South East Asian J. of Mathematics and Mathematical Sciences Vol. 17, No. 1 (2021), pp. 183-198

ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

A GENERALIZATION OF ORLICZ SEQUENCE SPACES DERIVED BY QUADRUPLE SEQUENTIAL BAND MATRIX

Salila Dutta and Nilambar Tripathy

Department of Mathematics, Utkal Unversity, Vani Vihar, Bhubaneswar - 751004, Odisha, INDIA

E-mail : saliladutta516@gmail.com, nilambar.math@gmail.com

(Received: Jan. 13, 2021 Accepted: Mar. 23, 2021 Published: Apr. 30, 2021)

Abstract: In this article we have introduced a new Orlicz sequence space $l_p^{\lambda}(M, B)$ derived by a quadruple sequential band matrix associated with an Orlicz function and lambda matrix. Further, we have studied some topological properties and inclusion relations of this space.

Keywords and Phrases: Orlicz function, Four band matrix, Lambda matrix, AK-space, BK-space.

2020 Mathematics Subject Classification: 40A05, 40C05, 46A45, 46B45.

1. Introduction

Let w represent the space of all real or complex sequences and any subspace of w is called a sequence space. By $c, c_0, l_{\infty}, l_1, l_p$ and bv_p , we denote the space of all convergent, null, bounded, absolutely summable, p-absolutely summable and p-bounded variation sequences respectively, where 0 .

As the theory of sequence spaces has been a subject of interest to several mathematicians, Cesàro, Nörlund, Abel, Riesz and others studied the theory of sequence spaces through summability theory while Nakano [24], Simons [28], Maddox [19] and many others have constructed different sequence spaces by using the modern techniques of functional analysis. Later on Kızmaz [16], Et and Çolak [13], Başar and Dutta [6], Dutta and Başar [12] and many others gave a new direction for the development of the structural properties of Orlicz sequence spaces. For any two sequence spaces X and Y, with $A : X \to Y$ the A-transform of $x = (x_k) \in X$ written as y = Ax and is defined by

$$(Ax)_n = \sum_{k=0}^{\infty} a_{nk} x_k$$
 for all $n \in \mathbb{N}$

where $A = (a_{nk})$ is an infinite matrix of real or complex numbers and each of these series are convergent. The set of all infinite matrices $A = (a_{nk})$ where $Ax \in Y$ for all $x \in X$ is denoted by (X, Y). For an arbitrary sequence space X, the set X_A is also called matrix domain of an infinite matrix $A = (a_{nk})$ defined by

$$X_A = \{x = (x_k) \in w : Ax \in X\}$$

is also a sequence space. The study of matrix transformations has been enriched by several mathematicians considering different sequence spaces. Recent work includes Altay and Başar [1], Aydın and Başar [2], Candan [9] and many others. For detailed knowledge of sequence spaces, matrix transformations and the domain of triangular matrices in the normed sequence spaces, a reader should refer to the monographs Nanda [25], Dash [11], Başar [4], Mursaleen and Başar [21].

The domains $c_0(\Delta^F)$, $c_0(\Delta^F)$ and $l_{\infty}(\Delta^F)$ of the forward difference matrix Δ^F in the spaces c_0, c and l_{∞} are introduced by Kızmaz [16]. Afterwards, the domain bv_p of the backward difference matrix Δ^B in the space l_p have recently been investigated for $0 by Altay and Başar [1] and for <math>1 \le p < \infty$ by Başar and Altay [5]. Later Kirişçi and Başar [15] have constructed the difference sequence spaces

$$\hat{X} = \{x = (x_k) \in w : B(r, s)x \in X\}$$

for $X = c, c_0, l_{\infty}$ and l_p , where $1 \leq p < \infty$ and $(B(r, s)x)_k = (sx_{k-1} + rx_k)(r, s \neq 0)$. Candan [9] generalized this space by choosing $\tilde{r} = (r_n)_{n=0}^{\infty}$ and $\tilde{s} = (s_n)_{n=0}^{\infty}$ as convergent sequence of positive real numbers. Sönmez [29] constructed the sequence space with triple band matrix which was further been generalized by Bişgin [8] using a Quadruple band matrix $Q = Q(r, s, t, u) = (q_{nk}(r, s, t, u))$ defined by,

$$q_{nk}(r, s, t, u) = \begin{cases} r & k = n \\ s & k = n - 1 \\ t & k = n - 2 \\ u & k = n - 3 \\ 0 & \text{otherwise} \end{cases}$$

for all $n, k \in \mathbb{N}$ and $r, s, t, u \in \mathbb{R} - \{0\}$.

Suppose $\tilde{r} = (r_k), \tilde{s} = (x_k), \tilde{t} = (t_k)$ and $\tilde{u} = (u_k)$ are convergent sequences of distinct real numbers and $x = (x_k)$ is any sequence in either c_0 or l_1 . Baliarsingh and Dutta [3] introduced the difference sequence space using difference operator $B(\tilde{r}, \tilde{s}, \tilde{t}, \tilde{u})$ where

$$(B(\tilde{r}, \tilde{s}, \tilde{t}, \tilde{u})x)_k = r_k x_k + s_{k-1} x_{k-1} + t_{k-2} x_{k-2} + u_{k-3} x_{k-3}.$$
 (1.1)

The quadruple sequential band matrix $B(\tilde{r}, \tilde{s}, \tilde{t}, \tilde{u}) = (b_{nk})$ is defined as follows

$$b_{nk} = \begin{cases} r_k & k = n \\ s_k & k = n - 1 \\ t_k & k = n - 2 \\ u_k & k = n - 3 \\ 0 & \text{otherwise} \end{cases}$$

and any term of (b_{nk}) having negative subscript is zero.

Lindenstrauss and Tzafriri [18] defined the Orlicz sequence space

$$l_M = \inf\left\{x \in w : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty \text{ for some } \rho > 0\right\},\$$

which is a Banach space with the norm $||x|| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \right\}$. Later on Parashar and Choudhary [27] introduced and studied the space $l_M(p)$ for $p = (p_k)$ a bounded sequence of positive real numbers.

Motivated by the earlier work we have introduced a new sequence space $l_p^{\lambda}(M, B)$, as

$$l_p^{\lambda}(M,B) = \left\{ x = (x_k) \in \omega : \sum_{n=0}^{\infty} \left[M\left(\frac{|\sum_{k=0}^n (\lambda_k - \lambda_{k-1}) X_k|}{\rho \lambda_n}\right) \right]^{p_n} < \infty, \text{for some } \rho > 0 \right\},$$

where $X_k = r_k x_k + s_{k-1} x_{k-1} + t_{k-2} x_{k-2} + u_{k-3} x_{k-3}$, $\lambda = (\lambda_k)_{k=0}^{\infty}$ consist of positive reals such that $0 < \lambda_0 < \lambda_1 < \ldots$ and $\lim_{k \to \infty} \lambda_k = \infty$ and the λ matrix $\Lambda = (\lambda_{nk})$ is defined by

$$\lambda_{nk} = \begin{cases} \frac{\lambda_k - \lambda_{k-1}}{\lambda_n}, & 0 \le k \le n\\ 0, & k > n \end{cases}$$

for all $n, k \in \mathbb{N}$ and (p_n) is a bounded sequence of positive real numbers.

For suitable choice of p_n, M, B and Λ the space $l_p^{\lambda}(M, B)$ generalizes the following cases:

- (i) For M(x) = x and $\tilde{r} = re, \tilde{s} = se$ and $\tilde{t} = \tilde{u} = \theta$, it reduces to $l_p^{\lambda}(B)$ introduced by Başar and Karaisa [7].
- (ii) For M(x) = x, $p_n = p$, for all $n \in \mathbb{N}$ and B = I, the identity matrix it reduces to the space l_p^{λ} studied by Mursaleen and Noman ([22], [23]).
- (iii) For $M(x) = x, p_n = 1$ for all $n \in \mathbb{N}$ and $B = \Lambda = I$, the identity matrix it reduces to l_M studied by Lindenstrauss and Tzafriri [18].
- (iv) For $B = \Lambda = I$ it reduces to $l_M(p)$ studied by Parasar and Choudhary [27].
- (v) For $\tilde{r} = re, \tilde{s} = se, \tilde{t} = \tilde{u} = \theta, M(x) = x, \Lambda = I$ and $p_n = p(1 \le p < \infty)$ it reduces to \hat{l}_p studied by Kirişçi and Başar [15].
- (vi) For $\tilde{r} = re, \tilde{s} = se, \tilde{t} = \tilde{u} = \theta, M(x) = x$ and $\Lambda = I$ it reduces to $\hat{l}(p)$ studied by Aydın and Başar [2].
- (vii) For $\tilde{t} = \tilde{u} = \theta$, M(x) = x, $\Lambda = I$ and $p_n = p$ $(1 \le p < \infty)$ for all $n \in \mathbb{N}$ it reduces to $\tilde{l}(p)$ studied by Candan [9].
- (viii) For $\tilde{t} = \tilde{u} = \theta$, M(x) = x and $\Lambda = I$ it reduces to $l(\tilde{B}, p)$ introduced by Nergiz and Başar [26].
 - (ix) For $\tilde{r} = re, \tilde{s} = se, \tilde{t} = te, \tilde{u} = \theta, M(x) = x, \Lambda = I$ and $p_n = p$ $(1 for all <math>n \in \mathbb{N}$ it reduces to $l_p(B)$ studied by Sönmez [29].
 - (x) For $M(x) = x, B = I, p_n = p$ for all $n \in \mathbb{N}$ and $\Lambda = I$ it reduces to classical sequence l_p space.

2. Definitions and Preliminaries

Definition 2.1. [14] A sequence space X is called a K-space if the co-ordinate function $P_k : X \to K$ given by $P_k(x) = x_k$ is continuous for each $k \in \mathbb{N}$.

Definition 2.2. [30] An FK-space is a Fréchet sequence space with continuous co-ordinates.

Definition 2.3. [31] A linear space X is called BK-space, if it is equipped with a norm under which it is a Banach space with continuous co-ordinates.

Definition 2.4. [30] An FK-space X is said to be an AK-space if $X \supset \phi$, the set of all finitely non-zero sequences and $\{\delta^n\}$ is a basis for X, i.e., for each x, $x^{[n]} \rightarrow x$, where $x^{[n]}$ denotes the n^{th} section of x is $\sum_{k=1}^n x_k \delta^k$, otherwise expressed as $x = \sum x_k \delta^k$ for all $x \in X$. For example, $l(p), c_0(p), w_0(p)$ are AK-spaces.

Definition 2.5. [10] A sequence space X is said to be convergence free when, if $x = (x_k)$ in X and if $y_k = \theta$ whenever $x_k = \theta$, then $y = (y_k)$ is in X.

Definition 2.6. [14] A sequence space X is said to be normal if $(x_k) \in X$ implies $(\alpha_k x_k) \in X$ for all sequence of scalars (α_k) with $|\alpha_k| \leq 1$ for all $k \in \mathbb{N}$.

Definition 2.7. [10] A sequence space X is said to be symmetric if, when $x = (x_k)$ is in X, then $y = (y_k)$ is in X when the co-ordinates of y are those of x, but in a different order.

Definition 2.8. [14] An Orlicz function is a function $M : [0, \infty) \longrightarrow [0, \infty)$ which is continuous, non-decreasing and convex with M(0) = 0, M(x) > 0 for x > 0 and $M(x) \rightarrow \infty$ as $x \rightarrow \infty$.

Lemma 2.1. [17] An Orlicz function M is said to satisfy Δ_2 -condition for all values of u, if there exists a constant K > 0 such that $M(2u) = KM(u), u \ge 0$.

The Δ_2 -condition is equivalent to the inequality $M(lu) \leq K' l M(u)$, for some K' > 0 which holds for all values of u and l > 1.

Lemma 2.2. [20] Let $p = (p_n)$ be a bounded sequence of positive real numbers. Then for any complex numbers a_n and b_n , $|a_n + b_n|^{p_n} \leq D(|a_n|^{p_n} + |b_n|^{p_n})$, where $0 < p_n \leq \sup p_n = G$ and $D = \max\{1, 2^{G-1}\}$.

Lemma 2.3. [20] Let 0 . Then for any complex numbers <math>a and b, $|a+b|^p \leq |a|^p + |b|^p$.

3. Main Result

Theorem 3.1. $l_p^{\lambda}(M, B)$ is a linear space over \mathbb{C} . **Proof.** Let $x = (x_n), y = (y_n) \in l_p^{\lambda}(M, B)$ and $\alpha, \beta \in \mathbb{C}$. So there exists $\rho_1 > 0$ and $\rho_2 > 0$ such that

$$\sum_{n=0}^{\infty} \left[M\left(\frac{\left|\sum_{k=0}^{n} (\lambda_k - \lambda_{k-1}) X_k\right|}{\rho_1 \lambda_n}\right) \right]^{p_n} < \infty$$

and

$$\sum_{n=0}^{\infty} \left[M\left(\frac{\left|\sum_{k=0}^{n} (\lambda_k - \lambda_{k-1})Y_k\right|}{\rho_2 \lambda_n}\right) \right]^{p_n} < \infty$$

Let $\rho_3 = \max(2|\alpha|\rho_1, 2|\beta|\rho_2)$ where $\alpha, \beta \in \mathbb{C}$. Since M is non-decreasing and convex, we have

$$\sum_{n=0}^{\infty} \left[M\left(\frac{\left| \sum_{k=0}^{n} (\lambda_k - \lambda_{k-1}) (\alpha X_k + \beta Y_k) \right|}{\rho_3 \lambda_n} \right) \right]^{p_n}$$

$$\leq \sum_{n=0}^{\infty} \left[M \left(\frac{|\alpha| |\sum_{k=0}^{n} (\lambda_{k} - \lambda_{k-1}) X_{k}| + |\beta| |\sum_{k=0}^{n} (\lambda_{k} - \lambda_{k-1}) Y_{k}|}{\rho_{3} \lambda_{n}} \right) \right]^{p_{n}}$$

$$\leq \sum_{n=0}^{\infty} \left(\frac{1}{2} \right)^{p_{n}} \left[M \left(\frac{|\sum_{k=0}^{n} (\lambda_{k} - \lambda_{k-1}) X_{k}|}{\rho_{1} \lambda_{n}} \right) + M \left(\frac{|\sum_{k=0}^{n} (\lambda_{k} - \lambda_{k-1}) Y_{k}|}{\rho_{2} \lambda_{n}} \right) \right]^{p_{n}}$$

$$\leq \sum_{n=0}^{\infty} \left[M \left(\frac{|\alpha| |\sum_{k=0}^{n} (\lambda_{k} - \lambda_{k-1}) X_{k}|}{\rho_{1} \lambda_{n}} \right) + M \left(\frac{|\beta| |\sum_{k=0}^{n} (\lambda_{k} - \lambda_{k-1}) Y_{k}|}{\rho_{2} \lambda_{n}} \right) \right]^{p_{n}}$$

$$\leq \sum_{n=0}^{\infty} D \left[M \left(\frac{|\alpha| |\sum_{k=0}^{n} (\lambda_{k} - \lambda_{k-1}) X_{k}|}{\rho_{1} \lambda_{n}} \right) + M \left(\frac{|\beta| |\sum_{k=0}^{n} (\lambda_{k} - \lambda_{k-1}) Y_{k}|}{\rho_{2} \lambda_{n}} \right) \right]^{p_{n}}$$

Thus from the above inequality with Lemma 2.2 we have

$$\sum_{n=0}^{\infty} \left[M \left(\frac{\left| \sum_{k=0}^{n} (\lambda_{k} - \lambda_{k-1}) (\alpha X_{k} + \beta Y_{k}) \right|}{\rho_{3} \lambda_{n}} \right) \right]^{p_{n}}$$

$$\leq D \sum_{n=0}^{\infty} \left[M \left(\frac{\left| \sum_{k=0}^{n} (\lambda_{k} - \lambda_{k-1}) X_{k} \right|}{\rho_{1} \lambda_{n}} \right) \right]^{p_{n}} + D \sum_{n=1}^{\infty} \left[M \left(\frac{\left| \sum_{k=0}^{n} (\lambda_{k} - \lambda_{k-1}) Y_{k} \right|}{\rho_{2} \lambda_{n}} \right) \right]^{p_{n}}$$

$$< \infty.$$

i.e., $\alpha x + \beta y \in l_p^{\lambda}(M, B)$. Hence $l_p^{\lambda}(M, B)$ is a linear space over \mathbb{C} .

Theorem 3.2. (i) $l_p^{\lambda}(M, B)$ is a normed linear space under the norm defined by

$$\|x\| = \inf\left\{\rho^{\frac{p_n}{H}} : \left[\sum_{n=0}^{\infty} \left[M\left(\frac{|\sum_{k=0}^n (\lambda_k - \lambda_{k-1})X_k}{\rho\lambda_n}\right)\right]^{p_n}\right]^{\frac{1}{H}} \le 1\right\}$$
(3.1)

where $x \in l_p^{\lambda}(M, B)$ and $H = \max(1, \sup_k p_k)$. (ii) $l_p^{\lambda}(M, B)$ is a Banach space under the norm defined by (3.1). (iii) $l_p^{\lambda}(M, B)$ is a BK-space under the norm defined by (3.1). **Proof.** (i) Obviously $||x|| \ge 0$ and ||x|| = 0 if x = 0. Now suppose ||x|| = 0 i.e.,

$$\|x\| = \inf\left\{\rho^{\frac{p_n}{H}} : \left[\sum_{n=0}^{\infty} \left[M\left(\frac{|\sum_{k=0}^n (\lambda_k - \lambda_{k-1})X_k|}{\rho\lambda_n}\right)\right]^{p_n}\right]^{\frac{1}{H}} \le 1\right\} = 0.$$

This yields that for a given $\varepsilon > 0$, there exists some $\rho_{\varepsilon} \in (0, \varepsilon)$ such that

$$\sum_{n=0}^{\infty} \left[M\left(\frac{\left| \sum_{k=0}^{n} (\lambda_k - \lambda_{k-1}) X_k \right|}{\rho_{\varepsilon} \lambda_n} \right) \right] \le 1.$$

Which implies
$$M\left(\frac{|\sum_{k=0}^{n}(\lambda_{k}-\lambda_{k-1})X_{k}|}{\rho_{\varepsilon}\lambda_{n}}\right) \leq 1$$
 for all $n \in \mathbb{N}$. Thus,

$$M\left(\frac{|\sum_{k=0}^{n}(\lambda_{k}-\lambda_{k-1})X_{k}|}{\varepsilon\lambda_{n}}\right) \leq M\left(\frac{|\sum_{k=0}^{n}(\lambda_{k}-\lambda_{k-1})X_{k}|}{\rho_{\varepsilon}\lambda_{n}}\right) \leq 1$$
 for all $n \in \mathbb{N}$.
(3.2)

Suppose $\frac{|\sum_{k=0}^{n}(\lambda_{k}-\lambda_{k-1})X_{k}|}{\rho_{\varepsilon}\lambda_{n}} \neq 0$ for some $k \in \mathbb{N}$. Then $\frac{|\sum_{k=0}^{n}(\lambda_{k}-\lambda_{k-1})X_{k}|}{\varepsilon\lambda_{n}} \to \infty$ as $\varepsilon \to 0$ which implies that $M\left(\frac{|\sum_{k=0}^{n}(\lambda_{k}-\lambda_{k-1})X_{k}|}{\varepsilon\lambda_{n}}\right) \to \infty$ as $\varepsilon \to 0$ for some $k \in \mathbb{N}$ (as M is an Orlicz function) which leads to a contradiction. Therefore, $\frac{|\sum_{k=0}^{n}(\lambda_{k}-\lambda_{k-1})X_{k}|}{\rho_{\varepsilon}\lambda_{n}} = 0$ for all $n \in \mathbb{N}$. This follows that $X_{k} = 0$ for all $k = 1, 2, 3, \ldots, n$ and $n \in \mathbb{N}$. Since (λ_{n}) is a sequence of positive integers, this implies $x_{n} = 0$ for all $n \in \mathbb{N}$ i.e., x = 0. Now let $x, y \in l_{p}^{\lambda}(M, B)$. For $\rho_{1} > 0$ and $\rho_{2} > 0$,

$$\left[\sum_{n=0}^{\infty} \left[M\left(\frac{\left|\sum_{k=0}^{n} (\lambda_{k} - \lambda_{k-1}) X_{k}\right|}{\rho_{1} \lambda_{n}}\right)\right]^{p_{n}}\right]^{\frac{1}{H}} \le 1$$

and

$$\left[\sum_{n=0}^{\infty} \left[M\left(\frac{\left|\sum_{k=0}^{n} (\lambda_{k} - \lambda_{k-1}) Y_{k}\right|}{\rho_{2} \lambda_{n}} \right) \right]^{p_{n}} \right]^{\frac{1}{H}} \leq 1.$$

Let $\rho = \rho_1 + \rho_2$. Then as M is convex, we have

$$M\left(\frac{\left|\sum_{k=0}^{n}(\lambda_{k}-\lambda_{k-1})(X_{k}+Y_{k})\right|}{\rho\lambda_{n}}\right) \leq \left(\frac{\rho_{1}}{\rho_{1}+\rho_{2}}\right)\sum_{n=0}^{\infty}M\left(\frac{\left|\sum_{k=0}^{n}(\lambda_{k}-\lambda_{k-1})X_{k}\right|}{\rho_{1}\lambda_{n}}\right) + \left(\frac{\rho_{2}}{\rho_{1}+\rho_{2}}\right)\sum_{n=0}^{\infty}M\left(\frac{\left|\sum_{k=0}^{n}(\lambda_{k}-\lambda_{k-1})Y_{k}\right|}{\rho_{2}\lambda_{n}}\right)$$

Therefore, by Lemma 2.3 we have

$$\begin{aligned} \|x+y\| &= \inf\left\{\rho^{\frac{p_n}{H}} > 0: \left[\sum_{n=0}^{\infty} \left[M\left(\frac{|\sum_{k=0}^n (\lambda_k - \lambda_{k-1})(X_k + Y_k)|}{\rho\lambda_n}\right)\right]^{p_n}\right]^{\frac{1}{H}} \le 1\right\} \\ &\leq \inf\left\{\rho^{\frac{p_n}{H}}_1 > 0: \left[\sum_{n=0}^{\infty} \left[M\left(\frac{|\sum_{k=0}^n (\lambda_k - \lambda_{k-1})X_k|}{\rho\lambda_n}\right)\right]^{p_n}\right]^{\frac{1}{H}} \le 1\right\} \\ &+ \inf\left\{\rho^{\frac{p_n}{H}}_2 > 0: \left[\sum_{n=0}^{\infty} \left[M\left(\frac{|\sum_{k=0}^n (\lambda_k - \lambda_{k-1})Y_k|}{\rho\lambda_n}\right)\right]^{p_n}\right]^{\frac{1}{H}} \le 1\right\} \\ &= \|x\| + \|y\|. \end{aligned}$$

Let α be any scalar and define $r = \frac{\rho}{|\alpha|}$. Then, we have

$$\begin{aligned} \|\alpha x\| &= \inf\left\{\rho^{\frac{p_n}{H}} > 0: \left[\sum_{n=0}^{\infty} \left[M\left(\frac{|\sum_{k=0}^n (\lambda_k - \lambda_{k-1})\alpha X_k|}{\rho\lambda_n}\right)\right]^{p_n}\right]^{\frac{1}{H}} \le 1\right\} \\ &= \inf\left\{\rho^{\frac{p_n}{H}} > 0: \left[\sum_{n=0}^{\infty} \left[M\left(\frac{|\alpha||\sum_{k=0}^n (\lambda_k - \lambda_{k-1})X_k|}{\rho\lambda_n}\right)\right]^{p_n}\right]^{\frac{1}{H}} \le 1\right\} \\ &= \inf\left\{r^{\frac{p_n}{H}} |\alpha| > 0: \left[\sum_{n=0}^{\infty} \left[M\left(\frac{|\alpha||\sum_{k=0}^n (\lambda_k - \lambda_{k-1})X_k|}{\rho\lambda_n}\right)\right]^{p_n}\right]^{\frac{1}{H}} \le 1\right\} \\ &= |\alpha| \inf\left\{r^{\frac{p_n}{H}} > 0: \left[\sum_{n=0}^{\infty} \left[M\left(\frac{|\alpha||\sum_{k=0}^n (\lambda_k - \lambda_{k-1})X_k|}{\rho\lambda_n}\right)\right]^{p_n}\right]^{\frac{1}{H}} \le 1\right\} \\ &= |\alpha| \|x\|. \end{aligned}$$

(ii) Let (x^i) be a Cauchy sequence in $l_p^{\lambda}(M, B)$. Let $\delta > 0$ be fixed and r > 0 be given such that $0 < \varepsilon < 1$ and $r\delta \ge 1$. Then there exists a positive integer i_0 such that $||x^i - x^j|| < \frac{\varepsilon}{r\delta}$ for all $i, j \ge i_0$, by applying the norm in (3.1) we have

$$\inf\left\{\rho^{\frac{p_n}{H}} > 0: \left[\sum_{n=0}^{\infty} \left[M\left(\frac{|\sum_{k=0}^n (\lambda_k - \lambda_{k-1})(X_k^i - X_k^j)|}{\rho\lambda_n}\right)\right]^{p_n}\right]^{\frac{1}{H}} \le 1\right\} < \frac{\varepsilon}{r\delta} \text{ for all } i, j \ge i_0.$$

This implies that

$$\left[\sum_{n=0}^{\infty} \left[M\left(\frac{\left|\sum_{k=0}^{n} (\lambda_k - \lambda_{k-1})(X_k^i - X_k^j)\right|}{\|x^i - x^j\|\lambda_n}\right) \right]^{p_n} \right]^{\frac{1}{H}} \le 1, \text{ for all } i, j \ge i_0.$$

i.e.,

$$\sum_{n=0}^{\infty} \left[M\left(\frac{\left|\sum_{k=0}^{n} (\lambda_k - \lambda_{k-1})(X_k^i - X_k^j)\right|}{\|x^i - x^j\|\lambda_n}\right) \right]^{p_n} \le 1, \text{ for all } i, j \ge i_0 \text{ and for all } n \in \mathbb{N}.$$

i.e.,

$$\left[M\left(\frac{\left|\sum_{k=0}^{n}(\lambda_{k}-\lambda_{k-1})(X_{k}^{i}-X_{k}^{j})\right|}{\|x^{i}-x^{j}\|\lambda_{n}}\right)\right]^{p_{n}} \leq 1, \text{ for all } i,j \geq i_{0} \text{ and for all } n \in \mathbb{N}.$$

190

For r > 0 choosing $M\left(\frac{r\delta}{2}\right) \ge 1$ we have

$$M\left(\frac{\left|\sum_{k=0}^{n}(\lambda_{k}-\lambda_{k-1})(X_{k}^{i}-X_{k}^{j})\right|}{\|x^{i}-x^{j}\|\lambda_{n}}\right) \leq M\left(\frac{r\delta}{2}\right), \text{ for all } i,j\geq i_{0} \text{ and for all } n\in\mathbb{N}.$$

Since M is non-decreasing, we have

$$\frac{\left|\sum_{k=0}^{n} (\lambda_k - \lambda_{k-1}) (X_k^i - X_k^j)\right|}{\|x^i - x^j\|\lambda_n} \le \frac{r\delta}{2}, \text{ for all } i, j \ge i_0 \text{ and for all } n \in \mathbb{N}.$$

i.e.,

$$\frac{\left|\sum_{k=0}^{n} (\lambda_{k} - \lambda_{k-1}) (X_{k}^{i} - X_{k}^{j})\right|}{\lambda_{n}} \leq \frac{r\delta}{2} \|x^{i} - x^{j}\|, \text{ for all } i, j \geq i_{0} \text{ and for all } n \in \mathbb{N}$$
$$\leq \frac{r\delta}{2} \cdot \frac{\varepsilon}{r\delta}$$
$$= \frac{\varepsilon}{2}.$$

So,

$$|(\lambda_k - \lambda_{k-1})(X_k^i - X_k^j)| \le \frac{\varepsilon}{2}$$
 for all $i, j \ge i_0$ and for all $n \in \mathbb{N}$.

This implies, $\{(\lambda_k - \lambda_{k-1})X_k^i\}$ is a Cauchy sequence of scalars for all k = 1, 2, 3, ..., nand for all $n \in \mathbb{N}$ and hence is convergent by the completeness of scalar field.

Now let $\lim_{k \to \infty} (\lambda_k - \lambda_{k-1}) X_k^i = (\lambda_k - \lambda_{k-1}) X_k$, for $k = 1, 2, 3, \dots, n$ and for all $n \in \mathbb{N}$.

Let $j \to \infty$ and with the continuity of Orlicz function, we have $(x^i - x) \in l_p^{\lambda}(M, B)$ and $\inf \left\{ \rho^{\frac{p_n}{H}} > 0 : \left[\sum_{n=0}^{\infty} \left[M \left(\frac{|\sum_{k=0}^n (\lambda_k - \lambda_{k-1})(X_k^i - X_k)|}{\rho \lambda_n} \right) \right]^{p_n} \right]^{\frac{1}{H}} \leq 1 \right\}$ for all $i \ge i_0$. i.e., $\|x^i - x\| \to 0$ as $i \to \infty$. Since $x^i \in l_p^{\lambda}(M, B)$, which is a linear space, this implies $x \in l_p^{\lambda}(M, B)$ and hence $l_p^{\lambda}(M, B)$ is a Banach space with respect to the norm defined by (3.1).

(iii) From the above proof we can easily conclude that $||x^i|| \to 0$ as $i \to \infty$ implies that $x_n^i \to 0$ as $n \in \infty$ for each $i \in \mathbb{N}$.

Theorem 3.3. For different Orlicz functions M_1 and M_2 , the following statements hold:

(i) $l_p^{\lambda}(M_1, B) \cap l_p^{\lambda}(M_2, B) \subseteq l_p^{\lambda}(M_1 + M_2, B)$ and (ii) $l_p^{\lambda}(M_2, B) \subseteq l_p^{\lambda}(M_1, B)$ if $\sup_t \left[\frac{M_1(t)}{M_2(t)}\right] < \infty$. **Proof.** (i) Let $x \in \ell_p^{\lambda}(M_1, B) \cap \ell_p^{\lambda}(M_2, B)$ Then there exists $\rho_1 > 0$ and $\rho_2 > 0$ such that

$$\sum_{n=0}^{\infty} \left[M_1 \left(\frac{\left| \sum_{k=0}^{n} (\lambda_k - \lambda_{k-1}) X_k \right|}{\rho_1 \lambda_n} \right) \right]^{p_n} < \infty$$

and

$$\sum_{n=0}^{\infty} \left[M_2 \left(\frac{\left| \sum_{k=0}^{n} (\lambda_k - \lambda_{k-1}) X_k \right|}{\rho_2 \lambda_n} \right) \right]^{p_n} < \infty.$$

Let $\rho = \max(\rho_1, \rho_2)$. Then, by Lemma 2.2 we have

$$\begin{split} &\sum_{n=0}^{\infty} \left[(M_1 + M_2) \left(\frac{\left| \sum_{k=0}^{n} (\lambda_k - \lambda_{k-1}) X_k \right|}{\rho \lambda_n} \right) \right]^{p_n} \\ &\leq \sum_{n=0}^{\infty} \left[M_1 \left(\frac{\left| \sum_{k=0}^{n} (\lambda_k - \lambda_{k-1}) X_k \right|}{\rho_1 \lambda_n} \right) + M_2 \left(\frac{\left| \sum_{k=0}^{n} (\lambda_k - \lambda_{k-1}) X_k \right|}{\rho_2 \lambda_n} \right) \right]^{p_n} \\ &\leq D \left[\sum_{n=0}^{\infty} \left[M_1 \left(\frac{\left| \sum_{k=0}^{n} (\lambda_k - \lambda_{k-1}) X_k \right|}{\rho_1 \lambda_n} \right) \right]^{p_n} + \sum_{n=0}^{\infty} \left[M_2 \left(\frac{\left| \sum_{k=0}^{n} (\lambda_k - \lambda_{k-1}) X_k \right|}{\rho_2 \lambda_n} \right) \right]^{p_n} \right] \\ &< \infty. \end{split}$$

Which implies, $x \in \ell_p^{\lambda}(M_1 + M_2, B)$. (ii)Let $x \in \ell_p^{\lambda}(M_2, B)$. Then there exists $\rho > 0$ such that

$$\sum_{n=0}^{\infty} \left[M_2 \left(\frac{\left| \sum_{k=0}^{n} (\lambda_k - \lambda_{k-1}) X_k \right|}{\rho \lambda_n} \right) \right]^{p_n} < \infty.$$

Since $\sup_t \left[\frac{M_1(t)}{M_2(t)}\right] < \infty$, therefore there exists $\eta > 0$ such that,

$$\frac{M_1(t)}{M_2(t)} \le \eta \text{ for all } t \ge 0.$$
(3.3)

Replacing t by $\frac{|\sum_{k=0}^{n} (\lambda_k - \lambda_{k-1}) X_k|}{\rho \lambda_n}$ in (3.3), we get

$$M_1\left(\frac{\left|\sum_{k=0}^n (\lambda_k - \lambda_{k-1})X_k\right|}{\rho\lambda_n}\right) \le \eta M_2\left(\frac{\left|\sum_{k=0}^n (\lambda_k - \lambda_{k-1})X_k\right|}{\rho\lambda_n}\right)$$

Thus for each $k \in \mathbb{N}$, we have

$$\sum_{n=0}^{\infty} \left[M_1 \left(\frac{\left| \sum_{k=0}^n (\lambda_k - \lambda_{k-1}) X_k \right|}{\rho \lambda_n} \right) \right]^{p_n} \leq \max(1, \eta^G) \sum_{n=0}^{\infty} \left[M_2 \left(\frac{\left| \sum_{k=0}^n (\lambda_k - \lambda_{k-1}) X_k \right|}{\rho \lambda_n} \right) \right]^{p_n} < \infty,$$

192

which implies that $x \in \ell_p^{\lambda}(M, B)$, where $G = \sup_k p_k$.

Theorem 3.4. Let M and M_1 be two Orlicz functions. If M satisfies Δ_2 -condition then $\ell_p^{\lambda}(M, B) \subseteq \ell_p^{\lambda}(M \circ M_1, B)$. **Proof.** Let $x \in \ell_p^{\lambda}(M_1, B)$. Then there exists $\rho > 0$ such that

$$\sum_{n=0}^{\infty} \left[M_1 \left(\frac{\left| \sum_{k=0}^{n} (\lambda_k - \lambda_{k-1}) X_k \right|}{\rho \lambda_n} \right) \right]^{p_n} < \infty$$

Case (i). Let $M_1\left(\frac{|\sum_{k=0}^n (\lambda_k - \lambda_{k-1})X_k|}{\rho \lambda_n}\right) \leq 1$. Then, using convexity of Orlicz function M

$$\sum_{n=0}^{\infty} \left[M \left(M_1 \left(\frac{|\sum_{k=0}^n (\lambda_k - \lambda_{k-1}) X_k|}{\rho \lambda_n} \right) \right) \right]^{p_n} \le \sum_{n=0}^{\infty} \left[M_1 \left(\frac{|\sum_{k=0}^n (\lambda_k - \lambda_{k-1}) X_k|}{\rho \lambda_n} \right) M(1) \right]^{p_n} \le \max \left(1, [M(1)]^H \right) \sum_{n=0}^{\infty} \left[M_1 \left(\frac{|\sum_{k=0}^n (\lambda_k - \lambda_{k-1}) X_k|}{\rho \lambda_n} \right) \right]^{p_n} < \infty.$$

Case (ii). Let $M_1\left(\frac{|\sum_{k=0}^n (\lambda_k - \lambda_{k-1})X_k|}{\rho \lambda_n}\right) > 1$. Then, by using Δ_2 -condition of Orlicz function M,

$$\sum_{n=0}^{\infty} \left[M \left(M_1 \left(\frac{|\sum_{k=0}^n (\lambda_k - \lambda_{k-1}) X_k|}{\rho \lambda_n} \right) \right) \right]^{p_n} \le \sum_{n=0}^{\infty} \left[K M_1 \left(\frac{|\sum_{k=0}^n (\lambda_k - \lambda_{k-1}) X_k|}{\rho \lambda_n} \right) M(1) \right]^{p_n} \le \max \left(1, [K M(1)]^H \right) \sum_{n=0}^{\infty} \left[M_1 \left(\frac{|\sum_{k=0}^n (\lambda_k - \lambda_{k-1}) X_k|}{\rho \lambda_n} \right) \right]^{p_n} < \infty.$$

From case(i) and case(ii), $\sum_{n=0}^{\infty} \left[M \left(M_1 \left(\frac{|\sum_{k=0}^n (\lambda_k - \lambda_{k-1}) X_k|}{\rho \lambda_n} \right) \right) \right]^{p_n} < \infty.$ Hence $x \in l_p^{\lambda}(M \circ M_1, B).$

Theorem 3.5. The space $l_p^{\lambda}(M, B)$ is not convergence free. **Proof.** The result follows from the following example.

Example 3.1. For M(x) = x, $\Lambda = I$, the identity matrix, $\tilde{r} = e, \tilde{s} = 0, \tilde{t} = 0, \tilde{u} = 0, p_n = 2$ for all $n \in \mathbb{N}$ and choose

$$x_k = \begin{cases} \frac{1}{k} & \text{when } k \neq 2^n \\ 0 & \text{when } k = 2^n \end{cases}$$

Then, $(x_k) \in l_2$. Now consider

$$y_k = \begin{cases} k & \text{when } k \neq 2^n \\ 0 & \text{when } k = 2^n \end{cases}$$

Then, $(y_k) \notin l_2$.

This implies the fact that the space $l_p^{\lambda}(M, B)$ is not convergence free.

Theorem 3.6. The space $l_p^{\lambda}(M, B)$ is not symmetric. **Proof.** The result follows from the example given below.

Example 3.2. If we choose $\Lambda = I$, the identity matrix, $M(x) = x, \tilde{r} = e, \tilde{s} = -e, \tilde{t} = 0, \tilde{u} = 0, p_n = 2$ for all $n \in \mathbb{N}$ and $(x_n) = (\frac{1}{n})$, then $(x_n) \in l_2$. But If we consider the sequence $(y_n) = (x_1, x_5, x_8, x_{15}, x_{21}, \dots)$, then $(y_n) \notin l_2$.

Hence the space is not symmetric.

Theorem 3.7. The space $l_p^{\lambda}(M, B)$ is normal. **Proof.** Let $x \in l_p^{\lambda}(M, B)$, i.e.,

$$\sum_{n=0}^{\infty} \left[M\left(\frac{\left|\sum_{k=0}^{n} (\lambda_k - \lambda_{k-1}) X_k\right|}{\rho \lambda_n}\right) \right]^{p_n} < \infty$$

For a sequence of scalars $\alpha = (\alpha_k)$ such that $|\alpha_k| \leq 1$ for all $k \in \mathbb{N}$, we have

$$\sum_{n=0}^{\infty} \left[M\left(\frac{\left|\sum_{k=0}^{n} (\lambda_k - \lambda_{k-1})\alpha_k X_k\right|}{\rho \lambda_n}\right) \right]^{p_n} \le \sum_{n=0}^{\infty} \left[M\left(\frac{\left|\sum_{k=0}^{n} (\lambda_k - \lambda_{k-1}) X_k\right|}{\rho \lambda_n}\right) \right]^{p_n}$$

So, $l_p^{\lambda}(M, B)$ is a normal space.

Now for any Orlicz function M, we define

$$[l_p^{\lambda}(M,B)] = \left\{ x = (x_k) \in \omega : \sum_{n=0}^{\infty} \left[M\left(\frac{|\sum_{k=0}^n (\lambda_k - \lambda_{k-1})X_k|}{\rho\lambda_n}\right) \right]^{p_n} < \infty, \text{ for every } \rho > 0 \right\}$$

Obviously, $[l_p^{\lambda}(M, B)]$ is a subspace of $l_p^{\lambda}(M, B)$.

Theorem 3.8. $[l_p^{\lambda}(M, B)]$ is a complete normed linear space under the norm defined by (3.1).

Proof. By using the step (ii) of Theorem 3.2, one can easily prove that $[l_p^{\lambda}(M, B)]$ is a complete normed linear space.

Theorem 3.9. Let M be an Orlicz function. Then $[l_p^{\lambda}(M, B)]$ is an AK-space. **Proof.** Let $x = (x_n) \in l_p^{\lambda}(M, B)$. Therefore, for every $\rho > 0$,

$$\sum_{n=0}^{\infty} \left[M\left(\frac{\left|\sum_{k=0}^{n} (\lambda_k - \lambda_{k-1}) X_k\right|}{\rho \lambda_n}\right) \right]^{p_n} \le 1.$$

Then for each $\varepsilon \in (0, 1)$, we can find n_0 such that

$$\sum_{n \ge n_0} \left[M\left(\frac{\left|\sum_{k=0}^n (\lambda_k - \lambda_{k-1}) X_k\right|}{\varepsilon \lambda_n}\right) \right]^{p_n} \le 1.$$
(3.4)

Define the *jth* section $x^{[j]}$ of the sequence $x = (x_n)$ by $x^{[j]} = \sum_{n=0}^{j} x_n e^n$, where (e_n) is a Schauder basis for $[l_p^{\lambda}(M, B)]$. Hence, for $j \ge j_0$,

$$\|x - x^{[j]}\| = \inf\left\{\rho > 0: \sum_{n \ge j_0} \left[M\left(\frac{|\sum_{k=0}^n (\lambda_k - \lambda_{k-1})X_k|}{\rho\lambda_n}\right)\right]^{p_n} \le 1\right\}$$
$$\le \inf\left\{\rho > 0: \sum_{n \ge j} \left[M\left(\frac{|\sum_{k=0}^n (\lambda_k - \lambda_{k-1})X_k|}{\rho\lambda_n}\right)\right]^{p_n} \le 1\right\}.$$
(3.5)

From (3.3) and (3.4), we get $||x - x^{[j]}|| < \varepsilon$ for all $j \ge j_0$. Therefore, $[l_p^{\lambda}(M, B)]$ is an AK-space.

Theorem 3.10. If an Orlicz function M satisfies the Δ_2 - condition, then $l_p^{\lambda}(M, B) = [l_p^{\lambda}(M, B)].$ **Proof** It is obvious that

Proof. It is obvious that

$$[l_p^{\lambda}(M,B)] \subseteq l_p^{\lambda}(M,B).$$
(3.6)

Now let $x = (x_n) \in l_p^{\lambda}(M, B)$ be any arbitrary element. Then there exists some $\rho > 0$ such that

$$\sum_{n=0}^{\infty} \left[M\left(\frac{\left|\sum_{k=0}^{n} (\lambda_k - \lambda_{k-1}) X_k\right|}{\rho \lambda_n}\right) \right]^{p_n} < \infty.$$

Again let σ be any arbitrary number. Then two cases arise. Case (i). If $\rho \leq \sigma$, then for each $n \in \mathbb{N}$,

$$\sum_{n=0}^{\infty} \left[M\left(\frac{\left|\sum_{k=0}^{n} (\lambda_k - \lambda_{k-1}) X_k\right|}{\sigma \lambda_n}\right) \right]^{p_n} \le \sum_{n=0}^{\infty} \left[M\left(\frac{\left|\sum_{k=0}^{n} (\lambda_k - \lambda_{k-1}) X_k\right|}{\rho \lambda_n}\right) \right]^{p_n}.$$

i.e., $x \in [l_p^{\lambda}(M, B)].$

Case (ii). If $\rho > \sigma$, then $\frac{\rho}{\sigma} > 1$. From Δ_2 -condition of Orlicz function, there exists a constant k > 0 such that

$$M\left(\frac{\left|\sum_{k=0}^{n}(\lambda_{k}-\lambda_{k-1})X_{k}\right|}{\sigma\lambda_{n}}\right) \leq \left(\frac{k\rho}{\sigma}\right)M\left(\frac{\left|\sum_{k=0}^{n}(\lambda_{k}-\lambda_{k-1})X_{k}\right|}{\rho\lambda_{n}}\right).$$

Consequently, for each $n \in \mathbb{N}$

$$\sum_{n=0}^{\infty} \left[M\left(\frac{\left|\sum_{k=0}^{n} (\lambda_{k} - \lambda_{k-1}) X_{k}\right|}{\sigma \lambda_{n}}\right) \right]^{p_{n}} \leq \sum_{n=0}^{\infty} \left(\frac{k\rho}{\sigma}\right)^{p_{n}} \left[M\left(\frac{\left|\sum_{k=0}^{n} (\lambda_{k} - \lambda_{k-1}) X_{k}\right|}{\rho \lambda_{n}}\right) \right]^{p_{n}} \leq \sup_{n} \left\{ \left(\frac{k\rho}{\sigma}\right)^{p_{n}} \right\} \sum_{n=0}^{\infty} \left[M\left(\frac{\left|\sum_{k=0}^{n} (\lambda_{k} - \lambda_{k-1}) X_{k}\right|}{\rho \lambda_{n}}\right) \right]^{p_{n}} < \infty.$$

i.e., $x \in [l_p^{\lambda}(M, B)]$. Hence in both cases we have $x \in [l_p^{\lambda}(M, B)]$.

$$i.e., l_p^{\lambda}(M, B) \subseteq [l_p^{\lambda}(M, B)]$$

$$(3.7)$$

Combining (3.6) and (3.7), we get $l_p^{\lambda}(M, B) = [l_p^{\lambda}(M, B)].$

4. Acknowledgements

We would like to express our deep sense of gratitude to the reviewers for their valuable suggestions which improved the presentation of the paper.

References

- Altay, B., Başar, F., The matrix domain of the fine spectrum of the difference operator Δ on the sequence space l_p(1 (2), (2007), 1-11.
- [2] Aydın, C. and Başar, F., Some topological and geometric properties of the domain of the generalized difference matrix B(r, s) in the sequence Space $\ell(p)^*$, Thai Journal of Mathematics, 12 (1), (2014), 113-132.
- [3] Baliarsingh, P., Dutta, S., On certain Toeplitz matrices via difference operator and their applications, Afr. Mat., 27 (5), (2016), 781-791.
- [4] Başar, F., Summability theory and its applications, Bentham Science Publisher, İstanbul, (2012).
- [5] Başar, F. and Altay, B., On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J., 55 (1), (2003), 136-147.
- [6] Başar, F. and Dutta, H., Summable spaces and their duals, matrix transformations and geometric properties, CRC press, Taylor and Fancis Group, Mathematics and its applications, Boca Raton. London. New York, 2020.

- [7] Başar, F. and Karaisa, A., Some new generalized difference spaces of nonabsolute type derived from the spaces l_p and l_{∞} , The Scientific World J., (2013), 18 pages.
- [8] Bişgin, M. C., Almost convergent sequence spaces derived by the domain of quadruple band matrix, Ann. Univ. Paedagog. Crac. Stud. Math., 19 (2020), 155-170.
- [9] Candan, M., Domain of the double sequential band matrix in the classical sequence spaces, J. Inequal. Appl., (1) (2012), 1-15.
- [10] Cooke, R., Infinite matrices and sequence spaces, Macmillan London, (1950).
- [11] Dash, D., Some results on duality and matrix transformations in certain sequence spaces, Ph.D Thesis, Utkal University, (1992).
- [12] Dutta, H. and Başar, F., A generalization Orlicz sequence spaces by Cesàro mean of order one, Univ. Comen., 80 (2) (2011), 185-200.
- [13] Et, M. and Çolak, R., On some generalized difference sequence spaces, Soochow J. Math., 21 (4), (1995), 377-386.
- [14] Kamthan, P. K., Gupta, M., Sequence spaces and series, Marcel Dekker Inc., New York, Basel, (1981).
- [15] Kirişçi, M., Başar, F., Some new sequence spaces derived by the domain of generalized difference matrix, Comput. Math. Appl. 60, no. 5, (2010), 1299-1309.
- [16] Kizmaz, H., On certain sequence spaces, Canad. Math. Bull., 24 (2), (1981), 169-176.
- [17] Krasnosel'skii, M. A. and Rutickii, Y. B., Convex functions and Orlicz spaces, Groningen, Netherlands, (1961).
- [18] Lindenstrauss, J. and Tzafriri, L., On Orlicz sequence spaces, Israel J. Math., (10), (1971), 379-390.
- [19] Maddox, I. J., Spaces of strongly summable sequence, Quart. J. Math. Oxford Ser., 2, 18, (1967), 345-355.
- [20] Maddox, I. J., Elements of functional analysis, 2nd ed. Cambridge, Cambridge University Press, (1988).

- [21] Mursaleen, M. and Başar, F., Sequence spaces: Topics in summability theory, CRC press, Taylor and Fancis Group, series: Mathematics and its applications, Boca Raton. London. New York, 2020.
- [22] Mursaleen, M. and Noman, A. K., On some new sequence spaces of nonabsolute type related to the space l_p and l_{∞} I, Filomat, 25(2), (2011), 33-51.
- [23] Mursaleen, M. and Noman, A. K., On some new sequence spaces of nonabsolute type related to the space l_p and l_{∞} II, Math. Commun., 16(2), (2011), 383-398.
- [24] Nakano, H., Modulared sequence spaces, Proc. Japan Acad., (1951), 508-512.
- [25] Nanda, S., Matrix transformations and sequence spaces, Internal report, I. C. T. P., I.C/83/55.
- [26] Nergiz, H. and Başar, F., Some topological and geometrical properties of the domain of the double sequential band matrix $B(\tilde{r}, \tilde{s})$ in the sequence space l(p), AIP Conf. Proc. 1470, (2012), 163-168.
- [27] Parashar, S. D. and Choudhary, B., Sequence spaces defined by Orlicz functions, Indian Journal of Pure and Applied Mathematics, (25), (1994), 419-428.
- [28] Simons, S., The sequence spaces $l(p_{\nu})$ and $m(p_{\nu})$, Proc. London Math.Soc., 15(3), (1965), 422-436.
- [29] Sönmez, A., Some new sequence spaces derived by the domain of the triple band matrix, Computers and mathematics with applications, 62, (2011), 641-650.
- [30] Wilansky, A., Summability through functional analysis, vol. 85, North-Holland Mathematics Studies, Amsterdam, Netherlands, (1984).
- [31] Zeller, K., In Theorie der limitierungsverfahren, Springer, Berlin, (1958), 55-73.