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Abstract: In this paper the concept of cyclic distance is introduced. For u, v ∈
V (G) of a connected graph G, the cyclic distance between u and v is defined as
the minimum number of cycles to be traversed from a cycle containing u to a
cycle containing v. Using this notion, cyclic radius and cyclic diameter of a graph
are defined. Cyclic distance matrix of a graph is also introduced and some of its
properties are studied.
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1. Introduction
All graphs G = (V (G), E(G)) discussed in this paper are simple, finite,

connected and undirected. For notation and terminology we refer to [2, 3]. Different
types of distance concepts like detour distance [4], superior distance [7], etc., can be
found in the literature of graph theory. Recently M. P Jalsiya and Raji Pilakkat [6]
introduced the concept of transitively tracked graphs. This motivated the authors
to define a new distance concept called cyclic distance in graphs.
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Generally, graphs representing many real life situations are very complicated,
large and contains plenty of cycles, circuits etc,. Some popular examples are social
networking systems and electric circuits. The advantage of defining cyclic distance
is that such graphs can be studied in a smaller frame using this notion. Cyclic
distance reduces the distance between two vertices in a graph. This concept enables
us to treat two distinct vertices as a single unit when they belong to a subgraph
which is at least two connected.

2. Cyclic Distance in Graphs

In this section cycle neighbor sets and maximal cyclic components are defined
and using them the concept of cyclic distance between two vertices of a graph is
introduced.

Definition 2.1. Let G(V,E) be any graph. A subset C of V (G) is called a cycle
neighbor set of G, if for any two vertices u and v in C, there is a cycle in G, which
contains both u and v. So that there is at least two distinct paths connecting any
two vertices of a cycle neighbor set in G.

Definition 2.2. A cycle neighbor set C of a graph G(V,E) is said to be a maximal
cycle neighbor set, if for all vertices u ∈ V \C, C ∪{u} is not a cycle neighbor set.

Definition 2.3. For a graph G, maximal cyclic components are the subgraphs
induced by maximal cycle neighbor sets of G.

We use the abbreviation MCCs to denote the maximal cyclic components of a
graph G.

Proposition 2.4 is a direct consequence of the definition of MCCs of G.

Proposition 2.4. Let G be any graph. Then any two MCCs of G can have at
most one vertex in common.

Definition 2.5. Two MCCs of a graph G are said to be neighbors if they have
either a vertex in common or they are connected by a bridge between them. Two
MCCs of G are disjoint if there is no vertex common to them and two MCCs are
distinct if they have at most one common vertex.

Definition 2.6. For u, v ∈ V (G) of a graph G, the cyclic distance between u
and v is defined as the minimum number of MCCs to be traversed from the MCC
containing u to the MCC containing v other than the one containing u. It can be
written as cdG(u, v) or cd(u, v).

For example in the graph in figure 1, cd(u, v) = 3 while d(u, v) = 6.



Cyclic Distance in Graphs 247

t t
t
t

t
t

t t
t
t

t
t

u

v

Figure 1

Definition 2.7. For u, v ∈ V (G) of a graph G, a cyclic path from u to v is a finite
sequence of distinct MCCs containing the vertex u to the one containing v.

Proposition 2.8. Let G be any graph. Then for any two vertices u, v ∈ V (G),
there is a unique cyclic path joining u and v.
Proof. Assume that u, v ∈ V (G) such that cd(u, v) ≥ 1. Suppose if possible, the
cyclic path between them is not unique. Then there are more than one cyclic paths
between u and v in G. Let there be two cyclic paths between u and v such that
whose internal maximal cyclic components are disjoint. Combining these two cyclic
paths, we get a cyclic component containing both u and v so that cd(u, v) = 0, a
contradiction to cd(u, v) ≥ 1.

Definition 2.9. For a graph G, u, v ∈ V (G) are said to be cyclic similar vertices
if the cyclic distance between u and v that is, cd(u, v) = 0 and a graph G is called
a cyclic similar graph, if cd(u, v) = 0 for every pair of vertices in G.

Theorem 2.10. Let G be any connected graph. Then the following statements are
equivalent.

1. G is a cyclic similar graph.

2. G is at least two-connected.

3. V (G) is a cycle neighbor set.

Proof. Suppose that G is a cyclic similar graph. Then cd(u, v) = 0 for all vertices
u, v ∈ V (G). That is for every pair u, v of vertices in G, there is a cycle containing
these vertices. Hence there are at least two internally disjoint paths joining every
pair of vertices in G. Therefore, G is at least two-connected.

Now let us prove that if (2) does not hold then (3) cannot hold. Suppose that,
G is at most one connected. Then since G is connected, there is at least one cut
vertex say w in G and there are vertices u and v in G such that u...w...v is the
only path connecting u and v and therefore both u and v together cannot belong
to any cycle of G. Hence V (G) is not a cycle neighbor set.
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If V (G) is a cycle neighbor set, then by definition, every vertex of G belongs to
a cycle of G and therefore G is a cyclic similar graph. Hence (1).

The concept of cyclic distance helps to develop a topological structure on con-
nected graphs. Thus, we have Theorem 2.11.

Theorem 2.11. Let G(V,E) be any graph. Then on the set of vertices of G a
pseudo metric is induced by cyclic distance.
Proof. Let u, v ∈ V (G). From the definition of cyclic distance, it is clear that
cd(u, v) ≥ 0 for all u, v ∈ V (G) and cd(u, v) = cd(v, u). Now let u, v, w be any
three vertices in G.

Claim: cd(u,w) ≤ cd(u, v) + cd(v, w)
If G is acyclic or if all of u, v and w belong to the same maximal cyclic component

of G, then the inequality holds trivially. Now consider the following cases.
Case (i). Only two among u, v and w are in the same maximal cyclic compo-

nent. Then the cyclic distance between two pairs will be the same and the cyclic
distance between the other pair is zero. So the claim holds.

Case (ii). All the vertices u, v and w are in distinct maximal cyclic components
of G. By Proposition 2.8, the cyclic path between u and w is unique. Therefore,
cd(u,w) = cd(u, v) + cd(v, w) or cd(u,w) < cd(u, v) + cd(v, w) according as v is in
between the cyclic path connecting u and w or not. Hence the proof.

3. Cyclic radius and cyclic diameter
In this section, cyclic radius, cyclic diameter, cyclic center, cyclic periphery etc.,

of a graph with respect to cyclic distance are defined analogue to radius, diameter,
center and periphery of a graph with respect to the classical distance between ver-
tices.

Definition 3.1. For a graph G, the cyclic eccentricity of a vertex v is denoted
by ceG(v) or simply ce(v) and is defined as ce(v) = maxu∈V (G)cd(u, v). Let u, v ∈
V (G) then v is called a cyclic eccentric vertex of u if ce(u) = cd(u, v).

Definition 3.2. For any graph G, cyclic diameter (denoted by cdiam(G)) and
cyclic radius (denoted by crad(G)) are respectively defined as the largest and small-
est cyclic eccentricities of the vertices of the graph G. That is, cdiam(G) =
maxv∈V (G)ce(v) and crad(G) = minv∈V (G)ce(v).

Definition 3.3. Cyclic center (denoted by CC(G)) and cyclic periphery (denoted
by CP (G)) of a graph G are defined as the set of all vertices for which cyclic eccen-
tricity is equal to the cyclic radius and those vertices for which cyclic eccentricity
is equal to the cyclic diameter respectively.

Definition 3.4. Let G be any graph. Then G is said to be cyclic self centered if
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cdiam(G) = crad(G).

Remark 3.5. For any graph G, cdiam(G) = 0 if and only if G is cyclic similar.

Definition 3.6. A graph G is called a cyclic flower if there are at least two blocks
in G such that each block is a cyclic similar graph of order greater than or equal
to three and all these blocks has exactly one common vertex. Hence a cyclic flower
has at least two MCCs and there is a unique common vertex for all MCCs. The
common vertex of a cyclic flower graph is called the flower centric vertex. If a path
on k vertices is attached to the flower centric vertex of a cyclic flower (or to any
one vertex of a cyclic similar graph) by a bridge, then it is called cyclic flower with
k-stem (or a cyclic similar graph with k-stem).

Theorem 3.7. Let G be a graph. Then cdiam(G) = 1 if and only if

1. G has two MCCs connected by a bridge or

2. G is a cyclic flower or

3. G is either a graph containing a cyclic flower and a cyclic similar graph
connected by a bridge between the flower centric vertex of the cyclic flower
and any vertex of the cyclic similar graph or G contains two cyclic flowers
connected by a bridge through their flower centric vertices.

Proof. If G is any one of the graphs as in the statement of the theorem, then
clearly cdiam(G) = 1.

Now let cdiam(G) = 1. If there is only one MCC, then G is cyclic similar and
hence cdiam(G) = 0. Therefore G has at least two MCCs say G1 and G2. Therefore
either G contains two MCCs connected by a bridge or G contains a cyclic flower
with two MCCs as a subgraph.

Consider the first case that G contains two MCCs G1 and G2 connected by a
bridge. If there are exactly two MCCs then (1) holds. When there are more MCCs
in G other than G1 and G2, then since G is connected, either these extra MCCs
will have a vertex in common with G1 ∪ G2 or they will be connected to G1 ∪ G2

by bridges. But here if the vertex in G1 ∪ G2 which is shared by these MCCs is
different from the connecting vertices of G1 and G2, then cdiam(G) > 1. Therefore
every additional MCCs in G which has a vertex in common with G1 ∪ G2 will be
sharing either the connecting vertex of G1 to G2 or that of G2 to G1. If so, (3)
holds. No MCCs can be connected to G1∪G2 by bridges, since then cdiam(G) will
be increased at least by one.

Now consider the second case that G contains a cyclic flower with two MCCs say
G1 and G2. If there are more MCCs which have a vertex in common with G1∪G2,
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then the common vertex is the same as that of G1 and G2, otherwise cyclic diameter
will be increased. On the other hand if these MCCs are connected by bridges to
G1 ∪ G2, then the connecting edge should be unique, otherwise cdiam(G) > 1.
Therefore (2) or (3) holds. Hence the proof.

Let u, v ∈ A, where A ⊆ V (G) is a maximal cycle neighbor set of a connected
graph G. Then it is clear that |cd(u, x)−cd(v, x)| ≤ 1 for any vertex x ∈ V (G)\A.
Also when the subgraphs induced by A,B ⊆ V (G) are two neighboring MCCs of
G, then |cd(u, x)− cd(v, x)| ≤ 1 for all u ∈ A, v ∈ B and x ∈ V (G) \A∪B. Hence
it follows that;

Lemma 3.8. Let the subgraphs induced by A,B ⊆ V (G) be any two neighboring
MCCs of a graph G. Then |ce(u) − ce(v)| ≤ 1 for all u, v ∈ A for every maximal
cycle neighbor set A of G and |ce(u)− ce(v)| ≤ 1 for all u ∈ A and v ∈ B.

Theorem 3.9. Let G be a graph. If there is a positive integer k such that
crad(G) < k < cdiam(G) then there exists a vertex v ∈ V (G) with ce(v) = k.
Proof. Let u, v ∈ V (G) such that ce(u) = crad(G) and ce(v) = cdiam(G). Con-
sider the cyclic path connecting u and v. Let S and W be the set of all vertices in
that cyclic path with ce(s) < k for every s ∈ S and ce(w) ≥ k for every w ∈ W .
From the definition of cyclic paths it is clear that the vertices of S and W are con-
nected through a vertex y in W which is common to two neighboring MCCs or by
a bridge with one end in S and the other end say y in W . In both cases ce(y) ≥ k.
Then by the Lemma 3.8, |ce(w)− ce(y)| ≤ 1. Therefore we have, ce(y) = k. Hence
the proof.

Theorem 3.10. Let G be any graph. Then G is cyclic self centered if and only if

1. G is cyclic similar or

2. G is a graph with cdiam(G) = 1 which is not a cyclic flower.

Proof. G is cyclic similar if and only if cdiam(G) = 0. Therefore, cyclic similar
graphs are cyclic self centered.

Now Suppose that cdiam(G) = 1. Then G is any of the graphs as in the
statement of Theorem 3.7 Among them when G is a cyclic flower, crad(G) = 0 and
cdiam(G) = 1 and in all other cases, G is cyclic self centered.

Now let crad(G) = cdiam(G) = k where k ≥ 2. Then ce(v) = k for all
v ∈ V (G). Let w be a cyclic eccentric vertex of v. Then cd(v, w) = k. By
Proposition 2.8, there is a unique cyclic path connecting v and w. In that cyclic
path there are k + 1 maximal cyclic components say G0, G1, G2, ..., Gk such that
v ∈ V (G0) and w ∈ V (Gk). Let u ∈ V (Gl) where 1 ≤ l ≤ k − 1. From the
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definition of cyclic paths, it is clear that there is at least one vertex say u in
V (Gl) such that u does not belong to V (Gl−1) and u does not belong to V (Gl+1)
and ce(u) = k. Correspondingly there is a cyclic eccentric vertex y ∈ V (G) with
cd(u, y) = k. Consider the cyclic path connecting v and y. Since the cyclic path
joining any two vertices of a graph is unique, either u lies interior to the cyclic
path between v and y or v lies interior to the cyclic path between u and y. In the
first case, it is clear that cd(v, y) = cd(v, u) + cd(u, y) > k and in the second case,
cd(y, w) = cd(y, v) + cd(v, w) > k, a contradiction to cdiam(G) = k. Hence k < 2
whenever crad(G) = cdiam(G) = k. Hence the proof.

Corollary 3.11. If G is a cyclic self centered graph then cdiam(G) ≤ 1.

Definition 3.12. A collection of m cyclic flowers and a collection of n cyclic
similar graphs (where m ≥ 0, n ≥ 0 and both m and n are finite) are attached to
the vertices of a cyclic similar graph H through bridges then the resulting graph
G is called a cyclic bouquet if m + n ≥ 2. The cyclic similar graph H to which
all these cyclic flowers and cyclic similar graphs are attached is called the central
cyclic component of the cyclic bouquet.

Theorem 3.13. Let G be any graph which is not a tree. If order of G is n ≥ 4.
Then |CC(G)| = 1 and |CP (G)| = n− 1 if and only if

1. G is cyclic flower or

2. G is cyclic flower with 1-stem or G is cyclic similar graph with 1-stem or

3. G is a cyclic bouquet whose central cyclic component is K1, holds.

Proof. If G is any one of the graphs as in the statement of the theorem, then it is
clear that |CC(G)| = 1 and |CP (G)| = n− 1.

To prove the converse, let G be a graph with |CC(G)| = 1 and |CP (G)| = n−1.
Let CC(G) = {u} ⊆ V (G). Then ce(u) < ce(v) for all v ∈ V (G) \ {u}. Also
since every vertex in V (G) \ {u} is a cyclic peripheral vertex, cd(u, v) ≤ 1 for
all v ∈ V (G) \ {u}. Otherwise, there is some vertex v ∈ V (G) \ {u} such that
cd(u, v) ≥ 2. Then we can find a vertex x in the cyclic path between u and v such
that cd(u, x) = 1, which contradicts the fact that x is a cyclic peripheral vertex.
Therefore, cd(u, v) ≤ 1. So that we have,

Case (i). cd(u, v) = 1, for all v ∈ V (G)\{u}. Then G is a cyclic bouquet with
K1 as central cyclic component, other than a star graph Kn,1, since G is not a tree.

Case (ii). cd(u, v) < 1. In this case, cd(u, v) = 0, for all v ∈ V (G)\{u}. Hence
either G is cyclic similar or u is a cut vertex which belongs to every maximal cyclic
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components of G. When G is cyclic similar, |CC(G)| = |CP (G)| = n. Therefore u
is a cut vertex satisfying the above condition and in this case G is a cyclic flower.

Case (iii). cd(u, v) ≤ 1. Let cd(u, v) = 0 for every v ∈ A for a nonempty
subset A ⊆ V (G) \ {u} and Cd(u, v) = 1 for all v ∈ B for a nonempty subset
B ⊆ V (G) \ {u} with A ∪ B = V (G) \ {u}. Then either 〈A ∪ {u}〉, the graph
induced by A ∪ {u} is cyclic similar or 〈A ∪ {u}〉 is a cyclic flower with u as the
flower centric vertex. In both cases, |B| = 1, otherwise |CC(G)| 6= 1. Therefore G
is a cyclic flower with 1-stem or a cyclic similar graph with 1-stem

Corollary 3.14. If |CC(G)| = 1 and |CP (G)| = n − 1 for a connected graph G
of order n ≥ 4, then 1 ≤ cdiam(G) ≤ 2.

4. Cyclic distance matrix of a graph
In this section we deal with a method of condensing a graph using the concept

of cyclic distance. A new graph matrix called cyclic distance matrix of a graph is
also introduced.

Definition 4.1. Let G be any graph. The shrinked graph of G, denoted by S(G) is
the graph obtained from G by contracting (or shrinking) each MCCs of G to a vertex
and connecting two vertices of S(G) by an edge if they correspond to neighboring
MCCs of G.

Shrinked graph of a graph G has the following trivial properties.

Proposition 4.2.

1. The shrinked graph of a tree T is T itself. That is, S(T ) ∼= T .

2. The shrinked graph of a cyclic similar graph is K1.

3. The order of S(G) = the number of MCCs of G.

4. When G is not a tree, then |V (S(G))| ≤ |V (G)| − 2.

If G contains a cyclic flower with more than two MCCs then by shrinking these
MCCs of the cyclic flower to vertices and connecting them by edges, we get a
complete graph Kn, n ≥ 3 in S(G), so we have Theorem 4.3.

Theorem 4.3. The shrinked graph of graph G is a tree if and only if G contains
no cyclic flowers with more than two MCCs.

Definition 4.4. Let G be any graph. Then G is called a cyclic tree if no two MCCs
have a vertex in common.

Since a cyclic tree contains no cyclic flowers, we have the following corollary;
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Corollary 4.5. For a cyclic tree G, S(G) is a tree.
Let G be a graph containing k ≥ 2 MCCs viz, m1,m2, ...,mk. Let us use M(G)

to denote the set of all MCCs in G.

Definition 4.6. Let G be a graph with M(G) = {m1,m2, ...,mk}. Consider
any two MCCs mi,mj, where 1 ≤ i, j ≤ k with set of vertices {v1, v2, ..., vn} and
{u1, u2, ..., um} in mi and mj respectively. Then the distance between the MCCs mi

and mj is denoted by dist(mi,mj) and is defined as
dist(mi,mj) = max 1≤i≤n

1≤j≤m
{cd(vi, uj)}.

Theorem 4.7 follows directly from the definition of distance between maximal
cyclic components.

Theorem 4.7. Let G be a connected graph with M(G) = {m1,m2, ...,mk}. Then
max1≤i,j≤kdist(mi,mj) = cdiam(G), the cyclic diameter of G.

Definition 4.8. The cyclic distance matrix of a graph G with M(G) = {m1, m2,
..., mk} is a k × k matrix denoted by CD(G) and is defined as follows. The rows
and columns of CD(G) are indexed by the set M(G). The (i, j)-th entry of CD(G)
is dist(mi,mj), the distance between the maximal cyclic components mi and mj.

Proposition 4.9 gives some properties of cyclic distance matrix of a graph G.

Proposition 4.9.

1. For any connected graph G, the cyclic distance matrix CD(G) is a zero diago-
nal, symmetric matrix with nonnegative entries. Hence trace of CD(G) = 0.

2. The maximum value among all entries in CD(G) of a graph G is cdiam(G),
the cyclic diameter of G.

3. Let G be a graph with k MCCs. Then the entries in CD(G) is a subset of
{0, 1, 2, ..., k − 1} of the form {0, 1, 2, ..., l},where 0 ≤ l ≤ k − 1

4. CD(G) of a cyclic similar graph G is O.

5. The number of ones in the i-th row of of CD(G) of a graph G is the number
of neighboring MCCs of the i-th MCC.

The MCCs of a tree are the vertices itself, so we have;

Theorem 4.10. CD(T ) of a tree T is the distance matrix [1] of the tree itself.

Theorem 4.11. CD(G) of a graph G is a binary matrix if and only if

1. G has two MCCs connected by a bridge or
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2. G is a cyclic flower or

3. G is either a graph containing a cyclic flower and a cyclic similar graph
connected by a bridge between the flower centric vertex of the cyclic flower
and any vertex of the cyclic similar graph or G contains two cyclic flowers
connected by a bridge through their flower centric vertices, holds.

Proof. Suppose that CD(G) of a graph G is a binary matrix. Let M(G) =
{m1,m2, ...,mk}. Then k 6= 1. Otherwise, G will be cyclic similar. In that case,
CD(G) cannot be a binary matrix. Hence k ≥ 2. Since G contains at least two
MCCs and CD(G) is a binary matrix, for all i 6= j with 1 ≤ i, j ≤ k, dist(mi,mj) =
1. Therefore all the MCCs in G are neighbors to each other. So that cdiam(G) = 1.
Hence it follows from Theorem 3.7 that one of the statements in the theorem holds.

Converse is obvious.

Definition 4.12. The set of eigen values of the cyclic distance matrix CD(G) of
a graph G is called the cyclic distance spectrum of G. It is denoted by cd-spectrum
of G.

CD(G) of a graph G is not unique. It depends on the labelling of the MCCs
of G. A relabelling of the MCCs of G will result in a permutation of the rows and
columns simultaneously. Hence for any labeling the eigen values of the graph will
be the same. Since CD(G) is a symmetric matrix, the eigen values of CD(G) are
real. Also the sum of the eigen values of CD(G) equal to trace of CD(G) = 0, and
determinant of CD(G) equal to the product of the eigen values.

Let G be a connected graph with number of MCCs as k ≥ 2 and cdiam(G) = 1.
Then CD(G) is a matrix with diagonal elements as zero and all other entries as
one. Which is the same as the adjacency matrix of a complete graph Kk on k
vertices. It is clear that rank of this matrix is k. For any positive integer K; the
eigenvalues of Kk are k − 1 and 1 with multiplicities 1 and k − 1 respectively. [1]
Hence we have;

Theorem 4.13. Let G be any graph containing k ≥ 2 MCCs and cdiam(G) = 1,
then

1. Rank CD(G) = k = number of MCCs in G.

2. The cd-spectrum of G consists of k − 1 and 1 with multiplicities 1 and k − 1
respectively.

3. The determinant of CD(G) equals (−1)(k−1)(k − 1).
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In 1971, R. L Graham and H. O Pollak [5] Proved that if T is a tree of order n,
then the determinant of the distance matrix of T , det D(T ) = (−1n)(n− 1)2(n−2).
We will use this result to show that the determinant of the CD(G) of a graph G,
not containing any cyclic flower with more than two MCCs depends only on the
number of MCCs of G.

Theorem 4.14. Let G be a connected graph with number of MCCs as k, which
contains no cyclic flowers with more than two MCCs. Then the determinant
of CD(G) of G depends only on the number of MCCs in G and it is given by
det CD(G) = (−1k)(k − 1)2(k−2).
Proof. Let G be any graph and let S(G) be the shrinked graph of G. By Propo-
sition 4.9, the number of MCCs in G and the order of S(G) are the same. Also
from the definition of distance between MCCs in a graph, it is clear that for any
two MCCs mi,mj with 1 ≤ i, j ≤ k in G, dist(mi,mj) = dist(vi, vj) where vi
and vj are the vertices in S(G) representing to the MCCs mi and mj in G and
dist(vi, vj) is the distance between the vertices vi and vj in S(G). By Theo-
rem 4.3, the shrinked graph S(G) of a graph G is a tree if and only if G con-
tains no cyclic flowers with more than two MCCs. Hence for any such graph
G, S(G) is a tree. Therefore CD(G) of G and the distance matrix of S(G)
are the same. Hence by using the classical result of Graham and Pollak [5],
det CD(G) = det D(S(G)) = (−1k)(k − 1)2(k−2), depends only on the number
of MCCs in G.

Corollary 4.15. Let G be a connected graph with number of MCCs k, k ≥ 2 which
does not contain cyclic flowers with more than two MCCs. Then,

1. det CD(G) is independent of the structure of the graph G

2. The rank of CD(G) = k

3. CD(G) is nonsingular
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