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Abstract: For a connected graph G of order n ≥ 2, a set S ⊆ V (G) is a geodetic
vertex cover of G if S is both a geodetic set and a vertex cover of G. The minimum
cardinality of a geodetic vertex cover of G is defined as the geodetic vertex covering
number of G and is denoted by gα(G). Any geodetic vertex cover of cardinality
gα(G) is a gα− set of G. A connected geodetic vertex cover of G is a geodetic vertex
cover S such that the subgraph G[S] induced by S is connected. The minimum
cardinality of a connected geodetic vertex cover of G is the connected geodetic vertex
covering number of G and is denoted by gαc(G). A connected geodetic vertex cover
of cardinality gαc(G) is called a gαc - set of G. Some general properties satisfied
by connected geodetic vertex covering sets are studied. The connected geodetic
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vertex covering number of several classes of graphs are determined. Connected
graphs of order n with connected geodetic vertex covering number 2, 3, n

2
and n

are characterized. For any connected graph G of order n ≥ 2, the necessary and
sufficient condition for gc(G) = gαc(G) is given.

Keywords and Phrases: Geodetic vertex cover, connected geodetic vertex cover,
connected geodetic vertex covering number.
2020 Mathematics Subject Classification: 05C12.
1. Introduction

By a graph G = (V,E), we mean a finite undirected connected graph without
loops and multiple edges. The order and size of G are denoted by n and m,
respectively. For basic graph theoretic terminology we refer to [6]. For any two
vertices x and y in a connected graph G, the distance d(x, y) is the length of a
shortest x−y path in G. An x−y path of length d(x, y) is called an x−y geodesic.
A vertex v is said to lie on an x− y geodesic P if v is a vertex of P including the
vertices x and y. For a vertex v of G, the eccentricity e(v) is the distance between
v and a vertex farthest from v. The minimum eccentricity among the vertices of
G is the radius, rad G and the maximum eccentricity is its diameter, diam G. The
neighborhood of a vertex v is the set N(v) consisting of all vertices u which are
adjacent with v. A vertex v is an extreme vertex of G if the subgraph induced
by its neighbors is complete. For a cut vertex v in a connected graph G and a
component H of G − v, the subgraph H and the vertex v together with all edges
joining v and V (H) is called a branch of G at v.

A geodetic set of G is a set S ⊆ V (G) such that every vertex of G is contained
in a geodesic joining some pair of vertices in S. The geodetic number g(G) of G
is the minimum cardinality of its geodetic sets and any geodetic set of cardinality
g(G) is a minimum geodetic set or a g - set of G. The geodetic number of a
graph was introduced in [2,7] and further studied in [3-5]. It was shown in [7]
that determining the geodetic number of a graph is an NP-hard problem. The
connected geodetic number (connected geodomination number) was introduced in
[8] and further studied in [9]. A connected geodetic set of G is a geodetic set S such
that the subgraph G[S] induced by S is connected. The minimum cardinality of a
connected geodetic set of G is the connected geodetic number of G and is denoted
by gc(G). These concepts have many applications in location theory and convexity
theory. A subset S of V (G) is said to be a vertex covering set of the graph G if
every edge of G has at least one end point in S. A vertex covering set with minimum
cardinality is called minimum vertex covering set. The vertex covering number of
the graph G is the cardinality of any minimum vertex covering set of the graph G.
It is denoted by α(G). The vertex covering number was studied in [10].
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The geodetic vertex covering number was introduced and studied in [1]. A set
S ⊆ V (G) is a geodetic vertex cover of G if S is both a geodetic set and a vertex
cover of G. The minimum cardinality of a geodetic vertex cover of G is defined as
the geodetic vertex covering number of G and is denoted by gα(G). Any geodetic
vertex cover of cardinality gα(G) is a gα - set of G. A non-trivial connected graph
with no cut vertex is called a non-separable graph. A block of a graph G is a
maximal non-separable subgraph of G. A graph G is a block graph if every block of
G is complete. If a graph G has a spanning cycle Z, then G is called a hamiltonian
graph and Z a hamiltonian cycle. A graph with no induced 3-cycle is called a
triangle free graph.
Theorem 1.1. ([4]) Every extreme vertex of a connected graph G belongs to every
geodetic set of G.
Theorem 1.2. ([9]) For any non-trivial tree T of order n, gc(T ) = n.
Theorem 1.3. ([8]) For any connected graph G, gc(G) ≥ 1 + diam G.
Theorem 1.4. ([9]) Let G be a connected graph. Then every vertex of G is either
a cut vertex or an extreme vertex if and only if gc(G) = n.
Theorem 1.5. ([9]) Let G be a connected graph of order n ≥ 2. Then G = K2 if
and only if gc(G) = 2.
Theorem 1.6. ([1]) Let G be a connected graph of order n ≥ 2. Then gα(G) = 2
if and only if G is either K2 or K2,n−2 (n ≥ 3).

Throughout the following G denotes a connected graph with at least two ver-
tices.
2. The Connected Geodetic Vertex Covering Number
Definition 2.1. Let G be a connected graph with at least two vertices. A connected
geodetic vertex cover of G is a geodetic vertex cover S such that the subgraph G[S]
induced by S is connected. The minimum cardinality of a connected geodetic vertex
cover of G is the connected geodetic vertex covering number of G and is denoted by
gαc(G). A connected geodetic vertex cover of cardinality gαc(G) is called a gαc - set
of G.
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Example 2.2. For the graph G given in Figure 2.1, S = {v1, v4, v5} is a gα -
set of G so that gα(G) = 3; and S1 = {v1, v4, v5, v6} is a gαc - set of G so that
gαc(G) = 4. Thus the geodetic vertex covering number and the connected geodetic
vertex covering number of a graph are different.
Remark 2.3. For the graph G given in Figure 2.1, S1 = {v1, v4, v5, v6} and
S2 = {v1, v2, v3, v6} are two distinct gαc - sets of G. Thus there can be more than
one gαc - set for a graph G.

Theorem 2.4. Every extreme vertex of a connected graph G belongs to every con-
nected geodetic vertex cover of G. In particular, every end vertex of G belongs to
every connected geodetic vertex cover of G.
Proof. Since every connected geodetic vertex cover of G is a geodetic set, the
result follows from Theorem 1.1.

Theorem 2.5. For any connected graph G of order n ≥ 2, 2 ≤ gα(G) ≤ gαc(G) ≤
n.
Proof. Any geodetic vertex cover of G needs at least two vertices and so gα(G) ≥ 2.
Since every connected geodetic vertex cover of G is also a geodetic vertex cover, it
follows that gα(G) ≤ gαc(G). Also, since V (G) induces a connected geodetic vertex
cover of G, it is clear that gαc(G) ≤ n.

Remark 2.6. The bounds in Theorem 2.5 are sharp. For the path G = P3, gα(G) =
2 and for the complete graph G = Kn (n ≥ 2), gαc(G) = n. Also, all the inequalities
in Theorem 2.5 are strict. For the graph G given in Figure 2.2, S = {v1, v3, v4, v6}
is a gα - set of G and S1 = {v1, v3, v4, v5, v6} is a gαc - set of G. Hence gα(G) =
4, gαc(G) = 5, n = 6 and so 2 < gα(G) < gαc(G) < n.

Corollary 2.7. Let G be any connected graph of order n ≥ 2. If gαc(G) = 2, then
gα(G) = 2.

Corollary 2.8. Let G be any connected graph of order n ≥ 2. If gα(G) = n, then
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gαc(G) = n.

Corollary 2.9. For any connected graph G with k extreme vertices, gαc(G) ≥
max(2, k).
Proof. This follows from Theorem 2.4 and Theorem 2.5.

Corollary 2.10. For the complete graph Kn (n ≥ 2), gαc(Kn) = n.

Theorem 2.11. Let G be a connected graph with cut vertices and let S be a con-
nected geodetic vertex cover of G. If v is a cut vertex of G, then every component
of G− v contains an element of S.
Proof. Let v be a cut vertex of G and let S be a connected geodetic vertex cover of
G. Suppose that there exists a component, say G1, of G− v such that G1 contains
no vertex of S. Let x ∈ V (G1). Since S is a connected geodetic vertex cover of G,
there exists a pair of vertices u and w in S such that x lies in some u−w geodesic
P : u = u0, u1, ..., ui = x, ...ul = w in G. Since v is a cut vertex of G, the u − x
subpath of P and the x− w subpath of P both contain v, it follows that P is not
a path, contrary to the assumption.

Corollary 2.12 Let G be a connected graph with cut vertices and let S be a con-
nected geodetic vertex cover of G. Then every branch of G contains an element of
S.

Theorem 2.13. Every cut vertex of a connected graph G belongs to every con-
nected geodetic vertex cover of G.
Proof. Let G be a connected graph and let S be a connected geodetic vertex cover
of G. Let v be any cut vertex of G and let G1, G2, ..., Gr (r ≥ 2) be the components
of G−v. By Theorem 2.11, S contains at least one vertex from each Gi (1 ≤ i ≤ r).
Since G[S] is connected, it follows that v ∈ S.

Corollary 2.14. For any connected graph G with k extreme vertices and l cut
vertices, gαc(G) ≥ max{2, k + l}.
Proof. This follows from Theorems 2.4 and 2.13.

Corollary 2.15. For any non-trivial tree T of order n, gαc(T ) = n.
Proof. This follows from Corollary 2.14.

Theorem 2.16. For the cycle Cn (n ≥ 4), gαc(Cn) = n− 1.
Proof. Let Cn : v1, v2, ..., vn, v1 be the cycle of order n. It is clear that S =
{v1, v2, v3,
..., vn−1} is a minimum connected geodetic vertex cover of G and so gαc(Cn) = n−1.

Theorem 2.17. For the complete bipartite graph G = Ks,t(2 ≤ s ≤ t), gαc(G) =
s+ 1.
Proof. Let U = {u1, u2, ..., us} and W = {w1, w2, ..., wt} be the partite sets of G.
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Let S = U ∪{w1}. We claim that S is a minimum connected geodetic vertex cover
of G. Clearly every vertex wj (2 ≤ j ≤ t) of W lies on the geodesic ui, wj, uk for
any i 6= k and S covers all the edges of G. Hence S is a geodetic vertex cover of
G. Since G[S] is connected, S is a connected geodetic vertex cover of G. Let T be
any set of vertices such that |T | < |S|. If T ( U, then G[T ] is not connected and
so T is not a connected geodetic vertex cover of G. If T ( W , again T is not a
connected geodetic vertex cover of G by a similar argument. If T ⊇ U, then since
|T | < |S|, we have T = U, which is not a connected geodetic vertex cover of G. If
T ⊇ W, then since |T | < |S|, we have T = W, which is not a connected geodetic
vertex cover of G. Thus T ( U ∪W such that T contains at least one vertex from
each of U and W. Then since |T | < |S|, there exist vertices ui ∈ U and wj ∈ W
such that ui /∈ T and wj /∈ T. Then clearly the edge uiwj cannot be covered by
any of the vertices of T so that T is not a connected geodetic vertex cover of G.
Thus in any case T is not a connected geodetic vertex cover of G. Hence S is a
minimum connected geodetic vertex cover of G so that gαc(G) = |S| = s+ 1.

Theorem 2.18. For the wheel Wn = K1 + Cn−1(n ≥ 5), gαc(Wn) = dn−1
2
e+ 1.

Proof. Let Cn : v1, v2, ..., vn−1, v1 be the cycle of Wn and let x be the vertex of K1

in Wn. Then S = {x, v1, v3, ..., v2dn−1
2
e−1} is a minimum connected geodetic vertex

cover of G and so gαc(Wn) = dn−1
2
e+ 1.

Now we proceed to characterize graphs for which gαc(G) = 2, gαc(G) = 3,
gαc(G) = n

2
and gαc(G) = n.

Theorem 2.19. For any connected graph G, gαc(G) = 2 if and only if G = K2.
Proof. If G = K2, then gαc(G) = 2. Conversely, let gαc(G) = 2. Let S = {u, v} be
a minimum connected geodetic vertex cover of G. Then uv is an edge. If G 6= K2,
then there exists an edge xy different from uv. Then at least one of the vertices
x and y cannot lie on the u − v geodesic so that S is not a gαc - set, which is a
contradiction.Thus G = K2.

Theorem 2.20. Let G be a connected graph of order n ≥ 3. Then gαc(G) = 3
if and only if there exists a connected geodetic set S of G on 3 vertices such that
V (G)− S is either empty or an independent set.
Proof. Let gαc(G) = 3. Let S = {x, y, z} be a minimum connected geodetic vertex
cover of G. Then S is a connected geodetic set on 3 vertices. If n = 3, then V (G)−S
is empty. Let n ≥ 4. Now claim that V (G)−S is an independent set. If not, there
exist two vertices u, v ∈ V (G) − S such that uv ∈ E(G). Then uv is not covered
by any of the vertices in S, which is a contradiction.

Conversely, assume that there exists a connected geodetic set S on 3 vertices
such that V (G) − S is either empty or an independent set. Let S = {x, y, z}.
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Suppose V (G) − S is empty. Then S = V (G) and so S is a connected geodetic
vertex cover of G. We claim that S is a minimum connected geodetic vertex cover
of G. Suppose that S ′ is a connected geodetic vertex cover of G of order 2. Then
by Theorem 2.19, gαc(G) = 2 if and only if G = K2. But G is a connected graph
of order n ≥ 3. Hence no two vertex subset of S is a connected geodetic vertex
cover of G. Thus gαc(G) = 3. If not, let V (G) − S be independent. Then every
edge of G has at least one end in S and hence S is a vertex cover of G. Hence S is
a connected geodetic vertex cover of G. Since n ≥ 3 and by Theorem 2.19, S is a
minimum connected geodetic vertex cover of G. Thus gαc(G) = 3.

Theorem 2.21. Let G be a connected non-complete hamiltonian graph of even
order n. Then gαc(G) = n

2
if and only if there exists a connected geodetic set S on

n
2
vertices such that V (G)− S is an independent set.

Proof. Let gαc(G) = n
2
. Let S be a minimum connected geodetic vertex cover

of G. Then S is a connected geodetic set on n
2

vertices. Suppose V (G) − S is
not an independent set. Then there exist two vertices u, v ∈ V (G) − S such
that uv ∈ E(G). Then uv is not covered by any of the vertices in S, which is a
contradiction.

Conversely, assume that there exists a connected geodetic set S on n
2

vertices
such that V (G)− S is an independent set. Since V (G)− S is an independent set
of vertices, every edge of G has at least one end in S and hence S is a vertex cover
of G. Hence S is a connected geodetic vertex cover of G. Let C be a hamiltonian
cycle of G. To cover the edges of C, at least n

2
vertices are needed so that G cannot

have a vertex cover of order less than n
2
. Hence S is a minimum connected geodetic

vertex cover of G. Thus gαc(G) = n
2
.

Theorem 2.22. Let G be a connected graph. Then every vertex of G is either an
extreme vertex or a cut vertex if and only if gαc(G) = n.
Proof. Let G be a connected graph with every vertex is either an extreme vertex
or a cut vertex. Then by Theorems 2.4 and 2.13, gαc(G) = n.

Conversely, assume that gαc(G) = n. Suppose that there is a vertex x in G which
is neither a cut vertex nor an extreme vertex. Since x is not an extreme vertex,
< N(x) > is not a complete subgraph and hence there exist u and v in N(x) such
that d(u, v) = 2. Clearly x lies on a u− v geodesic in G. Also, since x is not a cut
vertex of G, G − x is connected and hence V − {x} is a vertex cover of G. Thus
V −{x} is a connected geodetic vertex cover of G and so gαc(G) ≤ |V −{x}| = n−1,
which is a contradiction.

Corollary 2.23. Let G be a connected block graph of order n ≥ 2. Then gαc(G) =
n.
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Proof. Since every block of G is complete, every vertex of G is either an extreme
vertex or a cut vertex. Hence gαc(G) = n.

Corollary 2.24. If G = K1 + ∪mjKj, then gαc(G) = n where mj denotes the
number of copies of Kj.

Theorem 2.25. Let G be a triangle free graph of order n with δ(G) ≥ 2. Then
gαc(G) ≤ n− 1.
Proof. Let G be a triangle free graph of order n with δ(G) ≥ 2. Let v be a vertex
in G.
Case (i) v is not a cut vertex. Since G is triangle free and δ(G) ≥ 2, v has at least
two non adjacent neighbors x and y in G. Then v lies on the geodesic x,v,y and the
edges vx, vy are incident with the vertices x and y. Clearly the subgraph induced
by V (G)−{v} is connected. Hence S = V (G)−{v} is a connected geodetic vertex
cover of G. Hence gαc(G) ≤ n− 1.
Case (ii) v is a cut vertex. Let G1, G2, ..., Gr (r ≥ 2) be the components of G− v.
Since G is triangle free with δ(G) ≥ 2, every component of G − v must contain
at least a path on 3 vertices. Let G1 contain a path P : x, u, y. Then clearly the
vertex u lies on the geodesic x, u, y and the edges ux, uy are covered by the vertices
x and y. Hence S = V (G)− {u} is a connected geodetic vertex cover of G and so
gαc(G) ≤ n− 1.

Theorem 2.26. Let G be a connected non-complete graph. If G has a minimum
cut set consisting of i independent vertices, then gαc(G) ≤ n− i+ 1.
Proof. Let U = {v1, v2, ..., vi} be a minimum independent cut set of vertices of G.
Since G is non-complete, it is clear that 1 ≤ i ≤ n−2. Let G1, G2, ..., Gr (r ≥ 2) be
the components of G−U and let S = V (G)−U. Then every vertex vj (1 ≤ j ≤ i)
is adjacent to at least one vertex of Gt for every t (1 ≤ t ≤ r). It is clear that S is
a geodetic set of G and G[S] is not connected. Also, it is clear that G[S ∪ {x}] is
a connected geodetic set for any vertex x in U. Since U is an independent set of
vertices, every edge of G has at least one end in S so that S is a vertex cover of G.
Hence S∪{x} is a connected geodetic vertex cover of G so that gαc(G) ≤ n− i+1.

Theorem 2.27. If G is a connected graph such that gα(G) = 2, then gαc(G) =
1 + diam G.
Proof. Let gα(G) = 2. Then by Theorem 1.6, G = K2 or G = K2,n−2(n ≥ 3). If
G = K2, clearly diam G = 1 and gαc(G) = 2 by Theorem 2.19. Thus gαc(G) =
1 + diam G. If G = K2,n−2, then clearly diam G = 2 and gαc(G) = 3 by Theorem
2.17. Hence gαc(G) = 3 = 1 + diam G.
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3. Connected geodetic number and connected geodetic vertex covering
number of a graph

Theorem 3.1. For any connected graph G, 2 ≤ gc(G) ≤ gαc(G) ≤ n.
Proof. Any connected geodetic set needs at least two vertices and so gc(G) ≥ 2.
Since every connected geodetic vertex cover of G is a connected geodetic set of G,
gc(G) ≤ gαc(G). Also, since V (G) induces a connected geodetic vertex cover of G,
it is clear that gαc(G) ≤ n. Hence 2 ≤ gc(G) ≤ gαc(G) ≤ n.

Remark 3.2. The bounds in Theorem 3.1 are sharp. For the graph G = K2, gαc(G) =
2. For any non-trivial tree T, gc(T ) = gαc(T ), by Theorem 1.2 and Corollary 2.15.
Also all the inequalities in Theorem 3.1 are strict. For the graph G given in Figure
3.1, S = {v3, v5, v6} is a minimum connected geodetic set of G so that gc(G) = 3
and M = {v2, v3, v5, v6} is a minimum connected geodetic vertex cover of G so that
gαc(G) = 4 and so 2 < gc(G) < gαc(G) < n.

Corollary 3.3. Let G be any connected graph. If gαc(G) = 2, then gc(G) = 2.

Corollary 3.4. Let G be any connected graph. If gc(G) = n, then gαc(G) = n.

Theorem 3.5. For a connected graph G, gαc(G) ≥ 1 + diam G.
Proof. This follows from Theorem 1.3 and Theorem 3.1.

Theorem 3.6. Let G be a connected graph of order n. Then gc(G) = gαc(G) if
and only if every vertex of G is either a cut vertex or an extreme vertex, or there
exists a minimum connected geodetic set S of G such that V (G)−S is independent.
Proof. Let gc(G) = gαc(G). Suppose that gc(G) = gαc(G) = n. Then by Theorem
2.22, every vertex of G is either a cut vertex or an extreme vertex. Otherwise,
gc(G) = gαc(G) < n. Let S be a minimum connected geodetic set of G. Since
gc(G) = gαc(G), S is also a vertex cover of G. Hence no edge of G has its two ends
in V (G)− S. Thus V (G)− S is independent.
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Conversely, let G be a connected graph with every vertex of G is either a cut
vertex or an extreme vertex, or there exists a minimum connected geodetic set S of
G such that V (G)−S is independent. If every vertex of G is either a cut vertex or
an extreme vertex, then by Theorem 1.4 and Theorem 2.22, gc(G) = gαc(G) = n.
If S is a minimum connected geodetic set of G such that V (G)−S is independent,
then every edge of G has at least one end in S. Thus S is a minimum connected
geodetic vertex cover of G. Hence gαc(G) = |S| = gc(G).

Theorem 3.7. Let G be a connected graph with gc(G) ≥ n − 1. Then gαc(G) =
gc(G).
Proof. Let G be a connected graph with gc(G) ≥ n − 1. If gc(G) = n, then
gαc(G) = n and so gαc(G) = gc(G). If gc(G) = n−1, let S be a minimum connected
geodetic set on n− 1 vertices. Then V (G)− S is a singleton set and so V (G)− S
is independent. Then by Theorem 3.6, gc(G) = n− 1 = gαc(G).

Remark 3.8. The converse of Theorem 3.7 is not true. For the complete bipartite
graph G = K2,t(t ≥ 3), by Theorem 2.17, gc(G) = gαc(G) = 3 < n = t+ 2.

We proved in Theorem 2.5 that 2 ≤ gαc(G) ≤ n. The following theorem gives a
realization result for these parameters.

Theorem 3.9. For any two positive integers a and n with 3 ≤ a ≤ n, there exists
a connected graph G with gαc(G) = a and |V (G)| = n.
Proof. We prove this theorem by considering two cases.
Case(i) 3 ≤ a = n. Take G = Kn, the complete graph on n vertices. Then by
Corollary 2.10, gαc(G) = n = a.
Case (ii) 3 ≤ a < n. Take H = Ka−2, the complete graph on a − 2 vertices
u1, u2, ..., ua−2. Add n−a+ 2 new vertices v1, v2, ..., vn−a+1, x to H and join vi (1 ≤
i ≤ n− a + 1) to both ua−2 and x, there by producing the graph G. The graph G
is shown in Figure 3.2 and its order is n.
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Let S = {u1, u2, ..., ua−3} be the set of all extreme vertices of G. Then by
Theorem 1.1, S is a subset of every geodetic set of G. Observe that S ′ = S ∪ {x}
is a minimum geodetic set of G and the edges of Ka−2 and the edge vix (1 ≤ i ≤
n − a + 1) are covered by the vertices of S ′. Now, to cover the edges ua−2vi (1 ≤
i ≤ n−a+1), we must include the vertex ua−2 to S ′. Let S ′′ = S ′∪{ua−2}. Clearly
S ′′ is a minimum geodetic vertex cover of G. But G[S ′′] is not connected. To get a
minimum connected geodetic vertex cover of G, we must include one of the vertices
from {vi}, where 1 ≤ i ≤ n − a + 1, to S ′′. Hence a minimum connected geodetic
vertex cover of G is S ′′′ = {u1, u2, ..., ua−3, ua−2, v1, x} with |S ′′′| = a < n.

Theorem 3.10. For any two positive integers a and b with 2 ≤ a ≤ b, there exists
a connected graph G with g(G) = a and gαc(G) = b.
Proof. We prove this theorem by considering two cases.
Case(i) 2 ≤ a = b. Take G = Kn, the complete graph on n vertices. Then by
Theorem 1.1 and Corollary 2.10, g(G) = gαc(G) = a.
Case(ii) 2 ≤ a < b. Let H = Ka be the complete graph on a vertices u1, u2, ..., ua.
Let P : v1, v2, ..., vb−a be a path of order b− a. Let G be the graph obtained from
H and P by joining the vertices ua in Ka and v1 in P as in Figure 3.3.

Let S = {u1, u2, ..., ua−1, vb−a} be the set of all simplicial vertices of G so that
they must belong to every geodetic set of G. It is clear that S is a minimum geodetic
set of G so that g(G) = a. Also it is clear that S ′ = S ∪ {ua, v1, v2, ..., vb−a−1} is a
minimum connected geodetic vertex cover of G so that gαc(G) = b.

4. Conclusion
In this paper, we defined a new graph theoretic parameter ”connected geodetic

vertex covering number” of a graph and established some general properties sat-
isfied by this parameter. The connected geodetic vertex covering number of some
standard graphs were determined. Also, we established the relation between the
connected geodetic number and the connected geodetic vertex covering number of a
graph. We hope that the results presented in this paper will be useful in the study
of upper connected geodetic vertex covering number of a graph, forcing connected
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geodetic vertex covering number of a graph and so on.
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