South East Asian J. of Mathematics and Mathematical Sciences Vol. 17, No. 1 (2021), pp. 257-272

ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

ECCENTRIC CONNECTIVITY POLYNOMIALS AND THEIR TOPOLOGICAL INDICES OF JAHANGIR GRAPHS

Keerthi G. Mirajkar and Akshata Morajkar

Department of Mathematics, Karnatak University's Karnatak Arts College, Dharwad, Karnataka - 580001, INDIA

E-mail : keerthi.mirajkar@gmail.com, akmorajkar@gmail.com

(Received: May 26, 2020 Accepted: Feb. 18, 2021 Published: Apr. 30, 2021)

Abstract: Let G = (V, E) be a simple and connected graph. The degree of a vertex u and its eccentricity of a graph G is denoted as d(u) and e(u) respectively. The eccentric connectivity polynomial $\xi^c(G, x)$ of a graph G is defined as $\xi^c(G, x) = \sum_{u \in V(G)} d(u) x^{e(u)}$ and the modified eccentric connectivity polynomial $\xi_c(G, x)$ of a graph G is defined as $\xi_c(G, x) = \sum_{u \in V(G)} M(u) x^{e(u)}$, where $M(u) = \sum_{v \in N_G(u)} d(v)$ i.e., sum of the neighbouring vertices of $u \in V(G)$. The first derivative of these polynomials evaluated at x = 1 generates eccentric connectivity index $\xi^c(G)$ defined as $\xi_c(G) = \sum_{u \in V(G)} d(u)e(u)$ and modified eccentric connectivity index $\xi_c(G)$ defined as $\xi_c(G) = \sum_{u \in V(G)} M(u)e(u)$ respectively. In this paper, we present the generalized results for eccentric connectivity polynomial, modified eccentric connectivity polynomial and their respective indices for Jahangir graph $J_{n,m}$ with $n \geq 2$ and $m \geq 3$.

Keywords and Phrases: Eccentric connectivity indices, eccentric connectivity polynomials, Jahangir graph.

2020 Mathematics Subject Classification: 05C07, 05C12, 05C31.

1. Introduction

Let G = (V, E) be a simple and connected graph with V(G) as the vertex set and E(G) as the edge set. The degree of a vertex u in a graph G is denoted as d(u)and is defined as the number of edges of a graph G incident with vertex u [5]. The distance d(u, v) between two vertices u and v is the minimum of the lengths of the u-v paths of G [5]. The eccentricity e(u) of a vertex u of a connected graph G is the distance between vertex u and a vertex farthest from u [5]. A topological index is a molecular descriptor which characterizes the topology of a graph through numerical parameters. Amongst the numerous topological indices defined, one interesting distance based topological index is the eccentric connectivity index $\xi^c(G)$ of a graph G defined by Sharma et al. [10] as

$$\xi^c(G) = \sum_{u \in V(G)} d(u)e(u) \tag{1}$$

where d(u) denotes the degree of vertex u and e(u) denotes its eccentricity in a graph G.

The eccentric connectivity polynomial $\xi^c(G, x)$ of a graph G was defined by Ghorbani et al. [2] as

$$\xi^{c}(G, x) = \sum_{u \in V(G)} d(u) x^{e(u)}$$
(2)

It is observable that eccentric connectivity index $\xi^c(G)$ is the first derivative of eccentric connectivity polynomial $\xi^c(G, x)$ evaluated at x = 1.

For a vertex $u \in V(G)$, the neighbourhood of u in G is denoted as $N_G(u)$ and defined as the set consisting of all vertices that are adjacent to u i.e., $N_G(u) = \{v \in V(G) : uv \in E(G)\}$ and M(u) is the neighbourhood degree sum of a vertex $u \in V(G)$, defined as $M(u) = \sum_{v \in N_G(u)} d(v)$.

The modified eccentric connectivity index $\xi_c(G)$ of a graph G was defined by Ashrafi and Ghorbani [3] as

$$\xi_c(G) = \sum_{u \in V(G)} M(u)e(u) \tag{3}$$

where,

$$M(u) = \sum_{v \in N_G(u)} d(v)$$

i.e., sum of the neighbouring vertices of $u \in V(G)$.

The corresponding modified eccentric connectivity polynomial $\xi_c(G, x)$ is defined as

$$\xi_c(G, x) = \sum_{u \in V(G)} M(u) x^{e(u)} \tag{4}$$

Clearly, the modified eccentric connectivity index $\xi_c(G)$ is the first derivative of modified eccentric connectivity polynomial $\xi_c(G, x)$ evaluated at x = 1. For undefined terminologies refer [7].

The Jahangir graph $J_{n,m}$ [1, 9] is a graph on (nm+1) vertices and m(n+1) edges for every $n \ge 2$ and $m \ge 3$ i.e., a graph consisting of a cycle C_{nm} with one additional vertex which is adjacent to m vertices of C_{nm} at a distance n to each other on C_{nm} . It is denoted by $J_{n,m}$ for every $n \ge 2$ and $m \ge 3$.

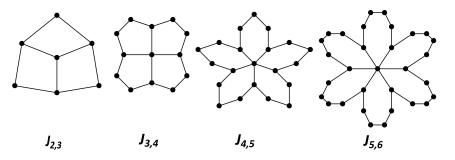


Figure 1: Some examples of Jahangir graphs.

Motivated by [4, 6, 8], we compute eccentric connectivity polynomials, modified eccentric connectivity polynomials and their respective topological indices for Jahangir graph.

2. Main Results

Results for eccentric connectivity polynomial $\xi^c(J_{n,m}, x)$ and eccentric connectivity index $\xi^c(J_{n,m})$.

Theorem 2.1. For the Jahangir graph $J_{2,3}$,

$$\xi^{c}(J_{2,3}, x) = 15x^{3} + 3x^{2}$$
 and $\xi^{c}(J_{2,3}) = 51$.

Proof. Let $J_{2,3}$ be a Jahangir graph. To compute $\xi^c(J_{2,3}, x)$ and $\xi^c(J_{2,3})$ entries from Tab. 1 are considered.

Case	d(u)	e(u)	Number of vertices	Terms of $\xi^c(J_{2,3}, x)$
a	3	2	1	$3x^2$
b	3	3	3	$3(3x^3)$
с	2	3	3	$3(2x^3)$

Tab. 1: Degrees and eccentricities of vertices in $J_{2,3}$.

Details of Tab. 1 are discussed as follows:

Case a. The graph $J_{2,3}$ has a central vertex of degree 3 and eccentricity 2. Hence, the first term of $\xi^c(J_{2,3}, x)$ is $3x^2$.

Case b. The vertices adjacent to central vertex are 3 in number having degree 3 each and eccentricity 3. Hence, the second term of $\xi^c(J_{2,3}, x)$ is $3(3x^3)$.

Case c. The vertices at distance 2 from the central vertex are 3 in number having degree 2 each and eccentricity 3. Hence, the third term of $\xi^c(J_{2,3}, x)$ is $3(2x^3)$.

From equation 2 and Tab. 1, it follows

$$\xi^{c}(J_{2,3}, x) = \sum_{u \in V(J_{2,3})} d(u) x^{e(u)}$$
$$= 15x^{3} + 3x^{2}.$$

Since, $\xi^{c}(J_{2,3})$ is the first derivative of $\xi^{c}(J_{2,3}, x)$ at x = 1, it follows

$$\xi^{c}(J_{2,3}) = \frac{\partial}{\partial x} (\xi^{c}(J_{2,3}, x)) \mid_{x=1}$$
$$= \frac{\partial}{\partial x} (15x^{3} + 3x^{2}) \mid_{x=1}$$
$$= 51.$$

Theorem 2.2. If $J_{n,3}$ is a Jahangir graph with n = 2k, k = 2, 3, ..., then

$$\xi^{c}(J_{n,3},x) = 3(x^{\frac{n+2}{2}} + 3x^{\frac{n+4}{2}} + 4x^{\frac{3(n^{2}-2n-8)}{8}} + 6x^{n+1}) \text{ and}$$

$$\xi^{c}(J_{n,3}) = \frac{3}{2}(3n^{2} + 10n + 2).$$

Proof. Let $J_{n,3}$ be the Jahangir graph with n = 2k, k = 2, 3, ... To compute $\xi^{c}(J_{n,3}, x)$ and $\xi^{c}(J_{n,3})$ entries from Tab. 2 are considered.

Case	d(u)	e(u)	Number of vertices	Terms of $\xi^c(J_{n,3}, x)$
a	3	$\frac{n+2}{2}$	1	$3x^{\frac{n+2}{2}}$
b	3	$\frac{n+4}{2}$	3	$3(3x^{\frac{n+4}{2}})$
c	2	$\frac{(n-4)(3n+6)}{8}$	3(n-4)	$6(2x^{\frac{(n-4)(3n+6)}{8}})$
d	2	n+1	9	$9(2x^{n+1})$

Tab. 2: Degrees and eccentricities of vertices in $J_{n,3}$ with n = 2k, k = 2, 3, ...

Details of Tab. 2 are discussed as follows:

Case a. The graph $J_{n,3}$ has a central vertex of degree 3 and eccentricity $\frac{n+2}{2}$. Hence, the first term of $\xi^c(J_{n,3}, x)$ is $3x^{\frac{n+2}{2}}$.

Case b. The vertices adjacent to the central vertex are 3 in number having degree 3 each and eccentricity $\frac{n+4}{2}$. Hence, the second term of $\xi^c(J_{n,3}, x)$ is $3(3x^{\frac{n+4}{2}})$.

Case c. There are 6 vertices each at a distance 2, 3, ..., $\left(\frac{n-2}{2}\right)$ respectively from the central vertex, total of such vertices are 3(n-4) in number having degree 2 each and sum of their eccentricities is $\frac{(n-4)(3n+6)}{8}$. Hence, the third term of $\xi^c(J_{n,3}, x)$ is $6(2x^{\frac{(n-4)(3n+6)}{8}})$.

Note: In Case c there are total 3(n-4) vertices. Amongst these total vertices every 6 vertices have same eccentricity. For example, in $J_{8,3}$ there are total 12 vertices belonging to Case c each vertex with degree 2. Out of these 12 vertices, 6 vertices have eccentricity 7 and remaining 6 vertices have eccentricity 8. This pattern follows for other $J_{n,3}$ with n = 2k, k = 2, 3, ... graphs. Since 6 is the common factor for (3(n-4)) vertices, by equation 2, the third term of $J_{n,3}$ is $6(2x^{\frac{(n-4)(3n+6)}{8}})$.

Case d. There are 3 vertices at a distance $\frac{n+2}{2}$ and 6 vertices at a distance $\frac{n}{2}$ from the central vertex, total number of such vertices are 9 having degree 2 each and eccentricity n + 1. Hence, the fourth term of $\xi^c(J_{n,3}, x)$ is $9(2x^{n+1})$.

From equation 2 and Tab. 2, it follows

$$\xi^{c}(J_{n,3},x) = \sum_{u \in V(J_{n,3})} d(u)x^{e(u)}$$

= $3(x^{\frac{n+2}{2}} + 3x^{\frac{n+4}{2}} + 4x^{\frac{3(n^{2}-2n-8)}{8}} + 6x^{n+1}).$

Since, $\xi^{c}(J_{n,3})$ is the first derivative of $\xi^{c}(J_{n,3}, x)$ at x = 1, it follows

$$\begin{aligned} \xi^{c}(J_{n,3}) &= \frac{\partial}{\partial x} (\xi^{c}(J_{n,3}, x)) \mid_{x=1} \\ &= \frac{\partial}{\partial x} (3(x^{\frac{n+2}{2}} + 3x^{\frac{n+4}{2}} + 4x^{\frac{3(n^{2}-2n-8)}{8}} + 6x^{n+1})) \mid_{x=1} \\ &= \frac{3}{2} (3n^{2} + 10n + 2). \end{aligned}$$

Theorem 2.3. If $J_{n,m}$ is a Jahangir graph with n as even and $m \ge 4$, then

$$\xi^{c}(J_{n,m},x) = m(x^{\frac{n+2}{2}} + 3x^{\frac{n+4}{2}} + 4x^{\frac{(3n^{2}+2n-16)}{8}} + 2x^{n+2}) \text{ and} \\ \xi^{c}(J_{n,m}) = \frac{m}{2}(3n^{2} + 10n + 6).$$

Case	d(u)	e(u)	Number of vertices	Terms of $\xi^c(J_{n,m}, x)$
a	m	$\frac{n+2}{2}$	1	$mx^{\frac{n+2}{2}}$
b	3	$\frac{n+4}{2}$	m	$m(3x^{\frac{n+4}{2}})$
с	2	$\frac{(n-2)(3n+8)}{8}$	2m	$2m(2x^{\frac{(n-2)(3n+8)}{8}})$
d	2	n+2	m	$m(2x^{n+2})$

Proof. Let $J_{n,m}$ be the Jahangir graph with n as even and $m \ge 4$. To compute $\xi^c(J_{n,m}, x)$ and $\xi^c(J_{n,m})$ entries from Tab. 3 are considered.

Tab. 3:	Degrees and	eccentricities	of vertices	$\sin J_{n}$	with n	as even and	m > 4.
				- 10,110			

Details of Tab. 3 are discussed as follows:

Case a. The graph $J_{n,m}$ has a central vertex of degree m and eccentricity $\frac{n+2}{2}$. Hence, the first term of $\xi^c(J_{n,m}, x)$ is $mx^{\frac{n+2}{2}}$.

Case b. The vertices adjacent to the central vertex are m in number having degree 3 each and eccentricity $\frac{n+4}{2}$. Hence, the second term of $\xi^c(J_{n,m}, x)$ is $m(3x^{\frac{n+4}{2}})$. **Case c.** There are 2m vertices each at a distance 2, 3, ..., $(\frac{n}{2})$ respectively from the central vertex having degree 2 each and sum of their eccentricities is $\frac{(n-2)(3n+8)}{8}$. Hence, the third term of $\xi^c(J_{n,m}, x)$ is $2m(2x^{\frac{(n-2)(3n+8)}{8}})$.

Case d. The vertices at a distance $\frac{n+2}{2}$ from the central vertex are m in number having degree 2 each and eccentricity n + 2. Hence, the fourth term of $\xi^c(J_{n,m}, x)$ is $m(2x^{n+2})$.

From equation 2 and Tab. 3, it follows

$$\xi^{c}(J_{n,m}, x) = \sum_{u \in V(J_{n,m})} d(u) x^{e(u)}$$

= $m(x^{\frac{n+2}{2}} + 3x^{\frac{n+4}{2}} + 4x^{\frac{(3n^{2}+2n-16)}{8}} + 2x^{n+2}).$

Since, $\xi^{c}(J_{n,m})$ is the first derivative of $\xi^{c}(J_{n,m}, x)$ at x = 1, it follows

$$\begin{aligned} \xi^{c}(J_{n,m}) &= \frac{\partial}{\partial x} (\xi^{c}(J_{n,m}, x)) \mid_{x=1} \\ &= \frac{\partial}{\partial x} (m(x^{\frac{n+2}{2}} + 3x^{\frac{n+4}{2}} + 4x^{\frac{(3n^{2}+2n-16)}{8}} + 2x^{n+2})) \mid_{x=1} \\ &= \frac{m}{2} (3n^{2} + 10n + 6). \end{aligned}$$

Theorem 2.4. If $J_{n,m}$ is a Jahangir graph with n as odd and $m \ge 3$, then

$$\xi^{c}(J_{n,m},x) = m(x^{\frac{n+1}{2}} + 3x^{\frac{n+3}{2}} + 4x^{\frac{(3n^{2}+4n-7)}{8}}) \text{ and } \xi^{c}(J_{n,m}) = \frac{m}{2}(3n^{2} + 8n + 3).$$

Proof. Let $J_{n,m}$ be the Jahangir graph with n as odd and $m \ge 3$. To compute $\xi^c(J_{n,m}, x)$ and $\xi^c(J_{n,m})$ entries from Tab. 4 are considered.

Case	d(u)	e(u)	Number of vertices	Terms of $\xi^c(J_{n,m}, x)$
a	m	$\frac{n+1}{2}$	1	$mx^{\frac{n+1}{2}}$
b	3	$\frac{n+3}{2}$	m	$m(3x^{\frac{n+3}{2}})$
с	2	$\frac{(n-1)(3n+7)}{8}$	2m	$2m(2x^{\frac{(n-1)(3n+7)}{8}})$

Tab. 4: Degrees and eccentricities of vertices in $J_{n,m}$ with n as odd and $m \ge 3$.

Details of Tab. 4 are discussed as follows:

Case a. The graph $J_{n,m}$ has a central vertex of degree m and eccentricity $\frac{n+1}{2}$. Hence, the first term of $\xi^c(J_{n,m}, x)$ is $mx^{\frac{n+1}{2}}$.

Case b. The vertices adjacent to the central vertex are m in number having degree 3 each and eccentricity $\frac{n+3}{2}$. Hence, the second term of $\xi^c(J_{n,m}, x)$ is $m(3x^{\frac{n+3}{2}})$. **Case c.** There are 2m vertices each at a distance 2, 3, ..., $(\frac{n+1}{2})$ respectively from the central vertex having degree 2 each and sum of their eccentricities is $\frac{(n-1)(3n+7)}{8}$. Hence, the third term of $\xi^c(J_{n,m}, x)$ is $2m(2x^{\frac{(n-1)(3n+7)}{8}})$.

From equation 2 and Tab. 4, it follows

$$\xi^{c}(J_{n,m},x) = \sum_{u \in V(J_{n,m})} d(u)x^{e(u)}$$
$$= m(x^{\frac{n+1}{2}} + 3x^{\frac{n+3}{2}} + 4x^{\frac{(3n^{2} + 4n - 7)}{8}}).$$

Since, $\xi^{c}(J_{n,m})$ is the first derivative of $\xi^{c}(J_{n,m}, x)$ at x = 1, it follows

$$\begin{aligned} \xi^{c}(J_{n,m}) &= \frac{\partial}{\partial x} (\xi^{c}(J_{n,m}, x)) \mid_{x=1} \\ &= \frac{\partial}{\partial x} (m(x^{\frac{n+1}{2}} + 3x^{\frac{n+3}{2}} + 4x^{\frac{(3n^{2} + 4n - 7)}{8}})) \mid_{x=1} \\ &= \frac{m}{2} (3n^{2} + 8n + 3). \end{aligned}$$

Results for modified eccentric connectivity polynomial $\xi_c(J_{n,m}, x)$ and modified eccentric connectivity index $\xi_c(J_{n,m})$.

Theorem 2.5. For the Jahangir graph $J_{2,3}$,

$$\xi_c(J_{2,3}, x) = 39x^3 + 9x^2$$
 and $\xi_c(J_{2,3}) = 135.$

Proof. Let $J_{2,3}$ be a Jahangir graph. To compute $\xi_c(J_{2,3}, x)$ and $\xi_c(J_{2,3})$ entries from Tab. 5 are considered.

Case	M(u)	e(u)	Number of vertices	Terms of $\xi_c(J_{2,3}, x)$
a	9	2	1	$9x^2$
b	7	3	3	$3(7x^3)$
с	6	3	3	$3(6x^3)$

Tab. 5: M(u) and eccentricities of vertices in $J_{2,3}$.

Details of Tab. 5 are discussed as follows:

Case a. The graph $J_{2,3}$ has a central vertex with M(u) = 9 and eccentricity 2. Hence, the first term of $\xi_c(J_{2,3}, x)$ is $9x^2$.

Case b. The vertices adjacent to central vertex are 3 in number with M(u) = 7 each and eccentricity 3. Hence, the second term of $\xi_c(J_{2,3}, x)$ is $3(7x^3)$.

Case c. The vertices at distance 2 from the central vertex are 3 in number with M(x) = 6 each and accentricity 2. Hence, the third term of $f_{1}(L - \pi)$ is $2(6\pi^{3})$.

M(u) = 6 each and eccentricity 3. Hence, the third term of $\xi_c(J_{2,3}, x)$ is $3(6x^3)$.

From equation 4 and Tab. 5, it follows

$$\xi_c(J_{2,3}, x) = \sum_{u \in V(J_{2,3})} M(u) x^{e(u)} = 39x^3 + 9x^2.$$

Since, $\xi_c(J_{2,3})$ is the first derivative of $\xi_c(J_{2,3}, x)$ at x = 1, it follows

$$\begin{aligned} \xi_c(J_{2,3}) &= \frac{\partial}{\partial x} (\xi_c(J_{2,3}, x)) \mid_{x=1} \\ &= \frac{\partial}{\partial x} (39x^3 + 9x^2) \mid_{x=1} = 135. \end{aligned}$$

Theorem 2.6. If $J_{2,m}$ is the Jahangir graph with $m \ge 4$, then

$$\xi_c(J_{2,m}, x) = m(3x^2 + (4+m)x^3 + 6x^4)$$
 and $\xi_c(J_{2,m}) = m(3m+42).$

Proof. Let $J_{2,m}$ be the Jahangir graph with $m \ge 4$. To compute $\xi_c(J_{2,m}, x)$ and $\xi_c(J_{2,m})$ entries from Tab. 6 are considered.

Case	M(u)	e(u)	Number of vertices	Terms of $\xi_c(J_{2,m}, x)$
a	3m	2	1	$3mx^2$
b	4 + m	3	m	$m((4+m)x^3)$
с	6	4	m	$m(6x^4)$

Tab. 6: M(u) and eccentricities of vertices in $J_{2,m}$ with $m \ge 4$.

Details of Tab. 6 are discussed as follows:

Case a. The graph $J_{2,m}$ has a central vertex with M(u) = 3m and eccentricity 2. Hence, the first term of $\xi_c(J_{2,m}, x)$ is $3mx^2$.

Case b. The vertices adjacent to central vertex are m in number with M(u) = (4+m) each and eccentricity 3. Hence, the second term of $\xi_c(J_{2,m}, x)$ is $m((4+m)x^3)$. **Case c.** The vertices at distance 2 from the central vertex are m in number with M(u) = 6 each and eccentricity 4. Hence, the third term of $\xi_c(J_{2,m}, x)$ is $m(6x^4)$.

From equation 4 and Tab. 6, it follows

$$\xi_c(J_{2,m}, x) = \sum_{u \in V(J_{2,m})} M(u) x^{e(u)}$$

= $m(3x^2 + (4+m)x^3 + 6x^4).$

Since, $\xi_c(J_{2,m})$ is the first derivative of $\xi_c(J_{2,m}, x)$ at x = 1, it follows

$$\begin{aligned} \xi_c(J_{2,m}) &= \frac{\partial}{\partial x} (\xi_c(J_{2,m}, x)) \mid_{x=1} \\ &= \frac{\partial}{\partial x} (m(3x^2 + (4+m)x^3 + 6x^4)) \mid_{x=1} \\ &= m(3m+42). \end{aligned}$$

Theorem 2.7. For the Jahangir graph $J_{4,3}$,

$$\xi_c(J_{4,3}, x) = 42x^5 + 21x^4 + 9x^3$$
 and $\xi_c(J_{4,3}) = 321$.

Proof. Let $J_{4,3}$ be a Jahangir graph. To compute $\xi_c(J_{4,3}, x)$ and $\xi_c(J_{4,3})$ entries from Tab. 7 are considered.

Case	M(u)	e(u)	Number of vertices	Terms of $\xi_c(J_{4,3}, x)$
a	9	3	1	$9x^{3}$
b	7	4	3	$3(7x^4)$
с	5	5	6	$6(5x^5)$
d	4	5	3	$3(4x^5)$

Tab. 7: M(u) and eccentricities of vertices in $J_{4,3}$. Details of Tab. 7 are discussed as follows:

Case a. The graph $J_{4,3}$ has a central vertex with M(u) = 9 and eccentricity 3. Hence, the first term of $\xi_c(J_{4,3}, x)$ is $9x^3$.

Case b. The vertices adjacent to central vertex are 3 in number with M(u) = 7 each and eccentricity 4. Hence, the second term of $\xi_c(J_{4,3}, x)$ is $3(7x^4)$.

Case c. The vertices at distance 2 from the central vertex are 6 in number with M(u) = 5 each and eccentricity 5. Hence, the third term of $\xi_c(J_{4,3}, x)$ is $6(5x^5)$. **Case d.** The vertices at distance 3 from the central vertex are 3 in number with M(u) = 4 each and eccentricity 5. Hence, the fourth term of $\xi_c(J_{4,3}, x)$ is $3(4x^5)$.

From equation 4 and Tab. 7, it follows

$$\xi_c(J_{4,3}, x) = \sum_{u \in V(J_{4,3})} M(u) x^{e(u)}$$

= $42x^5 + 21x^4 + 9x^3$.

Since, $\xi_c(J_{4,3})$ is the first derivative of $\xi_c(J_{4,3}, x)$ at x = 1, it follows

$$\xi_{c}(J_{4,3}) = \frac{\partial}{\partial x} (\xi_{c}(J_{4,3}, x)) |_{x=1} \\ = \frac{\partial}{\partial x} (42x^{5} + 21x^{4} + 9x^{3}) |_{x=1} \\ = 321.$$

Theorem 2.8. If $J_{n,3}$ is the Jahangir graph with n = 2k, k = 3, 4, ..., then

$$\begin{aligned} \xi_c(J_{n,3},x) &= 3(3x^{\frac{n+2}{2}} + 7x^{\frac{n+4}{2}} + 10x^{\frac{n+6}{2}} + 8x^{\frac{(3n^2 - 10n - 48)}{8}} + 12x^{n+1}) \ and \\ \xi_c(J_{n,3}) &= 9n^2 + 36n + 33. \end{aligned}$$

Proof. Let $J_{n,3}$ be the Jahangir graph with n = 2k, k = 3, 4, ... To compute $\xi_c(J_{n,3}, x)$ and $\xi_c(J_{n,3})$ entries from Tab. 8 are considered.

Case	M(u)	e(u)	Number of vertices	Terms of $\xi_c(J_{n,3}, x)$
a	9	$\frac{n+2}{2}$	1	$9x^{\frac{n+2}{2}}$
b	7	$\frac{n+4}{2}$	3	$3(7x^{\frac{n+4}{2}})$
с	5	$\frac{n+6}{2}$	6	$6(5x^{\frac{n+6}{2}})$
d	4	$\frac{(n-6)(3n+8)}{8}$	3(n-4)	$6(4x^{\frac{(n-6)(3n+8)}{8}})$
е	4	n+1	9	$9(4x^{n+1})$

Tab. 8: M(u) and eccentricities of vertices in $J_{n,3}$ with n = 2k, k = 3, 4, ...

Details of Tab. 8 are discussed as follows:

Case a. The graph $J_{n,3}$ has a central vertex with M(u) = 9 and eccentricity $\frac{n+2}{2}$. Hence, the first term of $\xi_c(J_{n,3}, x)$ is $9x^{\frac{n+2}{2}}$. **Case b.** The vertices adjacent to central vertex are 3 in number with M(u) = 7 each and eccentricity $\frac{n+4}{2}$. Hence, the second term of $\xi_c(J_{n,3}, x)$ is $3(7x^{\frac{n+4}{2}})$.

Case c. The vertices at distance 2 from the central vertex are 6 in number with M(u) = 5 each and eccentricity $\frac{n+6}{2}$. Hence, the third term of $\xi_c(J_{n,3}, x)$ is $6(5x^{\frac{n+6}{2}})$. **Case d.** There are 6 vertices each at a distance $3, 4, \dots, (\frac{n-2}{2})$ respectively from the central vertex, total of such vertices are 3(n-4) in number having M(u) = 4 each and sum of their eccentricities is $\frac{(n-6)(3n+8)}{8}$. Hence, the fourth term of $\xi_c(J_{n,3}, x)$ is $6(4x^{\frac{(n-6)(3n+8)}{8}})$.

Note: In Case d there are total 3(n-4) vertices. Amongst these total vertices every 6 vertices have same eccentricity. For example, in $J_{10,3}$ there are total 12 vertices belonging to Case d, each vertex with M(u) = 4. Out of these 12 vertices, 6 vertices have eccentricity 9 and remaining 6 vertices have eccentricity 10. This pattern follows for other $J_{n,3}$ with n = 2k, k = 3, 4, ... graphs. Since 6 is the common factor for (3(n-4)) vertices, by equation 4, the fourth term of $J_{n,3}$ is $6(4x^{\frac{(n-6)(3n+8)}{8}})$.

Case e. There are 3 vertices at a distance $\frac{n+2}{2}$ and 6 vertices at a distance $\frac{n}{2}$ from the central vertex having M(u) = 4 each and eccentricity n + 1. Hence, the fifth term of $\xi_c(J_{n,3}, x)$ is $9(4x^{n+1})$.

From equation 4 and Tab. 8, it follows

$$\begin{aligned} \xi_c(J_{n,3}, x) &= \sum_{u \in V(J_{n,3})} M(u) x^{e(u)} \\ &= 3(3x^{\frac{n+2}{2}} + 7x^{\frac{n+4}{2}} + 10x^{\frac{n+6}{2}} + 8x^{\frac{(3n^2 - 10n - 48)}{8}} + 12x^{n+1}). \end{aligned}$$

Since, $\xi_c(J_{n,3})$ is the first derivative of $\xi_c(J_{n,3}, x)$ at x = 1, it follows

$$\begin{aligned} \xi_c(J_{n,3}) &= \frac{\partial}{\partial x} (\xi_c(J_{n,3}, x)) \mid_{x=1} \\ &= \frac{\partial}{\partial x} (3(3x^{\frac{n+2}{2}} + 7x^{\frac{n+4}{2}} + 10x^{\frac{n+6}{2}} + 8x^{\frac{(3n^2 - 10n - 48)}{8}} + 12x^{n+1})) \mid_{x=1} \\ &= 9n^2 + 36n + 33. \end{aligned}$$

Theorem 2.9. If $J_{n,m}$ is the Jahangir graph with n = 2k, k = 2, 3, ... and $m \ge 4$, then

$$\begin{aligned} \xi_c(J_{n,m},x) &= m(3x^{\frac{n+2}{2}} + (4+m)x^{\frac{n+4}{2}} + 10x^{\frac{n+6}{2}} + 8x^{\frac{(3n^2-2n-40)}{8}} + 4x^{n+2}) \ and \\ \xi_c(J_{n,m}) &= \frac{m}{2}(6n^2 + 21n + 4m + mn + 18). \end{aligned}$$

Proof. Let $J_{n,m}$ be the Jahangir graph with n = 2k, k = 2, 3, ... and $m \ge 4$. To compute $\xi_c(J_{n,m}, x)$ and $\xi_c(J_{n,m})$ entries from Tab. 9 are considered.

Case	M(u)	e(u)	Number of vertices	Terms of $\xi_c(J_{n,m}, x)$
a	3m	$\frac{n+2}{2}$	1	$3mx^{\frac{n+2}{2}}$
b	4 + m	$\frac{n+4}{2}$	m	$m((4+m)x^{\frac{n+4}{2}})$
с	5	$\frac{n+6}{2}$	2m	$2m(5x^{\frac{n+6}{2}})$
d	4	$\frac{(n-4)(3n+10)}{8}$		$2m(4x^{\frac{(n-4)(3n+10)}{8}})$
е	4	n+2	m	$m(4x^{n+2})$

Tab. 9: M(u) and eccentricities of vertices in $J_{n,m}$ with n = 2k, k = 2, 3, ... and $m \ge 4$.

Details of Tab. 9 are discussed as follows:

Case a. The graph $J_{n,m}$ has a central vertex with M(u) = 3m and eccentricity $\frac{n+2}{2}$. Hence, the first term of $\xi_c(J_{n,m}, x)$ is $3mx^{\frac{n+2}{2}}$.

Case b. The vertices adjacent to central vertex are m in number with M(u) = (4+m) each and eccentricity $\frac{n+4}{2}$. Hence, the second term of $\xi_c(J_{n,m}, x)$ is $m((4+m)x^{\frac{n+4}{2}})$.

Case c. The vertices at distance 2 from the central vertex are 2m in number with M(u) = 5 each and eccentricity $\frac{n+6}{2}$. Hence, the third term of $\xi_c(J_{n,m}, x)$ is $2m(5x^{\frac{n+6}{2}})$.

Case d. There are 2m vertices each at a distance $3, 4, ..., \left(\frac{n}{2}\right)$ respectively from the central vertex with M(u) = 4 each and sum of their eccentricities is $\frac{(n-4)(3n+10)}{8}$. Hence, the fourth term of $\xi_c(J_{n,m}, x)$ is $2m(4x^{\frac{(n-4)(3n+10)}{8}})$.

Case e. The vertices at a distance $\frac{n+2}{2}$ from the central vertex are m in number with M(u) = 4 each and eccentricity n + 2. Hence, the fifth term of $\xi_c(J_{n,m}, x)$ is $m(4x^{n+2})$.

From equation 4 and Tab. 9, it follows

$$\xi_c(J_{n,m}, x) = \sum_{u \in V(J_{n,m})} M(u) x^{e(u)}$$

= $m(3x^{\frac{n+2}{2}} + (4+m)x^{\frac{n+4}{2}} + 10x^{\frac{n+6}{2}} + 8x^{\frac{(3n^2-2n-40)}{8}} + 4x^{n+2}).$

Since, $\xi_c(J_{n,m})$ is the first derivative of $\xi_c(J_{n,m}, x)$ at x = 1, it follows

$$\begin{aligned} \xi_c(J_{n,m}) &= \frac{\partial}{\partial x} (\xi_c(J_{n,m}, x)) \mid_{x=1} \\ &= \frac{\partial}{\partial x} (m(3x^{\frac{n+2}{2}} + (4+m)x^{\frac{n+4}{2}} + 10x^{\frac{n+6}{2}} + 8x^{\frac{(3n^2 - 2n - 40)}{8}} + 4x^{n+2})) \mid_{x=1} \\ &= \frac{m}{2} (6n^2 + 21n + 4m + mn + 18). \end{aligned}$$

Theorem 2.10. If $J_{n,m}$ is the Jahangir graph with n as odd and $m \ge 3$, then

$$\begin{aligned} \xi_c(J_{n,m}, x) &= m(3x^{\frac{n+1}{2}} + (4+m)x^{\frac{n+3}{2}} + 10x^{\frac{n+5}{2}} + 8x^{\frac{(3n^2-27)}{8}}) and \\ \xi_c(J_{n,m}) &= \frac{m}{2}(6n^2 + 17n + 3m + mn + 11). \end{aligned}$$

Proof. Let $J_{n,m}$ be the Jahangir graph with n as odd and $m \ge 3$. To compute $\xi_c(J_{n,m}, x)$ and $\xi_c(J_{n,m})$ entries from Tab. 10 are considered.

Case	M(u)	e(u)	Number of vertices	Terms of $\xi_c(J_{n,m}, x)$
a	3m	$\frac{n+1}{2}$	1	$3mx^{\frac{n+1}{2}}$
b	4 + m	$\frac{n+3}{2}$	m	$m((4+m)x^{\frac{n+3}{2}})$
с	5	$\frac{n+5}{2}$	2m	$2m(5x^{\frac{n+5}{2}})$
d	4	$\frac{(n-3)(3n+9)}{8}$	2m	$2m(4x^{\frac{(n-3)(3n+9)}{8}})$

Tab. 10: M(u) and eccentricities of vertices in $J_{n,m}$ with n as odd and $m \ge 3$.

Details of Tab. 10 are discussed as follows:

Case a. The graph $J_{n,m}$ has a central vertex with M(u) = 3m and eccentricity $\frac{n+1}{2}$. Hence, the first term of $\xi_c(J_{n,m}, x)$ is $3mx^{\frac{n+1}{2}}$.

Čase b. The vertices adjacent to central vertex are m in number with M(u) = (4+m) each and eccentricity $\frac{n+3}{2}$. Hence, the second term of $\xi_c(J_{n,m}, x)$ is $m((4+m)x^{\frac{n+3}{2}})$.

Case c. The vertices at distance 2 from the central vertex are 2m in number with M(u) = 5 each and eccentricity $\frac{n+5}{2}$. Hence, the third term of $\xi_c(J_{n,m}, x)$ is $2m(5x^{\frac{n+5}{2}})$.

Case d. There are 2m vertices each at a distance $3, 4, ..., \left(\frac{n+1}{2}\right)$ respectively from the central vertex with M(u) = 4 each and sum of their eccentricities is $\frac{(n-3)(3n+9)}{8}$. Hence, the fourth term of $\xi_c(J_{n,m}, x)$ is $2m(4x^{\frac{(n-3)(3n+9)}{8}})$.

From equation 4 and Tab. 10, it follows

$$\xi_c(J_{n,m}, x) = \sum_{u \in V(J_{n,m})} M(u) x^{e(u)}$$

= $m(3x^{\frac{n+1}{2}} + (4+m)x^{\frac{n+3}{2}} + 10x^{\frac{n+5}{2}} + 8x^{\frac{(3n^2-27)}{8}}).$

Since, $\xi_c(J_{n,m})$ is the first derivative of $\xi_c(J_{n,m}, x)$ at x = 1, it follows

$$\begin{aligned} \xi_c(J_{n,m}) &= \frac{\partial}{\partial x} (\xi_c(J_{n,m}, x)) \mid_{x=1} \\ &= \frac{\partial}{\partial x} (m(3x^{\frac{n+1}{2}} + (4+m)x^{\frac{n+3}{2}} + 10x^{\frac{n+5}{2}} + 8x^{\frac{(3n^2 - 27)}{8}})) \mid_{x=1} \\ &= \frac{m}{2} (6n^2 + 17n + 3m + mn + 11). \end{aligned}$$

3. Acknowledgement

Authors are thankful to Karnatak University, Dharwad, Karnataka, India for the support through University Research Studentship (URS), No. KU/ Sch/ URS/ 2020-21/ 1103, dated: 21/12/2020.

References

- [1] Ali, K., Baskaro, E. T. and Tomescu, I., On the Ramsey numbers of paths and Jahangir graph $J_{3,m}$, In 3rd International Conference on 21st Century Mathematics 2007, GC University Lahoor Pakistan, March 2007.
- [2] Ashrafi, A. R., Ghorbani, M. and Hemmasi, M., Eccentric connectivity polynomials of fullerenes, Optoelectron. Adv. Mater.-(RC), 3(12) (2009), 1306-1308.
- [3] Ashrafi, A. R. and Ghorbani, M., A study of fullerenes by MEC polynomials, Electron. Mater. Lett., 6(2) (2010), 87-90.
- [4] Ashrafi, A. R., Ghorbani, M. and Hossein-Zadeh, M. A., The eccentric connectivity polynomial of some graph operations, Serdica J. Comput., 5(2) (2011), 101-116.
- [5] Chartrand, G. and Lesniak, L., Graphs and Digraphs, Chapman and Hall/CRC, Washington, D. C., 2000.
- [6] De, N., Pal, A. and Nayeem, S. M. A., Modified eccentric connectivity of generalized thorn graphs, Int. J. Comput. Math., 2014 (2014), doi:10.1155/ 2014/436140.

- [7] Harary, F., Graph Theory, Addison Wesely, Reading, Mass, 1969.
- [8] Ilić, A. and Gutman, I., Eccentric connectivity index of chemical trees, MATCH Commun. Math. Comput. Chem., 65 (2011), 731-744.
- [9] Mojdeh, D. A. and Ghameshlou, A. N., Domination in Jahangir graph $J_{2,3}$, Int. J. Contemp. Math. Sci., 2(24) (2007), 1193-1199.
- [10] Sharma, V., Goswami, R. and Madan, A. K., Eccentric connectivity index: A novel highly discriminating topological descriptor for structure-property and structure-activity studies, J. Chem. Inf. Comput. Sci., 37 (1997), 273-282.