556 6.931467893 6.980867413
4 2.295036256 1.808332034 1.112068156 3.820040063 4.772230771 6.892318699 6.969331545
...

...
...

...
...

...
...

...

19 2.208815696 1.608161794 1.095200027 3.621840418 4.831741995 6.931545852 6.980796769
20 2.208816120 1.608161046 1.095199228 3.621843232 4.831738610 6.931546365 6.980796304
...

...
...

...
...

...
...

...

58 2.208821211 1.608152071 1.095189646 3.621877005 4.831697986 6.980790727
59 2.208821255 1.608151993 1.095189564 3.621877296 4.831697636 6.931552573 6.980790679
60 2.208821297 1.608151919 1.095189484 3.621877578 4.831697298 6.931552624 6.980790633
61 2.208821338 1.608151846 1.095189407 3.621877849 4.831696971 6.931552674 6.980790588
62 2.208821416 1.608151776 1.095189332 3.621878112 4.831696654 6.931552722 6.980790544
63 2.208821416 1.608151709 1.095189260 3.621878367 4.831696348 6.931552768 6.980790502

From Table 3, it is clear that the point x63 = (2.2088214, 1.60681517, 1.095189,
3.621878, 4.831696, 6.9315527, 6.9807905)t is approximate solution of system (4.9).
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