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1. Introduction

Bailey [1] established a simple but a very useful transform called as Bailey
transform: if

βn =
n∑

r=0

αrun−rvn+r

and

γn =
∞∑
r=n

δrur−nvr+n,

then
∞∑
n=0

αnγn =
∞∑
n=0

βnδn

subject to conditions on the four sequences αn, βn, γn and δn which make all the
relevant infinite series absolutely convergent.
The celebrated Bailey [1] transform was extensively used to obtain transforma-
tion formulae of ordinary hypergeometric series and basic hypergeometric series
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with help of known summation formulae. The technique provided by Bailey [1]
and Slater [3, 4] was extensively exploited by number of mathematicians notably
Andrews [6, 7], Verma and Jain [8, 9],Verma[10], U.B.Singh [11], Agarwal [12],
S.P.Singh [13], Denis[14], Denis et. al. [15, 16, 17], Srivastav and Rudravarapu[18]
and S.Singh [19] to establish number of transformation formulae of ordinary and
basic hypergeometric series and also Rogers-Ramanujan type identities of differ-
ent moduli. Recently, Denis et.al. [17] have established transformation formulae
involving bilateral poly-basic hypergeometric functions with the help of bilateral
Bailey transform introduced by Andrews and Warnaar [2]. We have applied the
idea of Denis et.al. [17] to obtain transformation formulae between ordinary bilat-
eral hypergeometric series and ordinary hypergeometric series.
2. Definitions and Notations:
For ‘a’ real or complex and ‘n’ be a positive integer, we define

(a)k =

{
1 if k = 0;
a(a+ 1)(a+ 2)(a+ 3) . . . (a+ k − 1) if k ≥ 1.

(a)n =
Γ(a+ n)

Γ(a)

and

(a)n−r =
(−1)r(a)n

(1− a− n)r
, (a)2n =

(
1

2
a

)
n

(
1

2
a+

1

2

)
n

22n.

Now, we define a generalized hypergeometric function,

AFB[(a); (b); z] =
∞∑
n=0

((a)A)nz
n

((b)B)n
(2.1)

where there are always A of a parameters and B of the b parameters. The mean-
ing of (a) and (b) are sequences of parameters a1, a2, a3, ...aA and b1, b2, b3, ..., bB
respectively.
The series (2.1) is convergent if

(I) Rl

(
B∑

v=1

bv −
A∑

v=1

av

)
> 0 when z = 1

(II) Rl

(
B∑

v=1

bv −
A∑

v=1

av

)
> −1 when z = −1

(III) A = B + 1 when |z| < 1
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(IV) A > B + 1 when z = 0
We also define an ordinary bilateral hypergeometric function by

AHB

[
a1, a2, a3, ..., aA; z
b1, b2, b3, ..., bB

]
=

∞∑
n=−∞

(a1)n(a2)n(a3)n...(aA)n
(b1)n(b2)n(b3)n...(bB)n

zn (2.2)

which holds for all real or complex values of the parameters except zero or integers
and for all values of argument z such that |z| = 1.
Further, the series (2.2) is convergent if

(I) Rl

(
B∑

v=1

bv −
A∑

v=1

av

)
> 1 when z = −1

(II) Rl

(
B∑

v=1

bv −
A∑

v=1

av

)
> 0 when z = 1

The series terminates above if any one of a parameters is negative integer and
terminates below if any one of b parameters is positive integer.
In 2007, Andrews and Warnaar [2] extended the Bailey transform to bilateral Bailey
transform and introduced two bilateral versions of Bailey’s transform for proving
certain identities related to false theta functions due to Ramanujan.
(a) Symmetric Bilateral Bailey’s Transform:
If

βn =
n∑

r=−n

αrun−rvn+r (2.3)

and

γn =
∞∑

r=|n|

δrur−nvr+n (2.4)

then
∞∑

n=−∞

αnγn =
∞∑
n=0

βnδn (2.5)

subject to conditions on the four sequences αn, βn, γn and δn which make all the
relevant infinite series uniformly and absolutely convergent.
(b) Asymmetric Bilateral Bailey’s Transform:
Let m = max.(n,−n− 1), then,
If

βn =
n∑

r=−n−1

αrun−rvn+r+1 (2.6)
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and

γn =
∞∑

r=m

δrur−nvr+n+1 (2.7)

then
∞∑

n=−∞

αnγn =
∞∑
n=0

βnδn (2.8)

subject to conditions on the four sequences αn, βn, γn and δn which make all the
relevant infinite series uniformly and absolutely convergent.
We shall also make use of following summation formulae

2H2 =

[
a, b; 1
c, d

]
= Γ

[
c, d, 1− a, 1− b, c+ d− a− b− 1
c− a, d− a, c− b, d− b

]
(2.9)

[Slater 5; p.181]

On putting a=-n and c=n+1 in (2.9), we have

2H2 =

[
−n, b; 1
1 + n, d

]
=

(1)n(1)n(d− b)2n
(d)n(1− b)n(1)2n

(2.10)

Also,

3H3

[
b, c, d; 1
1 + a− b, 1 + a− c, 1 + a− d

]

= Γ

 1− b, 1− c, 1− d, 1 + a− b, 1 + a− c, 1 + a− d,

1 + a− c− d, 1 + a− b− d, 1 + a− b− c, 1 +
1

2
a− b, 1 +

1

2
a− c,

1− 1

2
a, 1 +

1

2
a, 1 +

3

2
a− b− c− d

1 +
1

2
a− d, 1 + a, 1− a

 (2.11)

[Slater 5; p.182]

On putting a=0, and b=-n in (2.11), we have

3H3

[
−n, c, d; 1
1− b, 1− c, 1− d

]
=

(1)n(1− c− d)n
(1− d)n(1− c)n

(2.12)
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7F6

 a, 1 +
1

2
a, b, c, d, 1 + 2a− b− c− d+ n,−n; 1

1

2
a, 1 + a− b, 1 + a− c, 1 + a− d, b+ c+ d− a− n, 1 + a− n


=

(1 + a)n(1 + a− b− c)n(1 + a− b− d)n(1 + a− c− d)n
(1 + a− b)n(1 + a− c)n(1 + a− d)n(1 + a− b− c− d)n

(2.13)

[Slater 5; App. III 14, p. 244]

As a→ 0, we get

5H5

[
b, c, d, 1− b− c− d+ n,−n; 1
1− b, 1− c, 1− d, b+ c+ d− n, 1 + n

]

=
(1)n(1− b− c)n(1− b− d)n(1− c− d)n
(1− b)n(1− c)n(1− d)n(1− b− c− d)n

(2.14)

On putting a = −n, c = n+ 2 in (2.9), we have

2H2

[
−n, b; 1
n+ 2, d

]
=

(d− b)
(2− b)

(1)n(2)n(1 + d− b)2n
(d)n(2− b)n(2)2n

(2.15)

Gauss’s theorem

2F1

[
a, b; 1
c

]
= Γ

[
c, c− a− b
c− a, c− b

]
(2.16)

[Slater 5; App. III 3, p. 243]

Watson’s theorem

3F2

[
a, b, c; 1
1
2

+ 1
2
a+ 1

2
b, 2c

]
= Γ


1

2
, c+

1

2
,
1

2
+

1

2
a+

1

2
b,

1

2
− 1

2
a− 1

2
b+ c

1

2
+

1

2
a,

1

2
+

1

2
b,

1

2
− 1

2
a+ c,

1

2
− 1

2
b+ c

 (2.17)

[Slater 5; App. III 23, p. 245]

3. Main Results:
Our main results are as under -

3H3

[
b, p, q;−1
d, 1− p, 1− q

]
=

Γ(1− p)Γ(1− q)
Γ(1− p− q) 4F3

 p, q,
d− b

2
,
d− b+ 1

2
; 1

1

2
, d, 1− b

 (3.1)
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∞∑
n=−∞

(b)n(2p)n(2q)n

(
1

2
+ p+ q

)
n

(−4)−n

(d)nΓ

(
1

2
+
n

2
+ p

)
Γ

(
1

2
+
n

2
+ q

)
Γ
(

1− p+
n

2

)
Γ
(

1− q +
n

2

)

=
1

Γ

(
1

2

)
Γ

(
1

2
+ p+ q

)
Γ(1− p− q)

4F3


2p, 2q,

d− b
2

,
d− b+ 1

2
; 1

d, 1− b, 1

2
+ p+ q

 (3.2)

4H4

[
c, d, p, q;−1
1− c, 1− d, 1− p, 1− q

]
=

Γ(1− p)Γ(1− q)
Γ(1− p− q) 3F2

[
p, q, 1− c− d; 1
1− c, 1− d

]
(3.3)

∞∑
n=−∞

(p)n(q)n(c)n(d)n

(
−1

4

)n

(1− c)n(1− d)nΓ
(
1
2

+ p
2

+ n
2

)
Γ
(
1
2

+ q
2

+ n
2

)
Γ
(
1− p

2
+ n

2

)
Γ
(
1− q

2
+ n

2

)

=
1

Γ

(
1

2

)
Γ

(
1

2
− p

2
− q

2

)
Γ

(
1

2
+
p

2
+
q

2

) 4F3


1

2
, p, q, 1− c− d; 1

1− c, 1− d, 1

2
+
p

2
+
q

2

 (3.4)

5H5

 b, c, d,
1− b− c− d

2
, 1− (b+ c+ d)

2
; 1

1− b, 1− c, 1− d, (b+ c+ d)

2
,
(1 + b+ c+ d)

2


=

Γ(b+ c+ d)Γ(b+ c+ d)

Γ(2b+ 2c+ 2d− 1)
4F3

[
1− b− c, 1− b− d, 1− c− d, 1− b− c− d; 1
1− b, 1− c, 1− d

]
(3.5)

4H4

 b, c, d,
1− b− c− d

2
; 1

1− b, 1− c, 1− d, (1 + b+ c+ d)

2



=

(
Γ

(
1− b

2
− c

2
− d

2

))2(
Γ

(
1 + b+ c+ d

2

))2

Γ

(
1

2

)
Γ(b+ c+ d)Γ

(
3

2
− b− c− d

) ×
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× 5F4

 1

2
, 1− b− c, 1− b− d, 1− c− d, 1− b− c− d; 1

1− b, 1− c, 1− d, 3

2
− b− c− d

 (3.6)

3H3

[
b, p, q;−1
d, 2− p, 2− q

]

=
(d− b)Γ(2− p)Γ(2− q)

(2− b)Γ(2− p− q) 4F3

 p, q,
1 + d− b

2
, 1 +

d− b
2

; 1

3

2
, 2− b, d

 (3.7)

provided Re(4 + d− b− 2p− 2q) > 1
4. Proof:
(i) Proof of (3.1):

Setting αr =
(b)r(−1)r

(d)r
, ur =

1

(1)r
, vr =

1

(1)r
in (2.3) and making use of (2.10),

we have

βn =

(
d− b

2

)
n

(
d− b+ 1

2

)
n

(d)n(1− b)n
(

1

2

)
n

(1)n

(4.1)

Again, taking δr = (p)r(q)r in (2.4) and using (2.16), we get

γn =
Γ(1− p− q)

Γ(1− p)Γ(1− q)
(p)n(q)n

(1− p)n(1− q)n
(4.2)

putting these values of (4.1) and (4.2) in (2.5), we get required result (3.1).
(ii) Proof of (3.2):

Taking αr =
(b)r(−1)r

(d)r
, ur =

1

(1)r
, vr =

1

(1)r
δr =

(2p)r(2q)r

(
1

2

)
r(

1

2
+ p+ q

) in (2.4) and

making use of (2.17), we have

γn = Γ

(
1

2

)
Γ

(
1

2
+ p+ q

)
Γ(1− p− q)×

×

 (2p)n(2q)n

(
1

2
+ p+ q

)
n

4−n

Γ

(
1

2
+
n

2
+ p

)
Γ

(
1

2
+
n

2
+ q

)
Γ
(

1 + p− n

2

)
Γ
(

1 + q − n

2

)
 (4.3)
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putting these values of (4.1) and (4.3) in (2.5), we get required result (3.2).
(iii) Proof of (3.3):

Taking αr =
(c)r(d)r(−1)r

(1− c)r(1− d)r
, ur =

1

(1)r
, vr =

1

(1)r
in (2.3) and making use of

(2.12), we have

βn =
(1− c− d)n

(1− c)n(1− d)n(1)n
(4.4)

Again, taking δr = (p)r(q)r, we get γn same as (4.2)
Now, putting these values of (4.2) and (4.4) in (2.5), we get required result (3.3).
(iv) Proof of (3.4):

Taking αr =
(c)r(d)r(−1)r

(1− c)r(1− d)r
, ur =

1

(1)r
, vr =

1

(1)r
in (2.3) and making use of

(2.12), we get βn is same as (4.4)

Again, taking δr =

(p)r(q)r

(
1

2

)
r(

1

2
+

1

2
p+

1

2
q

)
r

in (2.4) and using (2.17), we have

γn = Γ

(
1

2

)
Γ

(
1

2
− p

2
− q

2

)
Γ(1 +

p

2
+
q

2
)×

×

 (p)n(q)n4−n

Γ

(
1

2
+
n

2
+
p

2

)
Γ

(
1

2
+
n

2
+
q

2

)
Γ
(

1 +
n

2
− p

2

)
Γ
(

1 +
n

2
− q

2

)
 (4.5)

putting these values of (4.4) and (4.5) in (2.5), we get required result (3.4).
(v) Proof of (3.5):

Taking αr =
(b)r(c)r(d)r

(1− b)r(1− c)r(1− d)r
, ur =

(1− b− c− d)r
(1)r

, vr =
(1− b− c− d)r

(1)r
in (2.3) and making use of (2.14), we have

βn =
(1− b− c)n(1− b− d)n(1− c− d)n(1− b− c− d)n

(1− b)n(1− c)n(1− d)n(1)n
(4.6)

Again, taking δr = 1 in (2.4) and using (2.16), we get

γn =
Γ(2b+ 2c+ 2d− 1)

Γ(b+ c+ d)Γ(b+ c+ d)

(
1− b− c− d

2

)
n

(
1− (b+ c+ d)

2

)
n(

b+ c+ d

2

)
n

(
1 + b+ c+ d

2

)
n

(4.7)
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provided Re(b+ c+ d) > 1
2
.

putting these values of (4.6) and (4.7) in (2.5), we get required result (3.5).
(vi) Proof of (3.6):

Taking αr =
(b)r(c)r(d)r

(1− b)r(1− c)r(1− d)r
, ur =

(1− b− c− d)r
(1)r

, vr =
(1− b− c− d)r

(1)r

and δr =

1

2


r3

2
− b− c− d


r

in (2.4) and making use of (2.17), we have

Here, βn is same as (4.6) and

γn =

Γ

(
1

2

)
Γ(b+ c+ d)

Γ

(
1− b

2
− c

2
− d

2

)
Γ

(
1− b

2
− c

2
− d

2

)×

×
Γ

(
3

2
− b− c− d

)(
1− b− c− d

2

)
n

Γ

(
1 + b+ c+ d

2

)
Γ

(
1 + b+ c+ d

2

)(
1 + b+ c+ d

2

)
n

(4.8)

putting these values of (4.6) and (4.8) in (2.5), we get required result (3.6).
(vii) Proof of (3.7):

Setting αr =
(b)r(−1)r

(d)r
, ur =

1

(1)r
, vr =

1

(1)r
in (2.6) and making use of (2.15),

we get

βn =
(d− b)
(2− b)

(
1 + d− b

2

)
n

(
1 +

d− b
2

)
n(

3

2

)
n

(2− b)n(d)n(1)n

(4.9)

Again, taking δr = (p)r(q)r in (2.7), we get

γn =
Γ(2− p− q)

Γ(2− p)Γ(2− q)
(p)n(q)n

(2− p)n(2− q)n
(4.10)

putting these values of (4.9) and (4.10) in (2.8), we get required result (3.7).
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5. Special Cases:

(i) Replacing p by d and q =
1

2
in (3.1), we get

1H1

[
b;−1
1− d

]
=

Γ

(
1

2

)
Γ(1− b)Γ(1− d)

Γ

(
1− 1

2
b− 1

2
d

)
Γ

(
1

2
− 1

2
b− 1

2
d

)
After some simplification, we get

1H1

[
b;−1
1− d

]
=

Γ(1− b)Γ(1− d)

2b+dΓ(1− b− d)
(5.1)

(ii) Replacing b=-2p and d=2q in (3.2), we get

∞∑
n=−∞

(−2p)n(2p)n

(
1

2
+ p+ q

)
n

(−4)−n

Γ

(
1

2
+
n

2
+ p

)
Γ

(
1

2
+
n

2
+ q

)
Γ
(

1− p+
n

2

)
Γ
(

1− q +
n

2

)
=

Γ(1 + 2p)

Γ

(
1

2

)
Γ

(
1

2
+ p+ q

)
Γ(1 + p− q)

(5.2)

Several other special cases could also be deduced.
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