VL TEMPERATURE INDEX OF CERTAIN ARCHIMEDEAN LATTICE

V. Lokesha, Suvarna, Manjunath M and K. Zeba Yasmeen
Department of Studies in Mathematics, VSK University, Ballari, Karnataka - 583105, INDIA
E-mail : v.lokesha@gmail.com, suvarnasalimath17@gmail.com, manju3479@gmail.com, zebasif44@gmail.com

(Received: May 22, 2020 Accepted: Mar. 13, 2021 Published: Apr. 30, 2021)

Abstract

In $Q S P R$ study, a prediction about the bioactivity of chemical compounds is made on the basis of physico-chemical properties and topological indices such as Zagreb index, Harmonic index and $V L$ index etc. Inspired by many degree based topological indices, we propose here a new topological index, called the $V L$ temperature index $\operatorname{VLTI}(G)$ of a molecular graph G. Our study showcases some important results on the correlation between Surface Tension, Complexity, Heavy Atomic Count, Density and Index of refraction of Butane derivatives with $V L$ temperature index $(V L T I)$. In this paper we compute the $V L$ temperature index of line graphs of subdivision graphs of Archimedean Lattices.

Keywords and Phrases: Temperature of a vertex, VL temperature index, Archi -medean Lattice.
2020 Mathematics Subject Classification: 05C07, 05C10, 05C76.

1. Introduction

The branch of mathematical chemistry which applies graph theory to mathematical modeling of chemical phenomena is known as chemical graph theory. Molecular descriptors are playing significant role in chemistry, pharmacology, etc. Topological indices have a prominent place in Molecular descriptors. There are numerous of topological descriptors that have found some applications in theoretical chemistry, especially in $Q S P R$ [14] [15] research.

Topological indices are numerical parameters of a graph which are invariant under graph isomorphism. Let $V(G)$ and $E(G)$ be its vertex and edge sets of a connected graph $G=(V, E)$, respectively. As usual order $n=|V(G)|$ and size $m=|E(G)|$ denote the number of vertices and edges at a graph G, respectively. The edge joining the vertices u and v is denoted by $u v$. The degree of a vertex u in a graph G is the number of edges incidence to u and is denoted by $d(u)$. For graph theoretic terminology, the reader may refer the books [1] [2].

The temperature of a vertex u of a connected graph G is defined by Siemion Fajtlowiczas [12].

$$
T(u)=\frac{d_{u}}{n-d_{u}}
$$

where d_{u} is the degree of a vertex u of a connected graph G.
T. Deepika [5], introduced the $V L$ index of a graph G is defined as,

$$
V L(G)=\frac{1}{2} \sum_{u v \in E(G)}\left[d_{e}+d_{f}+4\right]
$$

where $d_{e}=d(u)+d(v)-2$ and $d_{f}=(d(u) . d(v))-2$. The $V L$ index shows a good correlation with the physical properties of octane isomers and polychlorinated biphenyl (PCB).

The $V L$ index which can also be written as,

$$
V L(G)=\frac{1}{2} \sum_{u v \in E(G)}[d(u)+d(v)+d(u) \cdot d(v)]
$$

Recently, Kishori P. N., Afework Teka Kahsay [6] has introduced Harmonic temperature index of a graph and is defined as $\operatorname{HTI}(G)=\sum_{u v \in E(G)} \frac{2}{T_{u}+T_{v}}$ and we extend this study for $V L$ temperature index. Inspired by the work on degree based topological indices and $V L$ index, we now define the $V L$ temperature index $(V L T I(G))$ of a molecular graph G as follows.

$$
\begin{equation*}
\operatorname{VLTI}(G)=\frac{1}{2} \sum_{u v \in E(G)}\left[T_{u}+T_{v}+T_{u} \cdot T_{v}\right] \tag{1}
\end{equation*}
$$

where T_{u} and T_{v} are the temperature of the vertex u and v, respectively.
Also, we inspired by the work on Sharp bounds for $S Z, P I$ and $G A_{2}$ indices in terms of the number of triangles [3], Operations on Dutch Windmill Graph of

Topological indices [7], New results on the F-index of graphs based on corona-type products of graphs [8], Computation of Adriatic indices of certain operators of regular and complete bipartite graphs [9] and M-Polynomial of subdivision and complementary graphs of Banana tree graph [10].

The Archimedean lattices [4] [11] [13] are the infinite transitive planar graphs that can be drawn in the plane such that all faces are regular polygons. A regular polygon with m edges is a polygon, where all edges have the same length, and the inner angle between any two adjacent edges $[(m-2) \pi / m]$ radians. It follows that all vertices are equivalent and have the same coordination number. In this paper, our aim to study different types of Archimedean lattices are $L_{4,8^{2}}, L_{4^{4}}$ and $L_{6^{3}}$.

Figure 1: (a) $L_{4,8^{2}}$ Archimedean Lattice. (b) $L_{4^{4}}$ Archimedean Lattice. (c) $L_{6^{3}}$ Archimedean Lattice.

2. Result for Archimedean Lattice $L_{4,8^{2}}$

The line graph of the subdivision graph of Archimedean Lattice, $L_{4,8^{2}}$ is shown in Figure 2(a).
Theorem 2.1. Let G be the line graph of the subdivision graph of Archimedean Lattice $L_{4,8^{2}}$. Then

$$
\begin{aligned}
\operatorname{VLTI}(G) & =\frac{(4 n+2)\left(48 n^{2}-8 n-1\right)}{\left(24 n^{2}-4 n-1\right)^{2}}+\frac{\left(108 n^{2}-66 n+6\right)\left(96 n^{2}-16 n-3\right)}{\left(48 n^{2}-8 n-3\right)^{2}} \\
& +\frac{(4 n-2)\left(240 n^{2}-40 n-6\right)}{\left(24 n^{2}-4 n-1\right)\left(48 n^{2}-8 n-3\right)} .
\end{aligned}
$$

Proof. The line graph of the subdivision graph of Archimedean Lattice, $L_{4,8^{2}}$ are shown in Fig. 2(a). The total number of vertices of G is $48 n^{2}-8 n$. The total number of edges of G is $72 n^{2}-20 n$. Therefore we get the edge partition based on
the temperature of the vertices as shown in Table 1. Therefore, using Equation (1)

$$
\begin{aligned}
& V L T I(G)=\frac{8 n+4}{2}\left[\left(\frac{2}{48 n^{2}-8 n-2}+\frac{2}{48 n^{2}-8 n-2}+\frac{2}{48 n^{2}-8 n-2} \cdot \frac{2}{48 n^{2}-8 n-2}\right)\right] \\
& +\frac{72 n^{2}-44 n+4}{2}\left[\left(\frac{3}{48 n^{2}-8 n-3}+\frac{3}{48 n^{2}-8 n-3}+\frac{3}{48 n^{2}-8 n-3} \cdot \frac{3}{48 n^{2}-8 n-3}\right)\right] \\
& +\frac{16 n-8}{2}\left[\left(\frac{2}{48 n^{2}-8 n-2}+\frac{3}{48 n^{2}-8 n-3}+\frac{2}{48 n^{2}-8 n-2} \cdot \frac{3}{48 n^{2}-8 n-3}\right)\right] \\
& =\frac{(4 n+2)\left(48 n^{2}-8 n-1\right)}{\left(24 n^{2}-4 n-1\right)^{2}}+\frac{\left(108 n^{2}-66 n+6\right)\left(96 n^{2}-16 n-3\right)}{\left(48 n^{2}-8 n-3\right)^{2}} \\
& +\frac{(4 n-2)\left(240 n^{2}-40 n-6\right)}{\left(24 n^{2}-4 n-1\right)\left(48 n^{2}-8 n-3\right)} .
\end{aligned}
$$

(a)

Figure 2: (a) Line graph of subdivision graph of $L_{4,8^{2}}$ Archimedean Lattice.

Table 1: The edge partition of the graph G

$\left(T_{u}, T_{v}\right)$, where $u v \in E(G)$	Number of edges
$\left(\frac{2}{48 n^{2}-8 n-2}, \frac{2}{48 n^{2}-8 n-2}\right)$	$8 n+4$
$\left(\frac{3}{48 n^{2}-8 n-3}, \frac{3}{48 n^{2}-8 n-3}\right)$	$72 n^{2}-44 n+4$
$\left(\frac{2}{48 n^{2}-8 n-2}, \frac{3}{48 n^{2}-8 n-3}\right)$	$16 n-8$

3. Result for Archimedean Lattice $L_{4^{4}}$

The line graph of the subdivision graph of Archimedean Lattice, $L_{4^{4}}$ is shown in Figure 3(a).
Theorem 3.1. Let G be the line graph of the subdivision graph of Archimedean

Lattice $L_{4^{4}}$. Then

$$
\begin{aligned}
\operatorname{VLTI}(G) & =\frac{4 n\left(16 n^{2}-8 n-1\right)}{\left(8 n^{2}-4 n-1\right)^{2}}+\frac{(4 n-4)\left(80 n^{2}-40 n-6\right)}{\left(8 n^{2}-4 n-1\right)\left(16 n^{2}-8 n-3\right)} \\
& +\frac{(n-1)\left(112 n^{2}-56 n-12\right)}{\left(16 n^{2}-8 n-3\right)\left(4 n^{2}-2 n-1\right)}+\frac{\left(16 n^{2}-34 n+18\right)\left(8 n^{2}-4 n-1\right)}{\left(4 n^{2}-2 n-1\right)^{2}} .
\end{aligned}
$$

Proof. The line graph of the subdivision graph of Archimedean Lattice, $L_{4^{4}}$ are shown in Fig. 3(a). The total number of vertices of G is $16 n^{2}-8 n$. The total number of edges of G is $32 n^{2}-36 n+12$. Therefore we get the edge partition based on the temperature of the vertices as shown in Table 2. Therefore, using Equation (1)

$$
\begin{aligned}
& V L T I(G)=\frac{8 n}{2}\left[\left(\frac{2}{16 n^{2}-8 n-2}+\frac{2}{16 n^{2}-8 n-2}+\frac{2}{16 n^{2}-8 n-2} \cdot \frac{2}{16 n^{2}-8 n-2}\right)\right] \\
& +\frac{16 n-16}{2}\left[\left(\frac{2}{16 n^{2}-8 n-2}+\frac{3}{16 n^{2}-8 n-3}+\frac{2}{16 n^{2}-8 n-2} \cdot \frac{3}{16 n^{2}-8 n-3}\right)\right] \\
& +\frac{8 n-8}{2}\left[\left(\frac{3}{16 n^{2}-8 n-3}+\frac{4}{16 n^{2}-8 n-4}+\frac{3}{16 n^{2}-8 n-3} \cdot \frac{4}{16 n^{2}-8 n-4}\right)\right] \\
& +\frac{32 n^{2}-68 n+36}{2}\left[\left(\frac{4}{16 n^{2}-8 n-4}+\frac{4}{16 n^{2}-8 n-4}+\frac{4}{16 n^{2}-8 n-4} \cdot \frac{4}{16 n^{2}-8 n-4}\right)\right] \\
& =\frac{4 n\left(16 n^{2}-8 n-1\right)}{\left(8 n^{2}-4 n-1\right)^{2}}+\frac{(4 n-4)\left(80 n^{2}-40 n-6\right)}{\left(8 n^{2}-4 n-1\right)\left(16 n^{2}-8 n-3\right)}+\frac{(n-1)\left(112 n^{2}-56 n-12\right)}{\left(16 n^{2}-8 n-3\right)\left(4 n^{2}-2 n-1\right)} \\
& \quad+\frac{\left(16 n^{2}-34 n+18\right)\left(8 n^{2}-4 n-1\right)}{\left(4 n^{2}-2 n-1\right)^{2}}
\end{aligned}
$$

(a)

Figure 3: (a) Line graph of subdivision graph of $L_{4^{4}}$ Archimedean Lattice.

Table 2: The edge partition of the graph G
$\left.\begin{array}{|c|c|}\hline \hline\left(T_{u}, T_{v}\right) \text {, where } u v \in E(G) & \text { Number of edges } \\ \hline \hline\left(\frac{2}{16 n^{2}-8 n-2}, \frac{2}{16 n^{2}-8 n-2}\right) & 8 n \\ \hline\left(\frac{2}{16 n^{2}-8 n-2}, \frac{3}{16 n^{2}-8 n-3}\right) & 16 n-16 \\ \hline\left(\frac{1}{16 n^{2}-8 n-3}, \frac{1}{16 n^{2}-8 n-4}\right) & 8 n-8 \\ \hline\left(16 n^{2}-8 n-4\right. \\ 16 n^{2}-8 n-4\end{array}\right) \quad 32 n^{2}-68 n+36$.

4. Result for Archimedean Lattice $L_{6}{ }^{3}$

The line graph of the subdivision graph of Archimedean Lattice, $L_{4^{4}}$ is shown in Figure 3(a).
Theorem 4.1. Let G be the line graph of the subdivision graph of Archimedean Lattice $L_{6^{3}}$. Then

$$
\begin{array}{r}
\operatorname{VLTI}(G)=\frac{(3 n+3)\left(18 n^{2}-6 n-1\right)}{\left(9 n^{2}-3 n-1\right)^{2}}+\frac{(n-1)\left(90 n^{2}-30 n-6\right)}{\left(9 n^{2}-3 n-1\right)\left(6 n^{2}-2 n-1\right)} \\
+\frac{\left(9 n^{2}-11 n+2\right)\left(36 n^{2}-12 n-3\right)}{2\left(6 n^{2}-2 n-1\right)^{2}} .
\end{array}
$$

Proof. The line graph of the subdivision graph of Archimedean Lattice, $L_{6^{3}}$ are shown in Fig. 4(a). The total number of vertices of G is $18 n^{2}-6 n$. The total number of edges of G is $27 n^{2}-15 n$. Therefore we get the edge partition based on the temperature of the vertices as shown in Table 3. Therefore, using Equation (1)

$$
\begin{aligned}
& \operatorname{VLTI}(G)=\frac{6 n+6}{2}\left[\left(\frac{2}{18 n^{2}-6 n-2}+\frac{2}{18 n^{2}-6 n-2}+\frac{2}{18 n^{2}-6 n-2} \cdot \frac{2}{18 n^{2}-6 n-2}\right)\right] \\
& +\frac{12 n-12}{2}\left[\left(\frac{3}{18 n^{2}-6 n-2}+\frac{3}{18 n^{2}-6 n-3}+\frac{2}{18 n^{2}-6 n-2} \cdot \frac{3}{18 n^{2}-6 n-3}\right)\right] \\
& +\frac{27 n^{2}-33 n+6}{2}\left[\left(\frac{3}{18 n^{2}-6 n-3}+\frac{3}{18 n^{2}-6 n-3}+\frac{3}{18 n^{2}-6 n-3} \cdot \frac{3}{18 n^{2}-6 n-3}\right)\right] \\
& =\frac{(3 n+3)\left(18 n^{2}-6 n-1\right)}{\left(9 n^{2}-3 n-1\right)^{2}}+\frac{(n-1)\left(90 n^{2}-30 n-6\right)}{\left(9 n^{2}-3 n-1\right)\left(6 n^{2}-2 n-1\right)} \\
& +\frac{\left(9 n^{2}-11 n+2\right)\left(36 n^{2}-12 n-3\right)}{2\left(6 n^{2}-2 n-1\right)^{2}} .
\end{aligned}
$$

(a)

Figure 4: (a) Line graph of subdivision graph of $L_{6^{3}}$ Archimedean Lattice.

Table 3: The edge partition of the graph G
$\left.\begin{array}{|c|c|}\hline \hline\left(T_{u}, T_{v}\right) \text {, where } u v \in E(G) & \text { Number of edges } \\ \hline \hline\left(\frac{2}{18 n^{2}-6 n-2}, \frac{2}{18 n^{2}-6 n-2}\right) & 6 n+6 \\ \hline\left(\frac{2}{18 n^{2}-6 n-2}, \frac{1}{3}, \frac{3}{3}-6 n-3\right. \\ \hline\end{array}\right)$

Note: The $V L$ temperature index of $L_{6^{3}}$ Archimedean lattice using line operation is same as the $V L$ temperature index of $L_{3,12^{2}}$ Archimedean lattice without using line operation.

5. On Chemical Applicability of the $V L$ Temperature Index

In this section we will discuss the regression analysis of Surface tension, Complexity and Heavy Atomic Count of Butane derivatives on the $V L$ temperature index of the corresponding molecular graph. The productivity of $V L T I$ was tested using a data set of Butane derivatives, found at http://www.moleculardescriptors .eu /dataset.htm.

Fig. 5(a), 5(b), 5(c), 5(d), 5(e) shows the Scatter plot between Surface Tension, Complexity and Heavy Atomic Count, Density and Index of Refraction of Butane derivatives and $V L$ temperature index respectively. The correlation coefficient (R) of the Surface Tension, Complexity and Heavy Atomic Count with $V L$ temperature index is shown in Table 5.

Table 4: Correlation of VLTI index and some properties of Butane derivatives:

Name of the Compound	Surface Tension	Complexity	H.A.C	Density	Index of Refraction	VLTI
1,4-butanedithiol	31.1	17.5	6	1.03	1.51	2.675
2-butanone	22.9	38.5	5	8.32	1.37	4.25
1,3-butanediol	34.9	28.7	6	9.96	1.44	3.425
butane dinitrile	40.7	92	6	1.01	1.42	2.675
butanediamide	53	96.6	8	1.18	1.49	3.1793
butane-1-sulfonamide	41.9	133	8	1.15	1.47	3.8015
1-butanethiol	24.8	13.1	5	8.5	1.44	2.8611
1,4-diaminobutane	35.8	17.5	6	8.65	1.46	2.675
butane-1,4-disulfonic acid	77.9	266	12	1.66	1.54	3.1465
butyraldehyde	23.1	24.8	5	8.18	1.37	2.8611
2,3-butanedione	27.3	71.5	6	9.75	1.38	4.3
butanedihydrazide	59	119	10	1.28	1.53	2.7812
1-butanesulfonyl chloride	36.4	133	8	1.26	1.45	3.8016

Figure 5: Correlation of VLTI index with physico-chemical properties of Butane derivatives

Table 5: Pearson's Correlation Coefficient

	VLTI
Surface Tension	-0.2294
Complexity	0.1413
Heavy Atomic Count	-0.0551
Density	0.2532
Index of Refraction	-0.4466

The $V L$ Temperature index is positively correlated with Complexity and Density except Surface Tension, Heavy Atomic Count and Index of Refraction. In table 5 , one can easily verify that $V L$ Temperature index shows not a good correlation with all Physical-Chemical properties (Surface Tension, Complexity, Heavy Atomic Count, Density and Index of Refraction) of Butane derivatives.

6. Conclusion

In this work, we propose a new index, called the $V L$ temperature index and compute the $V L$ temperature index of line graphs of subdivision graphs of Archimedean Lattices. Also, we study the correlation between Surface Tension, Complexity, Heavy Atomic Count, Density and Index of refraction of Butane derivatives with $V L$ temperature index. Similar way, researchers can find $V L$ temperature index of different Archimedean lattices and their dual leaves lattices using different graph operators.

References

[1] Bondy, J. A., Murty, U. S. R., Graph theory with applications, American Elsevier Publishing Co., New York, 1976.
[2] Buckley, F., Harary, F., Distance in Graphs, Addison-Wesley, Redwood, 1990.
[3] Cangul, I. N., Cevik, A. S., Lokesha, V., Ranjini, P. S., Sharp bounds for SZ, PI and $G A_{2}$ indices in terms of the number of triangles, Ilirias Jurnal of Mathematics, 4(1) (2015), 41-49.
[4] Codello, A., Exact Curie temperature for the Ising model on Archimedean and Laves Lattices, Journal of Physics A: Mathematical and Theoretical, 43(38) (2010), 2611-2619.
[5] Deepika, T., VL Index and Bounds For The Tensor Products of F - Sum Graphs, TWMS J. of Appl and Engineering Math., 11(2) (2021) (appear).
[6] Kishori P. Narayankar, Harmonic Temperature Index of Certain Nanostructures, International Journal of Mathematics Trends and Technology, 56(3) (2018), 159-164.
[7] Lokesha, V., Jain, Sushmitha, Deepika, T., Cevik, A. Sinan, Operations on Dutch Windmill Graph of Topological indices, Proceeding of the Jangjeon Mathematical Society, 21(3) (2018), 525-534.
[8] Lokesha, V., Jain, Sushmita, New results on the F-index of graphs based on corona-type products of graphs, Proceeding of the jangjeon mathematical Society, 23(2) (2020), 141-147.
[9] Lokesha, V., Manjunath, M., Chaluvaraju, B., Devendraiah, K. M., Cangul, I. N., Cevik, A. S., Computation of Adriatic indices of certain operators of regular and complete bipartite graphs, Advanced Studies in Contemporary Mathematics, 28(2) (2018), 231-244.
[10] Lokesha, V., Shruti, R., Cevik, A. Sinan, M-Polynomial of subdivision and complementary graphs of Banana tree graph, Journal of the International Mathematical Virtual Institute, 10(1) (2020), 157-182.
[11] Martinez, J., Archimedean lattices, Algebra Universalis, 3(1) (1973), 247-260.
[12] Siemion Fajtlowicz, On Conjectures of Graffiti, Annals of Discrete Mathematics, 38 (1988), 113-118.
[13] Suvarna, Lokesha, V., Manjunath, M., Reverse Degree-Based Topological Indices Of Some Archimedean Lattices, International Journal of Advance and Innovative Research, 6(2) (2019), 226-235.
[14] Todeschini, R., Consonni, V., Handbook of Molecular Descriptors, WileyVCH, Weinheim, 2000.
[15] Todeschini, R., Consonni, V., Molecular Descriptors for Chemoinformatics, Wiley-VCH, Weinheim, 1, 2009.

