ECCENTRIC CONNECTIVITY POLYNOMIALS AND THEIR TOPOLOGICAL INDICES OF JAHANGIR GRAPHS

Keerthi G. Mirajkar and Akshata Morajkar
Department of Mathematics, Karnatak University's Karnatak Arts College, Dharwad, Karnataka - 580001, INDIA

E-mail : keerthi.mirajkar@gmail.com, akmorajkar@gmail.com
(Received: May 26, 2020 Accepted: Feb. 18, 2021 Published: Apr. 30, 2021)
Abstract: Let $G=(V, E)$ be a simple and connected graph. The degree of a vertex u and its eccentricity of a graph G is denoted as $d(u)$ and $e(u)$ respectively. The eccentric connectivity polynomial $\xi^{c}(G, x)$ of a graph G is defined as $\xi^{c}(G, x)=\sum_{u \in V(G)} d(u) x^{e(u)}$ and the modified eccentric connectivity polynomial $\xi_{c}(G, x)$ of a graph G is defined as $\xi_{c}(G, x)=\sum_{u \in V(G)} M(u) x^{e(u)}$, where $M(u)=\sum_{v \in N_{G}(u)} d(v)$ i.e., sum of the neighbouring vertices of $u \in V(G)$. The first derivative of these polynomials evaluated at $x=1$ generates eccentric connectivity index $\xi^{c}(G)$ defined as $\xi^{c}(G)=\sum_{u \in V(G)} d(u) e(u)$ and modified eccentric connectivity index $\xi_{c}(G)$ defined as $\xi_{c}(G)=\sum_{u \in V(G)} M(u) e(u)$ respectively. In this paper, we present the generalized results for eccentric connectivity polynomial, modified eccentric connectivity polynomial and their respective indices for Jahangir graph $J_{n, m}$ with $n \geq 2$ and $m \geq 3$.

Keywords and Phrases: Eccentric connectivity indices, eccentric connectivity polynomials, Jahangir graph.

2020 Mathematics Subject Classification: 05C07, 05C12, 05C31.

1. Introduction

Let $G=(V, E)$ be a simple and connected graph with $V(G)$ as the vertex set and $E(G)$ as the edge set. The degree of a vertex u in a graph G is denoted as $d(u)$ and is defined as the number of edges of a graph G incident with vertex u [5]. The
distance $d(u, v)$ between two vertices u and v is the minimum of the lengths of the $u-v$ paths of $G[5]$. The eccentricity $e(u)$ of a vertex u of a connected graph G is the distance between vertex u and a vertex farthest from u [5]. A topological index is a molecular descriptor which characterizes the topology of a graph through numerical parameters. Amongst the numerous topological indices defined, one interesting distance based topological index is the eccentric connectivity index $\xi^{c}(G)$ of a graph G defined by Sharma et al. [10] as

$$
\begin{equation*}
\xi^{c}(G)=\sum_{u \in V(G)} d(u) e(u) \tag{1}
\end{equation*}
$$

where $d(u)$ denotes the degree of vertex u and $e(u)$ denotes its eccentricity in a graph G.

The eccentric connectivity polynomial $\xi^{c}(G, x)$ of a graph G was defined by Ghorbani et al. [2] as

$$
\begin{equation*}
\xi^{c}(G, x)=\sum_{u \in V(G)} d(u) x^{e(u)} \tag{2}
\end{equation*}
$$

It is observable that eccentric connectivity index $\xi^{c}(G)$ is the first derivative of eccentric connectivity polynomial $\xi^{c}(G, x)$ evaluated at $x=1$.
For a vertex $u \in V(G)$, the neighbourhood of u in G is denoted as $N_{G}(u)$ and defined as the set consisting of all vertices that are adjacent to u i.e., $N_{G}(u)=$ $\{v \in V(G): u v \in E(G)\}$ and $M(u)$ is the neighbourhood degree sum of a vertex $u \in V(G)$, defined as $M(u)=\sum_{v \in N_{G}(u)} d(v)$.
The modified eccentric connectivity index $\xi_{c}(G)$ of a graph G was defined by Ashrafi and Ghorbani [3] as

$$
\begin{equation*}
\xi_{c}(G)=\sum_{u \in V(G)} M(u) e(u) \tag{3}
\end{equation*}
$$

where,

$$
M(u)=\sum_{v \in N_{G}(u)} d(v)
$$

i.e., sum of the neighbouring vertices of $u \in V(G)$.

The corresponding modified eccentric connectivity polynomial $\xi_{c}(G, x)$ is defined as

$$
\begin{equation*}
\xi_{c}(G, x)=\sum_{u \in V(G)} M(u) x^{e(u)} \tag{4}
\end{equation*}
$$

Clearly, the modified eccentric connectivity index $\xi_{c}(G)$ is the first derivative of modified eccentric connectivity polynomial $\xi_{c}(G, x)$ evaluated at $x=1$.
For undefined terminologies refer [7].
The Jahangir graph $J_{n, m}[1,9]$ is a graph on $(n m+1)$ vertices and $m(n+1)$ edges for every $n \geq 2$ and $m \geq 3$ i.e., a graph consisting of a cycle $C_{n m}$ with one additional vertex which is adjacent to m vertices of $C_{n m}$ at a distance n to each other on $C_{n m}$. It is denoted by $J_{n, m}$ for every $n \geq 2$ and $m \geq 3$.

Figure 1: Some examples of Jahangir graphs.
Motivated by $[4,6,8]$, we compute eccentric connectivity polynomials, modified eccentric connectivity polynomials and their respective topological indices for Jahangir graph.

2. Main Results

Results for eccentric connectivity polynomial $\xi^{c}\left(J_{n, m}, x\right)$ and eccentric connectivity index $\xi^{c}\left(J_{n, m}\right)$.
Theorem 2.1. For the Jahangir graph $J_{2,3}$,

$$
\xi^{c}\left(J_{2,3}, x\right)=15 x^{3}+3 x^{2} \text { and } \xi^{c}\left(J_{2,3}\right)=51 .
$$

Proof. Let $J_{2,3}$ be a Jahangir graph. To compute $\xi^{c}\left(J_{2,3}, x\right)$ and $\xi^{c}\left(J_{2,3}\right)$ entries from Tab. 1 are considered.

Case	$d(u)$	$e(u)$	Number of vertices	Terms of $\xi^{c}\left(J_{2,3}, x\right)$
a	3	2	1	$3 x^{2}$
b	3	3	3	$3\left(3 x^{3}\right)$
c	2	3	3	$3\left(2 x^{3}\right)$

Tab. 1: Degrees and eccentricities of vertices in $J_{2,3}$.

Details of Tab. 1 are discussed as follows:

Case a. The graph $J_{2,3}$ has a central vertex of degree 3 and eccentricity 2. Hence, the first term of $\xi^{c}\left(J_{2,3}, x\right)$ is $3 x^{2}$.
Case b. The vertices adjacent to central vertex are 3 in number having degree 3 each and eccentricity 3 . Hence, the second term of $\xi^{c}\left(J_{2,3}, x\right)$ is $3\left(3 x^{3}\right)$.
Case c. The vertices at distance 2 from the central vertex are 3 in number having degree 2 each and eccentricity 3 . Hence, the third term of $\xi^{c}\left(J_{2,3}, x\right)$ is $3\left(2 x^{3}\right)$.

From equation 2 and Tab. 1, it follows

$$
\begin{aligned}
\xi^{c}\left(J_{2,3}, x\right) & =\sum_{u \in V\left(J_{2,3}\right)} d(u) x^{e(u)} \\
& =15 x^{3}+3 x^{2} .
\end{aligned}
$$

Since, $\xi^{c}\left(J_{2,3}\right)$ is the first derivative of $\xi^{c}\left(J_{2,3}, x\right)$ at $x=1$, it follows

$$
\begin{aligned}
\xi^{c}\left(J_{2,3}\right) & =\left.\frac{\partial}{\partial x}\left(\xi^{c}\left(J_{2,3}, x\right)\right)\right|_{x=1} \\
& =\left.\frac{\partial}{\partial x}\left(15 x^{3}+3 x^{2}\right)\right|_{x=1} \\
& =51 .
\end{aligned}
$$

Theorem 2.2. If $J_{n, 3}$ is a Jahangir graph with $n=2 k, k=2,3, \ldots$, then

$$
\begin{gathered}
\xi^{c}\left(J_{n, 3}, x\right)=3\left(x^{\frac{n+2}{2}}+3 x^{\frac{n+4}{2}}+4 x^{\frac{3\left(n^{2}-2 n-8\right)}{8}}+6 x^{n+1}\right) \text { and } \\
\xi^{c}\left(J_{n, 3}\right)=\frac{3}{2}\left(3 n^{2}+10 n+2\right) .
\end{gathered}
$$

Proof. Let $J_{n, 3}$ be the Jahangir graph with $n=2 k, k=2,3, \ldots$. To compute $\xi^{c}\left(J_{n, 3}, x\right)$ and $\xi^{c}\left(J_{n, 3}\right)$ entries from Tab. 2 are considered.

Case	$d(u)$	$e(u)$	Number of vertices	Terms of $\xi^{c}\left(J_{n, 3}, x\right)$
a	3	$\frac{n+2}{2}$	1	$3 x^{\frac{n+2}{2}}$
b	3	$\frac{n+4}{2}$	3	$3\left(3 x^{\frac{n+4}{2}}\right)$
c	2	$\frac{(n-4)(3 n+6)}{8}$	$3(n-4)$	$6\left(2 x^{\frac{(n-4)(3 n+6)}{8}}\right)$
d	2	$n+1$	9	$9\left(2 x^{n+1}\right)$

Tab. 2: Degrees and eccentricities of vertices in $J_{n, 3}$ with $n=2 k, k=2,3, \ldots$.

Details of Tab. 2 are discussed as follows:
Case a. The graph $J_{n, 3}$ has a central vertex of degree 3 and eccentricity $\frac{n+2}{2}$. Hence, the first term of $\xi^{c}\left(J_{n, 3}, x\right)$ is $3 x^{\frac{n+2}{2}}$.
Case b. The vertices adjacent to the central vertex are 3 in number having degree 3 each and eccentricity $\frac{n+4}{2}$. Hence, the second term of $\xi^{c}\left(J_{n, 3}, x\right)$ is $3\left(3 x^{\frac{n+4}{2}}\right)$.
Case c. There are 6 vertices each at a distance $2,3, \ldots,\left(\frac{n-2}{2}\right)$ respectively from the central vertex, total of such vertices are $3(n-4)$ in number having degree 2 each and sum of their eccentricities is $\frac{(n-4)(3 n+6)}{8}$. Hence, the third term of $\xi^{c}\left(J_{n, 3}, x\right)$ is $6\left(2 x^{\frac{(n-4)(3 n+6)}{8}}\right)$.
Note: In Case c there are total $3(n-4)$ vertices. Amongst these total vertices every 6 vertices have same eccentricity. For example, in $J_{8,3}$ there are total 12 vertices belonging to Case ceach vertex with degree 2. Out of these 12 vertices, 6 vertices have eccentricity 7 and remaining 6 vertices have eccentricity 8 . This pattern follows for other $J_{n, 3}$ with $n=2 k, k=2,3, \ldots$ graphs. Since 6 is the common factor for $(3(n-4))$ vertices, by equation 2 , the third term of $J_{n, 3}$ is $6\left(2 x^{\frac{(n-4)(3 n+6)}{8}}\right)$.
Case d. There are 3 vertices at a distance $\frac{n+2}{2}$ and 6 vertices at a distance $\frac{n}{2}$ from the central vertex, total number of such vertices are 9 having degree 2 each and eccentricity $n+1$. Hence, the fourth term of $\xi^{c}\left(J_{n, 3}, x\right)$ is $9\left(2 x^{n+1}\right)$.

From equation 2 and Tab. 2, it follows

$$
\begin{aligned}
\xi^{c}\left(J_{n, 3}, x\right) & =\sum_{u \in V\left(J_{n, 3}\right)} d(u) x^{e(u)} \\
& =3\left(x^{\frac{n+2}{2}}+3 x^{\frac{n+4}{2}}+4 x^{\frac{3\left(n^{2}-2 n-8\right)}{8}}+6 x^{n+1}\right) .
\end{aligned}
$$

Since, $\xi^{c}\left(J_{n, 3}\right)$ is the first derivative of $\xi^{c}\left(J_{n, 3}, x\right)$ at $x=1$, it follows

$$
\begin{aligned}
\xi^{c}\left(J_{n, 3}\right) & =\left.\frac{\partial}{\partial x}\left(\xi^{c}\left(J_{n, 3}, x\right)\right)\right|_{x=1} \\
& =\left.\frac{\partial}{\partial x}\left(3\left(x^{\frac{n+2}{2}}+3 x^{\frac{n+4}{2}}+4 x^{\frac{3\left(n^{2}-2 n-8\right)}{8}}+6 x^{n+1}\right)\right)\right|_{x=1} \\
& =\frac{3}{2}\left(3 n^{2}+10 n+2\right) .
\end{aligned}
$$

Theorem 2.3. If $J_{n, m}$ is a Jahangir graph with n as even and $m \geq 4$, then

$$
\begin{gathered}
\xi^{c}\left(J_{n, m}, x\right)=m\left(x^{\frac{n+2}{2}}+3 x^{\frac{n+4}{2}}+4 x^{\frac{\left(3 n^{2}+2 n-16\right)}{8}}+2 x^{n+2}\right) \text { and } \\
\xi^{c}\left(J_{n, m}\right)=\frac{m}{2}\left(3 n^{2}+10 n+6\right) .
\end{gathered}
$$

Proof. Let $J_{n, m}$ be the Jahangir graph with n as even and $m \geq 4$. To compute $\xi^{c}\left(J_{n, m}, x\right)$ and $\xi^{c}\left(J_{n, m}\right)$ entries from Tab. 3 are considered.

Case	$d(u)$	$e(u)$	Number of vertices	Terms of $\xi^{c}\left(J_{n, m}, x\right)$
a	m	$\frac{n+2}{2}$	1	$m x^{\frac{n+2}{2}}$
b	3	$\frac{n+4}{2}$	m	$m\left(3 x^{\frac{n+4}{2}}\right)$
c	2	$\frac{(n-2)(3 n+8)}{8}$	$2 m$	$2 m\left(2 x^{\frac{(n-2)(3 n+8)}{8}}\right)$
d	2	$n+2$	m	$m\left(2 x^{n+2}\right)$

Tab. 3: Degrees and eccentricities of vertices in $J_{n, m}$ with n as even and $m \geq 4$.
Details of Tab. 3 are discussed as follows:
Case a. The graph $J_{n, m}$ has a central vertex of degree m and eccentricity $\frac{n+2}{2}$. Hence, the first term of $\xi^{c}\left(J_{n, m}, x\right)$ is $m x^{\frac{n+2}{2}}$.
Case b. The vertices adjacent to the central vertex are m in number having degree 3 each and eccentricity $\frac{n+4}{2}$. Hence, the second term of $\xi^{c}\left(J_{n, m}, x\right)$ is $m\left(3 x^{\frac{n+4}{2}}\right)$.
Case c. There are $2 m$ vertices each at a distance $2,3, \ldots,\left(\frac{n}{2}\right)$ respectively from the central vertex having degree 2 each and sum of their eccentricities is $\frac{(n-2)(3 n+8)}{8}$. Hence, the third term of $\xi^{c}\left(J_{n, m}, x\right)$ is $2 m\left(2 x^{\frac{(n-2)(3 n+8)}{8}}\right)$.
Case d. The vertices at a distance $\frac{n+2}{2}$ from the central vertex are m in number having degree 2 each and eccentricity $n+2$. Hence, the fourth term of $\xi^{c}\left(J_{n, m}, x\right)$ is $m\left(2 x^{n+2}\right)$.

From equation 2 and Tab. 3, it follows

$$
\begin{aligned}
\xi^{c}\left(J_{n, m}, x\right) & =\sum_{u \in V\left(J_{n, m}\right)} d(u) x^{e(u)} \\
& =m\left(x^{\frac{n+2}{2}}+3 x^{\frac{n+4}{2}}+4 x^{\frac{\left(3 n^{2}+2 n-16\right)}{8}}+2 x^{n+2}\right)
\end{aligned}
$$

Since, $\xi^{c}\left(J_{n, m}\right)$ is the first derivative of $\xi^{c}\left(J_{n, m}, x\right)$ at $x=1$, it follows

$$
\begin{aligned}
\xi^{c}\left(J_{n, m}\right) & =\left.\frac{\partial}{\partial x}\left(\xi^{c}\left(J_{n, m}, x\right)\right)\right|_{x=1} \\
& =\left.\frac{\partial}{\partial x}\left(m\left(x^{\frac{n+2}{2}}+3 x^{\frac{n+4}{2}}+4 x^{\frac{\left(3 n^{2}+2 n-16\right)}{8}}+2 x^{n+2}\right)\right)\right|_{x=1} \\
& =\frac{m}{2}\left(3 n^{2}+10 n+6\right)
\end{aligned}
$$

Theorem 2.4. If $J_{n, m}$ is a Jahangir graph with n as odd and $m \geq 3$, then

$$
\xi^{c}\left(J_{n, m}, x\right)=m\left(x^{\frac{n+1}{2}}+3 x^{\frac{n+3}{2}}+4 x^{\frac{\left(3 n^{2}+4 n-7\right)}{8}}\right) \text { and } \xi^{c}\left(J_{n, m}\right)=\frac{m}{2}\left(3 n^{2}+8 n+3\right)
$$

Proof. Let $J_{n, m}$ be the Jahangir graph with n as odd and $m \geq 3$. To compute $\xi^{c}\left(J_{n, m}, x\right)$ and $\xi^{c}\left(J_{n, m}\right)$ entries from Tab. 4 are considered.

Case	$d(u)$	$e(u)$	Number of vertices	Terms of $\xi^{c}\left(J_{n, m}, x\right)$
a	m	$\frac{n+1}{2}$	1	$m x^{\frac{n+1}{2}}$
b	3	$\frac{n+3}{2}$	m	$m\left(3 x^{\frac{n+3}{2}}\right)$
c	2	$\frac{(n-1)(3 n+7)}{8}$	$2 m$	$2 m\left(2 x^{\frac{(n-1)(3 n+7)}{8}}\right)$

Tab. 4: Degrees and eccentricities of vertices in $J_{n, m}$ with n as odd and $m \geq 3$.
Details of Tab. 4 are discussed as follows:
Case a. The graph $J_{n, m}$ has a central vertex of degree m and eccentricity $\frac{n+1}{2}$. Hence, the first term of $\xi^{c}\left(J_{n, m}, x\right)$ is $m x^{\frac{n+1}{2}}$.
Case b. The vertices adjacent to the central vertex are m in number having degree 3 each and eccentricity $\frac{n+3}{2}$. Hence, the second term of $\xi^{c}\left(J_{n, m}, x\right)$ is $m\left(3 x^{\frac{n+3}{2}}\right)$. Case c. There are $2 m$ vertices each at a distance $2,3, \ldots,\left(\frac{n+1}{2}\right)$ respectively from the central vertex having degree 2 each and sum of their eccentricities is $\frac{(n-1)(3 n+7)}{8}$. Hence, the third term of $\xi^{c}\left(J_{n, m}, x\right)$ is $2 m\left(2 x^{\frac{(n-1)(3 n+7)}{8}}\right)$.

From equation 2 and Tab. 4, it follows

$$
\begin{aligned}
\xi^{c}\left(J_{n, m}, x\right) & =\sum_{u \in V\left(J_{n, m}\right)} d(u) x^{e(u)} \\
& =m\left(x^{\frac{n+1}{2}}+3 x^{\frac{n+3}{2}}+4 x^{\frac{\left(3 n^{2}+4 n-7\right)}{8}}\right) .
\end{aligned}
$$

Since, $\xi^{c}\left(J_{n, m}\right)$ is the first derivative of $\xi^{c}\left(J_{n, m}, x\right)$ at $x=1$, it follows

$$
\begin{aligned}
\xi^{c}\left(J_{n, m}\right) & =\left.\frac{\partial}{\partial x}\left(\xi^{c}\left(J_{n, m}, x\right)\right)\right|_{x=1} \\
& =\left.\frac{\partial}{\partial x}\left(m\left(x^{\frac{n+1}{2}}+3 x^{\frac{n+3}{2}}+4 x^{\frac{\left(3 n^{2}+4 n-7\right)}{8}}\right)\right)\right|_{x=1} \\
& =\frac{m}{2}\left(3 n^{2}+8 n+3\right) .
\end{aligned}
$$

Results for modified eccentric connectivity polynomial $\xi_{c}\left(J_{n, m}, x\right)$ and modified eccentric connectivity index $\xi_{c}\left(J_{n, m}\right)$.
Theorem 2.5. For the Jahangir graph $J_{2,3}$,

$$
\xi_{c}\left(J_{2,3}, x\right)=39 x^{3}+9 x^{2} \text { and } \xi_{c}\left(J_{2,3}\right)=135 .
$$

Proof. Let $J_{2,3}$ be a Jahangir graph. To compute $\xi_{c}\left(J_{2,3}, x\right)$ and $\xi_{c}\left(J_{2,3}\right)$ entries from Tab. 5 are considered.

Case	$M(u)$	$e(u)$	Number of vertices	Terms of $\xi_{c}\left(J_{2,3}, x\right)$
a	9	2	1	$9 x^{2}$
b	7	3	3	$3\left(7 x^{3}\right)$
c	6	3	3	$3\left(6 x^{3}\right)$

Tab. 5: $M(u)$ and eccentricities of vertices in $J_{2,3}$.

Details of Tab. 5 are discussed as follows:

Case a. The graph $J_{2,3}$ has a central vertex with $M(u)=9$ and eccentricity 2 . Hence, the first term of $\xi_{c}\left(J_{2,3}, x\right)$ is $9 x^{2}$.
Case b. The vertices adjacent to central vertex are 3 in number with $M(u)=7$ each and eccentricity 3 . Hence, the second term of $\xi_{c}\left(J_{2,3}, x\right)$ is $3\left(7 x^{3}\right)$.
Case c. The vertices at distance 2 from the central vertex are 3 in number with $M(u)=6$ each and eccentricity 3 . Hence, the third term of $\xi_{c}\left(J_{2,3}, x\right)$ is $3\left(6 x^{3}\right)$.

From equation 4 and Tab. 5, it follows

$$
\xi_{c}\left(J_{2,3}, x\right)=\sum_{u \in V\left(J_{2}, 3\right)} M(u) x^{e(u)}=39 x^{3}+9 x^{2} .
$$

Since, $\xi_{c}\left(J_{2,3}\right)$ is the first derivative of $\xi_{c}\left(J_{2,3}, x\right)$ at $x=1$, it follows

$$
\begin{aligned}
\xi_{c}\left(J_{2,3}\right) & =\left.\frac{\partial}{\partial x}\left(\xi_{c}\left(J_{2,3}, x\right)\right)\right|_{x=1} \\
& =\left.\frac{\partial}{\partial x}\left(39 x^{3}+9 x^{2}\right)\right|_{x=1}=135 .
\end{aligned}
$$

Theorem 2.6. If $J_{2, m}$ is the Jahangir graph with $m \geq 4$, then

$$
\xi_{c}\left(J_{2, m}, x\right)=m\left(3 x^{2}+(4+m) x^{3}+6 x^{4}\right) \text { and } \xi_{c}\left(J_{2, m}\right)=m(3 m+42) .
$$

Proof. Let $J_{2, m}$ be the Jahangir graph with $m \geq 4$. To compute $\xi_{c}\left(J_{2, m}, x\right)$ and $\xi_{c}\left(J_{2, m}\right)$ entries from Tab. 6 are considered.

Case	$M(u)$	$e(u)$	Number of vertices	Terms of $\xi_{c}\left(J_{2, m}, x\right)$
a	$3 m$	2	1	$3 m x^{2}$
b	$4+m$	3	m	$m\left((4+m) x^{3}\right)$
c	6	4	m	$m\left(6 x^{4}\right)$

Tab. 6: $M(u)$ and eccentricities of vertices in $J_{2, m}$ with $m \geq 4$.

Details of Tab. 6 are discussed as follows:
Case a. The graph $J_{2, m}$ has a central vertex with $M(u)=3 m$ and eccentricity 2 . Hence, the first term of $\xi_{c}\left(J_{2, m}, x\right)$ is $3 m x^{2}$.
Case b. The vertices adjacent to central vertex are m in number with $M(u)=(4+$ $m)$ each and eccentricity 3 . Hence, the second term of $\xi_{c}\left(J_{2, m}, x\right)$ is $m\left((4+m) x^{3}\right)$. Case c. The vertices at distance 2 from the central vertex are m in number with $M(u)=6$ each and eccentricity 4 . Hence, the third term of $\xi_{c}\left(J_{2, m}, x\right)$ is $m\left(6 x^{4}\right)$. From equation 4 and Tab. 6, it follows

$$
\begin{aligned}
\xi_{c}\left(J_{2, m}, x\right) & =\sum_{u \in V\left(J_{2, m}\right)} M(u) x^{e(u)} \\
& =m\left(3 x^{2}+(4+m) x^{3}+6 x^{4}\right) .
\end{aligned}
$$

Since, $\xi_{c}\left(J_{2, m}\right)$ is the first derivative of $\xi_{c}\left(J_{2, m}, x\right)$ at $x=1$, it follows

$$
\begin{aligned}
\xi_{c}\left(J_{2, m}\right) & =\left.\frac{\partial}{\partial x}\left(\xi_{c}\left(J_{2, m}, x\right)\right)\right|_{x=1} \\
& =\left.\frac{\partial}{\partial x}\left(m\left(3 x^{2}+(4+m) x^{3}+6 x^{4}\right)\right)\right|_{x=1} \\
& =m(3 m+42) .
\end{aligned}
$$

Theorem 2.7. For the Jahangir graph $J_{4,3}$,

$$
\xi_{c}\left(J_{4,3}, x\right)=42 x^{5}+21 x^{4}+9 x^{3} \text { and } \xi_{c}\left(J_{4,3}\right)=321 \text {. }
$$

Proof. Let $J_{4,3}$ be a Jahangir graph. To compute $\xi_{c}\left(J_{4,3}, x\right)$ and $\xi_{c}\left(J_{4,3}\right)$ entries from Tab. 7 are considered.

Case	$M(u)$	$e(u)$	Number of vertices	Terms of $\xi_{c}\left(J_{4,3}, x\right)$
a	9	3	1	$9 x^{3}$
b	7	4	3	$3\left(7 x^{4}\right)$
c	5	5	6	$6\left(5 x^{5}\right)$
d	4	5	3	$3\left(4 x^{5}\right)$

Tab. 7: $M(u)$ and eccentricities of vertices in $J_{4,3}$.

Details of Tab. 7 are discussed as follows:

Case a. The graph $J_{4,3}$ has a central vertex with $M(u)=9$ and eccentricity 3 . Hence, the first term of $\xi_{c}\left(J_{4,3}, x\right)$ is $9 x^{3}$.
Case b. The vertices adjacent to central vertex are 3 in number with $M(u)=7$ each and eccentricity 4 . Hence, the second term of $\xi_{c}\left(J_{4,3}, x\right)$ is $3\left(7 x^{4}\right)$.

Case c. The vertices at distance 2 from the central vertex are 6 in number with $M(u)=5$ each and eccentricity 5 . Hence, the third term of $\xi_{c}\left(J_{4,3}, x\right)$ is $6\left(5 x^{5}\right)$.
Case d. The vertices at distance 3 from the central vertex are 3 in number with $M(u)=4$ each and eccentricity 5 . Hence, the fourth term of $\xi_{c}\left(J_{4,3}, x\right)$ is $3\left(4 x^{5}\right)$.

From equation 4 and Tab. 7, it follows

$$
\begin{aligned}
\xi_{c}\left(J_{4,3}, x\right) & =\sum_{u \in V\left(J_{4,3}\right)} M(u) x^{e(u)} \\
& =42 x^{5}+21 x^{4}+9 x^{3} .
\end{aligned}
$$

Since, $\xi_{c}\left(J_{4,3}\right)$ is the first derivative of $\xi_{c}\left(J_{4,3}, x\right)$ at $x=1$, it follows

$$
\begin{aligned}
\xi_{c}\left(J_{4,3}\right) & =\left.\frac{\partial}{\partial x}\left(\xi_{c}\left(J_{4,3}, x\right)\right)\right|_{x=1} \\
& =\left.\frac{\partial}{\partial x}\left(42 x^{5}+21 x^{4}+9 x^{3}\right)\right|_{x=1} \\
& =321 .
\end{aligned}
$$

Theorem 2.8. If $J_{n, 3}$ is the Jahangir graph with $n=2 k, k=3,4, \ldots$, then

$$
\begin{aligned}
\xi_{c}\left(J_{n, 3}, x\right) & =3\left(3 x^{\frac{n+2}{2}}+7 x^{\frac{n+4}{2}}+10 x^{\frac{n+6}{2}}+8 x^{\frac{\left(3 n^{2}-10 n-48\right)}{8}}+12 x^{n+1}\right) \text { and } \\
\xi_{c}\left(J_{n, 3}\right) & =9 n^{2}+36 n+33 .
\end{aligned}
$$

Proof. Let $J_{n, 3}$ be the Jahangir graph with $n=2 k, k=3,4, \ldots$. To compute $\xi_{c}\left(J_{n, 3}, x\right)$ and $\xi_{c}\left(J_{n, 3}\right)$ entries from Tab. 8 are considered.

Case	$M(u)$	$e(u)$	Number of vertices	Terms of $\xi_{c}\left(J_{n, 3}, x\right)$
a	9	$\frac{n+2}{2}$	1	$9 x^{\frac{n+2}{2}}$
b	7	$\frac{n+4}{2}$	3	$3\left(7 x^{\frac{n+4}{2}}\right)$
c	5	$\frac{n+6}{2}$	6	$6\left(5 x^{\frac{n+6}{2}}\right)$
d	4	$\frac{(n-6)(3 n+8)}{8}$	$3(n-4)$	$6\left(4 x^{\frac{(n-6)(3 n+8)}{8}}\right)$
e	4	$n+1$	9	$9\left(4 x^{n+1}\right)$

Tab. 8: $M(u)$ and eccentricities of vertices in $J_{n, 3}$ with $n=2 k, k=3,4, \ldots$
Details of Tab. 8 are discussed as follows:
Case a. The graph $J_{n, 3}$ has a central vertex with $M(u)=9$ and eccentricity $\frac{n+2}{2}$. Hence, the first term of $\xi_{c}\left(J_{n, 3}, x\right)$ is $9 x^{\frac{n+2}{2}}$.

Case b. The vertices adjacent to central vertex are 3 in number with $M(u)=7$ each and eccentricity $\frac{n+4}{2}$. Hence, the second term of $\xi_{c}\left(J_{n, 3}, x\right)$ is $3\left(7 x^{\frac{n+4}{2}}\right)$.
Case c. The vertices at distance 2 from the central vertex are 6 in number with $M(u)=5$ each and eccentricity $\frac{n+6}{2}$. Hence, the third term of $\xi_{c}\left(J_{n, 3}, x\right)$ is $6\left(5 x^{\frac{n+6}{2}}\right)$. Case d. There are 6 vertices each at a distance $3,4, \ldots,\left(\frac{n-2}{2}\right)$ respectively from the central vertex, total of such vertices are $3(n-4)$ in number having $M(u)=4$ each and sum of their eccentricities is $\frac{(n-6)(3 n+8)}{8}$. Hence, the fourth term of $\xi_{c}\left(J_{n, 3}, x\right)$ is $6\left(4 x^{\frac{(n-6)(3 n+8)}{8}}\right)$.
Note: In Case d there are total $3(n-4)$ vertices. Amongst these total vertices every 6 vertices have same eccentricity. For example, in $J_{10,3}$ there are total 12 vertices belonging to Case d, each vertex with $M(u)=4$. Out of these 12 vertices, 6 vertices have eccentricity 9 and remaining 6 vertices have eccentricity 10 . This pattern follows for other $J_{n, 3}$ with $n=2 k, k=3,4, \ldots$ graphs. Since 6 is the common factor for $(3(n-4))$ vertices, by equation 4 , the fourth term of $J_{n, 3}$ is $6\left(4 x^{\frac{(n-6)(3 n+8)}{8}}\right)$.
Case e. There are 3 vertices at a distance $\frac{n+2}{2}$ and 6 vertices at a distance $\frac{n}{2}$ from the central vertex having $M(u)=4$ each and eccentricity $n+1$. Hence, the fifth term of $\xi_{c}\left(J_{n, 3}, x\right)$ is $9\left(4 x^{n+1}\right)$.

From equation 4 and Tab. 8, it follows

$$
\begin{aligned}
\xi_{c}\left(J_{n, 3}, x\right) & =\sum_{u \in V\left(J_{n, 3}\right)} M(u) x^{e(u)} \\
& =3\left(3 x^{\frac{n+2}{2}}+7 x^{\frac{n+4}{2}}+10 x^{\frac{n+6}{2}}+8 x^{\frac{\left(3 n^{2}-10 n-48\right)}{8}}+12 x^{n+1}\right) .
\end{aligned}
$$

Since, $\xi_{c}\left(J_{n, 3}\right)$ is the first derivative of $\xi_{c}\left(J_{n, 3}, x\right)$ at $x=1$, it follows

$$
\begin{aligned}
\xi_{c}\left(J_{n, 3}\right) & =\left.\frac{\partial}{\partial x}\left(\xi_{c}\left(J_{n, 3}, x\right)\right)\right|_{x=1} \\
& =\left.\frac{\partial}{\partial x}\left(3\left(3 x^{\frac{n+2}{2}}+7 x^{\frac{n+4}{2}}+10 x^{\frac{n+6}{2}}+8 x^{\frac{\left(3 n^{2}-10 n-48\right)}{8}}+12 x^{n+1}\right)\right)\right|_{x=1} \\
& =9 n^{2}+36 n+33 .
\end{aligned}
$$

Theorem 2.9. If $J_{n, m}$ is the Jahangir graph with $n=2 k, k=2,3, \ldots$ and $m \geq 4$, then

$$
\begin{aligned}
\xi_{c}\left(J_{n, m}, x\right) & =m\left(3 x^{\frac{n+2}{2}}+(4+m) x^{\frac{n+4}{2}}+10 x^{\frac{n+6}{2}}+8 x^{\frac{\left(3 n^{2}-2 n-40\right)}{8}}+4 x^{n+2}\right) \text { and } \\
\xi_{c}\left(J_{n, m}\right) & =\frac{m}{2}\left(6 n^{2}+21 n+4 m+m n+18\right) .
\end{aligned}
$$

Proof. Let $J_{n, m}$ be the Jahangir graph with $n=2 k, k=2,3, \ldots$ and $m \geq 4$. To compute $\xi_{c}\left(J_{n, m}, x\right)$ and $\xi_{c}\left(J_{n, m}\right)$ entries from Tab. 9 are considered.

Case	$M(u)$	$e(u)$	Number of vertices	Terms of $\xi_{c}\left(J_{n, m}, x\right)$
a	$3 m$	$\frac{n+2}{2}$	1	$3 m x^{\frac{n+2}{2}}$
b	$4+m$	$\frac{n+4}{2}$	m	$m\left((4+m) x^{\frac{n+4}{2}}\right)$
c	5	$\frac{n+6}{2}$	$2 m$	$2 m\left(5 x^{\frac{n+6}{2}}\right)$
d	4	$\frac{(n-4)(3 n+10)}{8}$	$2 m$	$2 m\left(4 x^{\frac{(n-4)(3 n+10)}{8}}\right)$
e	4	$n+2$	m	$m\left(4 x^{n+2}\right)$

Tab. 9: $M(u)$ and eccentricities of vertices in $J_{n, m}$ with $n=2 k, k=2,3, \ldots$ and

$$
m \geq 4
$$

Details of Tab. 9 are discussed as follows:

Case a. The graph $J_{n, m}$ has a central vertex with $M(u)=3 m$ and eccentricity $\frac{n+2}{2}$. Hence, the first term of $\xi_{c}\left(J_{n, m}, x\right)$ is $3 m x^{\frac{n+2}{2}}$.
Case b. The vertices adjacent to central vertex are m in number with $M(u)=$ $(4+m)$ each and eccentricity $\frac{n+4}{2}$. Hence, the second term of $\xi_{c}\left(J_{n, m}, x\right)$ is $m((4+$ m) $\left.x^{\frac{n+4}{2}}\right)$.

Case c. The vertices at distance 2 from the central vertex are $2 m$ in number with $M(u)=5$ each and eccentricity $\frac{n+6}{2}$. Hence, the third term of $\xi_{c}\left(J_{n, m}, x\right)$ is $2 m\left(5 x^{\frac{n+6}{2}}\right)$.
Case d. There are $2 m$ vertices each at a distance $3,4, \ldots,\left(\frac{n}{2}\right)$ respectively from the central vertex with $M(u)=4$ each and sum of their eccentricities is $\frac{(n-4)(3 n+10)}{8}$. Hence, the fourth term of $\xi_{c}\left(J_{n, m}, x\right)$ is $2 m\left(4 x^{\frac{(n-4)(3 n+10)}{8}}\right)$.
Case e. The vertices at a distance $\frac{n+2}{2}$ from the central vertex are m in number with $M(u)=4$ each and eccentricity $n+2$. Hence, the fifth term of $\xi_{c}\left(J_{n, m}, x\right)$ is $m\left(4 x^{n+2}\right)$.

From equation 4 and Tab. 9, it follows

$$
\begin{aligned}
\xi_{c}\left(J_{n, m}, x\right) & =\sum_{u \in V\left(J_{n, m}\right)} M(u) x^{e(u)} \\
& =m\left(3 x^{\frac{n+2}{2}}+(4+m) x^{\frac{n+4}{2}}+10 x^{\frac{n+6}{2}}+8 x^{\frac{\left(3 n^{2}-2 n-40\right)}{8}}+4 x^{n+2}\right) .
\end{aligned}
$$

Since, $\xi_{c}\left(J_{n, m}\right)$ is the first derivative of $\xi_{c}\left(J_{n, m}, x\right)$ at $x=1$, it follows

$$
\begin{aligned}
\xi_{c}\left(J_{n, m}\right) & =\left.\frac{\partial}{\partial x}\left(\xi_{c}\left(J_{n, m}, x\right)\right)\right|_{x=1} \\
& =\left.\frac{\partial}{\partial x}\left(m\left(3 x^{\frac{n+2}{2}}+(4+m) x^{\frac{n+4}{2}}+10 x^{\frac{n+6}{2}}+8 x^{\frac{\left(3 n^{2}-2 n-40\right)}{8}}+4 x^{n+2}\right)\right)\right|_{x=1} \\
& =\frac{m}{2}\left(6 n^{2}+21 n+4 m+m n+18\right)
\end{aligned}
$$

Theorem 2.10. If $J_{n, m}$ is the Jahangir graph with n as odd and $m \geq 3$, then

$$
\begin{aligned}
\xi_{c}\left(J_{n, m}, x\right) & =m\left(3 x^{\frac{n+1}{2}}+(4+m) x^{\frac{n+3}{2}}+10 x^{\frac{n+5}{2}}+8 x^{\frac{\left(3 n^{2}-27\right)}{8}}\right) \text { and } \\
\xi_{c}\left(J_{n, m}\right) & =\frac{m}{2}\left(6 n^{2}+17 n+3 m+m n+11\right)
\end{aligned}
$$

Proof. Let $J_{n, m}$ be the Jahangir graph with n as odd and $m \geq 3$. To compute $\xi_{c}\left(J_{n, m}, x\right)$ and $\xi_{c}\left(J_{n, m}\right)$ entries from Tab. 10 are considered.

Case	$M(u)$	$e(u)$	Number of vertices	Terms of $\xi_{c}\left(J_{n, m}, x\right)$
a	$3 m$	$\frac{n+1}{2}$	1	$3 m x^{\frac{n+1}{2}}$
b	$4+m$	$\frac{n+3}{2}$	m	$m\left((4+m) x^{\frac{n+3}{2}}\right)$
c	5	$\frac{n+5}{2}$	$2 m$	$2 m\left(5 x^{\left.\frac{n+5}{2}\right)}\right.$
d	4	$\frac{(n-3)(3 n+9)}{8}$	$2 m$	$2 m\left(4 x^{\frac{(n-3)(3 n+9)}{8}}\right)$

Tab. 10: $M(u)$ and eccentricities of vertices in $J_{n, m}$ with n as odd and $m \geq 3$.

Details of Tab. 10 are discussed as follows:

Case a. The graph $J_{n, m}$ has a central vertex with $M(u)=3 m$ and eccentricity $\frac{n+1}{2}$. Hence, the first term of $\xi_{c}\left(J_{n, m}, x\right)$ is $3 m x^{\frac{n+1}{2}}$.
Case b. The vertices adjacent to central vertex are m in number with $M(u)=$ $(4+m)$ each and eccentricity $\frac{n+3}{2}$. Hence, the second term of $\xi_{c}\left(J_{n, m}, x\right)$ is $m((4+$ m) $x^{\frac{n+3}{2}}$).

Case c. The vertices at distance 2 from the central vertex are $2 m$ in number with $M(u)=5$ each and eccentricity $\frac{n+5}{2}$. Hence, the third term of $\xi_{c}\left(J_{n, m}, x\right)$ is $2 m\left(5 x^{\frac{n+5}{2}}\right)$.
Case d. There are $2 m$ vertices each at a distance $3,4, \ldots,\left(\frac{n+1}{2}\right)$ respectively from the central vertex with $M(u)=4$ each and sum of their eccentricities is $\frac{(n-3)(3 n+9)}{8}$. Hence, the fourth term of $\xi_{c}\left(J_{n, m}, x\right)$ is $2 m\left(4 x^{\frac{(n-3)(3 n+9)}{8}}\right)$.

From equation 4 and Tab. 10, it follows

$$
\begin{aligned}
\xi_{c}\left(J_{n, m}, x\right) & =\sum_{u \in V\left(J_{n, m}\right)} M(u) x^{e(u)} \\
& =m\left(3 x^{\frac{n+1}{2}}+(4+m) x^{\frac{n+3}{2}}+10 x^{\frac{n+5}{2}}+8 x^{\frac{\left(3 n^{2}-27\right)}{8}}\right)
\end{aligned}
$$

Since, $\xi_{c}\left(J_{n, m}\right)$ is the first derivative of $\xi_{c}\left(J_{n, m}, x\right)$ at $x=1$, it follows

$$
\begin{aligned}
\xi_{c}\left(J_{n, m}\right) & =\left.\frac{\partial}{\partial x}\left(\xi_{c}\left(J_{n, m}, x\right)\right)\right|_{x=1} \\
& =\left.\frac{\partial}{\partial x}\left(m\left(3 x^{\frac{n+1}{2}}+(4+m) x^{\frac{n+3}{2}}+10 x^{\frac{n+5}{2}}+8 x^{\frac{\left(3 n^{2}-27\right)}{8}}\right)\right)\right|_{x=1} \\
& =\frac{m}{2}\left(6 n^{2}+17 n+3 m+m n+11\right)
\end{aligned}
$$

3. Acknowledgement

Authors are thankful to Karnatak University, Dharwad, Karnataka, India for the support through University Research Studentship (URS), No. KU/ Sch/ URS/ 2020-21/ 1103, dated: 21/12/2020.

References

[1] Ali, K., Baskaro, E. T. and Tomescu, I., On the Ramsey numbers of paths and Jahangir graph $J_{3, m}$, In 3rd International Conference on 21st Century Mathematics 2007, GC University Lahoor Pakistan, March 2007.
[2] Ashrafi, A. R., Ghorbani, M. and Hemmasi, M., Eccentric connectivity polynomials of fullerenes, Optoelectron. Adv. Mater.-(RC), 3(12) (2009), 13061308.
[3] Ashrafi, A. R. and Ghorbani, M., A study of fullerenes by MEC polynomials, Electron. Mater. Lett., 6(2) (2010), 87-90.
[4] Ashrafi, A. R., Ghorbani, M. and Hossein-Zadeh, M. A., The eccentric connectivity polynomial of some graph operations, Serdica J. Comput., 5(2) (2011), 101-116.
[5] Chartrand, G. and Lesniak, L., Graphs and Digraphs, Chapman and Hall/CRC, Washington, D. C., 2000.
[6] De, N., Pal, A. and Nayeem, S. M. A., Modified eccentric connectivity of generalized thorn graphs, Int. J. Comput. Math., 2014 (2014), doi:10.1155/ 2014/ 436140.
[7] Harary, F., Graph Theory, Addison - Wesely, Reading, Mass, 1969.
[8] Ilić, A. and Gutman, I., Eccentric connectivity index of chemical trees, MATCH Commun. Math. Comput. Chem., 65 (2011), 731-744.
[9] Mojdeh, D. A. and Ghameshlou, A. N., Domination in Jahangir graph $J_{2,3}$, Int. J. Contemp. Math. Sci., 2(24) (2007), 1193-1199.
[10] Sharma, V., Goswami, R. and Madan, A. K., Eccentric connectivity index: A novel highly discriminating topological descriptor for structure-property and structure-activity studies, J. Chem. Inf. Comput. Sci., 37 (1997), 273-282.

