# A GENERALIZATION OF ORLICZ SEQUENCE SPACES DERIVED BY QUADRUPLE SEQUENTIAL BAND MATRIX 

Salila Dutta and Nilambar Tripathy<br>Department of Mathematics, Utkal Unversity, Vani Vihar, Bhubaneswar - 751004, Odisha, INDIA E-mail : saliladutta516@gmail.com, nilambar.math@gmail.com

(Received: Jan. 13, 2021 Accepted: Mar. 23, 2021 Published: Apr. 30, 2021)
Abstract: In this article we have introduced a new Orlicz sequence space $l_{p}^{\lambda}(M, B)$ derived by a quadruple sequential band matrix associated with an Orlicz function and lambda matrix. Further, we have studied some topological properties and inclusion relations of this space.
Keywords and Phrases: Orlicz function, Four band matrix, Lambda matrix, $A K$-space, $B K$-space.

2020 Mathematics Subject Classification: 40A05, 40C05, 46A45, 46B45.

## 1. Introduction

Let $w$ represent the space of all real or complex sequences and any subspace of $w$ is called a sequence space. By $c, c_{0}, l_{\infty}, l_{1}, l_{p}$ and $b v_{p}$, we denote the space of all convergent, null, bounded, absolutely summable, p -absolutely summable and $p$-bounded variation sequences respectively, where $0<p<\infty$.

As the theory of sequence spaces has been a subject of interest to several mathematicians, Cesàro, Nörlund, Abel, Riesz and others studied the theory of sequence spaces through summability theory while Nakano [24], Simons [28], Maddox [19] and many others have constructed different sequence spaces by using the modern techniques of functional analysis. Later on Kızmaz [16], Et and Çolak [13], Başar and Dutta [6], Dutta and Başar [12] and many others gave a new direction for the development of the structural properties of Orlicz sequence spaces.

For any two sequence spaces $X$ and $Y$, with $A: X \rightarrow Y$ the $A$-transform of $x=\left(x_{k}\right) \in X$ written as $y=A x$ and is defined by

$$
(A x)_{n}=\sum_{k=0}^{\infty} a_{n k} x_{k} \text { for all } n \in \mathbb{N}
$$

where $A=\left(a_{n k}\right)$ is an infinite matrix of real or complex numbers and each of these series are convergent. The set of all infinite matrices $A=\left(a_{n k}\right)$ where $A x \in Y$ for all $x \in X$ is denoted by $(X, Y)$. For an arbitrary sequence space $X$, the set $X_{A}$ is also called matrix domain of an infinite matrix $A=\left(a_{n k}\right)$ defined by

$$
X_{A}=\left\{x=\left(x_{k}\right) \in w: A x \in X\right\}
$$

is also a sequence space. The study of matrix transformations has been enriched by several mathematicians considering different sequence spaces. Recent work includes Altay and Başar [1], Aydın and Başar [2], Candan [9] and many others. For detailed knowledge of sequence spaces, matrix transformations and the domain of triangular matrices in the normed sequence spaces, a reader should refer to the monographs Nanda [25], Dash [11], Başar [4], Mursaleen and Başar [21].

The domains $c_{0}\left(\Delta^{F}\right), c_{0}\left(\Delta^{F}\right)$ and $l_{\infty}\left(\Delta^{F}\right)$ of the forward difference matrix $\Delta^{F}$ in the spaces $c_{0}, c$ and $l_{\infty}$ are introduced by Kızmaz [16]. Afterwards, the domain $b v_{p}$ of the backward difference matrix $\Delta^{B}$ in the space $l_{p}$ have recently been investigated for $0<p<1$ by Altay and Başar [1] and for $1 \leq p<\infty$ by Başar and Altay [5]. Later Kirişçi and Başar [15] have constructed the difference sequence spaces

$$
\hat{X}=\left\{x=\left(x_{k}\right) \in w: B(r, s) x \in X\right\}
$$

for $X=c, c_{0}, l_{\infty}$ and $l_{p}$, where $1 \leq p<\infty$ and $(B(r, s) x)_{k}=\left(s x_{k-1}+r x_{k}\right)(r, s \neq 0)$. Candan [9] generalized this space by choosing $\tilde{r}=\left(r_{n}\right)_{n=0}^{\infty}$ and $\tilde{s}=\left(s_{n}\right)_{n=0}^{\infty}$ as convergent sequence of positive real numbers. Sönmez [29] constructed the sequence space with triple band matrix which was further been generalized by Bişgin [8] using a Quadruple band matrix $Q=Q(r, s, t, u)=\left(q_{n k}(r, s, t, u)\right)$ defined by,

$$
q_{n k}(r, s, t, u)= \begin{cases}r & k=n \\ s & k=n-1 \\ t & k=n-2 \\ u & k=n-3 \\ 0 & \text { otherwise }\end{cases}
$$

for all $n, k \in \mathbb{N}$ and $r, s, t, u \in \mathbb{R}-\{0\}$.

Suppose $\tilde{r}=\left(r_{k}\right), \tilde{s}=\left(x_{k}\right), \tilde{t}=\left(t_{k}\right)$ and $\tilde{u}=\left(u_{k}\right)$ are convergent sequences of distinct real numbers and $x=\left(x_{k}\right)$ is any sequence in either $c_{0}$ or $l_{1}$. Baliarsingh and Dutta [3] introduced the difference sequence space using difference operator $B(\tilde{r}, \tilde{s}, \tilde{t}, \tilde{u})$ where

$$
\begin{equation*}
(B(\tilde{r}, \tilde{s}, \tilde{t}, \tilde{u}) x)_{k}=r_{k} x_{k}+s_{k-1} x_{k-1}+t_{k-2} x_{k-2}+u_{k-3} x_{k-3} . \tag{1.1}
\end{equation*}
$$

The quadruple sequential band matrix $B(\tilde{r}, \tilde{s}, \tilde{t}, \tilde{u})=\left(b_{n k}\right)$ is defined as follows

$$
b_{n k}= \begin{cases}r_{k} & k=n \\ s_{k} & k=n-1 \\ t_{k} & k=n-2 \\ u_{k} & k=n-3 \\ 0 & \text { otherwise }\end{cases}
$$

and any term of $\left(b_{n k}\right)$ having negative subscript is zero.
Lindenstrauss and Tzafriri [18] defined the Orlicz sequence space

$$
l_{M}=\inf \left\{x \in w: \sum_{k=1}^{\infty} M\left(\frac{\left|x_{k}\right|}{\rho}\right)<\infty \text { for some } \rho>0\right\}
$$

which is a Banach space with the norm $\|x\|=\inf \left\{\rho>0: \sum_{k=1}^{\infty} M\left(\frac{\left|x_{k}\right|}{\rho}\right)\right\}$. Later on Parashar and Choudhary [27] introduced and studied the space $l_{M}(p)$ for $p=$ $\left(p_{k}\right)$ a bounded sequence of positive real numbers.

Motivated by the earlier work we have introduced a new sequence space $l_{p}^{\lambda}(M, B)$, as
$l_{p}^{\lambda}(M, B)=\left\{x=\left(x_{k}\right) \in \omega: \sum_{n=0}^{\infty}\left[M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho \lambda_{n}}\right)\right]^{p_{n}}<\infty\right.$, for some $\left.\rho>0\right\}$,
where $X_{k}=r_{k} x_{k}+s_{k-1} x_{k-1}+t_{k-2} x_{k-2}+u_{k-3} x_{k-3}, \lambda=\left(\lambda_{k}\right)_{k=0}^{\infty}$ consist of positive reals such that $0<\lambda_{0}<\lambda_{1}<\ldots$ and $\lim _{k \rightarrow \infty} \lambda_{k}=\infty$ and the $\lambda$ matrix $\Lambda=\left(\lambda_{n k}\right)$ is defined by

$$
\lambda_{n k}= \begin{cases}\frac{\lambda_{k}-\lambda_{k-1}}{\lambda_{n}}, & 0 \leq k \leq n \\ 0, & k>n\end{cases}
$$

for all $n, k \in \mathbb{N}$ and $\left(p_{n}\right)$ is a bounded sequence of positive real numbers.
For suitable choice of $p_{n}, M, B$ and $\Lambda$ the space $l_{p}^{\lambda}(M, B)$ generalizes the following cases:
(i) For $M(x)=x$ and $\tilde{r}=r e, \tilde{s}=s e$ and $\tilde{t}=\tilde{u}=\theta$, it reduces to $l_{p}^{\lambda}(B)$ introduced by Başar and Karaisa [7].
(ii) For $M(x)=x, p_{n}=p$, for all $n \in \mathbb{N}$ and $B=I$, the identity matrix it reduces to the space $l_{p}^{\lambda}$ studied by Mursaleen and Noman ([22], [23]).
(iii) For $M(x)=x, p_{n}=1$ for all $n \in \mathbb{N}$ and $B=\Lambda=I$, the identity matrix it reduces to $l_{M}$ studied by Lindenstrauss and Tzafriri [18].
(iv) For $B=\Lambda=I$ it reduces to $l_{M}(p)$ studied by Parasar and Choudhary [27].
(v) For $\tilde{r}=r e, \tilde{s}=s e, \tilde{t}=\tilde{u}=\theta, M(x)=x, \Lambda=I$ and $p_{n}=p(1 \leq p<\infty)$ it reduces to $\hat{l}_{p}$ studied by Kirişçi and Başar [15].
(vi) For $\tilde{r}=r e, \tilde{s}=s e, \tilde{t}=\tilde{u}=\theta, M(x)=x$ and $\Lambda=I$ it reduces to $\hat{l}(p)$ studied by Aydın and Başar [2].
(vii) For $\tilde{t}=\tilde{u}=\theta, M(x)=x, \Lambda=I$ and $p_{n}=p(1 \leq p<\infty)$ for all $n \in \mathbb{N}$ it reduces to $\tilde{l}(p)$ studied by Candan [9].
(viii) For $\tilde{t}=\tilde{u}=\theta, M(x)=x$ and $\Lambda=I$ it reduces to $l(\tilde{B}, p)$ introduced by Nergiz and Başar [26].
(ix) For $\tilde{r}=r e, \tilde{s}=s e, \tilde{t}=t e, \tilde{u}=\theta, M(x)=x, \Lambda=I$ and $p_{n}=p(1<p<\infty)$ for all $n \in \mathbb{N}$ it reduces to $l_{p}(B)$ studied by Sönmez [29].
(x) For $M(x)=x, B=I, p_{n}=p$ for all $n \in \mathbb{N}$ and $\Lambda=I$ it reduces to classical sequence $l_{p}$ space.

## 2. Definitions and Preliminaries

Definition 2.1. [14] A sequence space $X$ is called a $K$-space if the co-ordinate function $P_{k}: X \rightarrow K$ given by $P_{k}(x)=x_{k}$ is continuous for each $k \in \mathbb{N}$.
Definition 2.2. [30] An FK-space is a Fréchet sequence space with continuous co-ordinates.

Definition 2.3. [31] A linear space $X$ is called $B K$-space, if it is equipped with a norm under which it is a Banach space with continuous co-ordinates.
Definition 2.4. [30] An FK-space $X$ is said to be an AK-space if $X \supset \phi$, the set of all finitely non-zero sequences and $\left\{\delta^{n}\right\}$ is a basis for $X$, i.e., for each $x$, $x^{[n]} \rightarrow x$, where $x^{[n]}$ denotes the $n^{t h}$ section of $x$ is $\sum_{k=1}^{n} x_{k} \delta^{k}$, otherwise expressed as $x=\sum x_{k} \delta^{k}$ for all $x \in X$. For example, $l(p), c_{0}(p), w_{0}(p)$ are AK-spaces.

Definition 2.5. [10] A sequence space $X$ is said to be convergence free when, if $x=\left(x_{k}\right)$ in $X$ and if $y_{k}=\theta$ whenever $x_{k}=\theta$, then $y=\left(y_{k}\right)$ is in $X$.

Definition 2.6. [14] A sequence space $X$ is said to be normal if $\left(x_{k}\right) \in X$ implies $\left(\alpha_{k} x_{k}\right) \in X$ for all sequence of scalars $\left(\alpha_{k}\right)$ with $\left|\alpha_{k}\right| \leq 1$ for all $k \in \mathbb{N}$.

Definition 2.7. [10] $A$ sequence space $X$ is said to be symmetric if,when $x=\left(x_{k}\right)$ is in $X$, then $y=\left(y_{k}\right)$ is in $X$ when the co-ordinates of $y$ are those of $x$, but in a different order.
Definition 2.8. [14] An Orlicz function is a function $M:[0, \infty) \longrightarrow[0, \infty)$ which is continuous, non-decreasing and convex with $M(0)=0, M(x)>0$ for $x>0$ and $M(x) \rightarrow \infty$ as $x \rightarrow \infty$.
Lemma 2.1. [17] An Orlicz function $M$ is said to satisfy $\Delta_{2}$-condition for all values of $u$, if there exists a constant $K>0$ such that $M(2 u)=K M(u), u \geq 0$.

The $\Delta_{2}$-condition is equivalent to the inequality $M(l u) \leq K^{\prime} l M(u)$, for some $K^{\prime}>0$ which holds for all values of $u$ and $l>1$.
Lemma 2.2. [20] Let $p=\left(p_{n}\right)$ be a bounded sequence of positive real numbers. Then for any complex numbers $a_{n}$ and $b_{n},\left|a_{n}+b_{n}\right|^{p_{n}} \leq D\left(\left|a_{n}\right|^{p_{n}}+\left|b_{n}\right|^{p_{n}}\right)$, where $0<p_{n} \leq \sup p_{n}=G$ and $D=\max \left\{1,2^{G-1}\right\}$.

Lemma 2.3. [20] Let $0<p \leq 1$. Then for any complex numbers $a$ and $b$, $|a+b|^{p} \leq|a|^{p}+|b|^{p}$.

## 3. Main Result

Theorem 3.1. $l_{p}^{\lambda}(M, B)$ is a linear space over $\mathbb{C}$.
Proof. Let $x=\left(x_{n}\right), y=\left(y_{n}\right) \in l_{p}^{\lambda}(M, B)$ and $\alpha, \beta \in \mathbb{C}$. So there exists $\rho_{1}>0$ and $\rho_{2}>0$ such that

$$
\sum_{n=0}^{\infty}\left[M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho_{1} \lambda_{n}}\right)\right]^{p_{n}}<\infty
$$

and

$$
\sum_{n=0}^{\infty}\left[M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) Y_{k}\right|}{\rho_{2} \lambda_{n}}\right)\right]^{p_{n}}<\infty
$$

Let $\rho_{3}=\max \left(2|\alpha| \rho_{1}, 2|\beta| \rho_{2}\right)$ where $\alpha, \beta \in \mathbb{C}$. Since M is non-decreasing and convex, we have

$$
\sum_{n=0}^{\infty}\left[M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right)\left(\alpha X_{k}+\beta Y_{k}\right)\right|}{\rho_{3} \lambda_{n}}\right)\right]^{p_{n}}
$$

$$
\begin{aligned}
& \leq \sum_{n=0}^{\infty}\left[M\left(\frac{|\alpha|\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|+|\beta|\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) Y_{k}\right|}{\rho_{3} \lambda_{n}}\right)\right]^{p_{n}} \\
& \leq \sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{p_{n}}\left[M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho_{1} \lambda_{n}}\right)+M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) Y_{k}\right|}{\rho_{2} \lambda_{n}}\right)\right]^{p_{n}} \\
& \leq \sum_{n=0}^{\infty}\left[M\left(\frac{|\alpha|\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho_{1} \lambda_{n}}\right)+M\left(\frac{|\beta|\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) Y_{k}\right|}{\rho_{2} \lambda_{n}}\right)\right]^{p_{n}} \\
& \leq \sum_{n=0}^{\infty} D\left[M\left(\frac{|\alpha|\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho_{1} \lambda_{n}}\right)+M\left(\frac{|\beta|\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) Y_{k}\right|}{\rho_{2} \lambda_{n}}\right)\right]^{p_{n}} .
\end{aligned}
$$

Thus from the above inequality with Lemma 2.2 we have

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left[M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right)\left(\alpha X_{k}+\beta Y_{k}\right)\right|}{\rho_{3} \lambda_{n}}\right)\right]^{p_{n}} \\
\leq & D \sum_{n=0}^{\infty}\left[M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho_{1} \lambda_{n}}\right)\right]^{p_{n}}+D \sum_{n=1}^{\infty}\left[M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) Y_{k}\right|}{\rho_{2} \lambda_{n}}\right)\right]^{p_{n}} \\
< & \infty
\end{aligned}
$$

i.e., $\alpha x+\beta y \in l_{p}^{\lambda}(M, B)$.

Hence $l_{p}^{\lambda}(M, B)$ is a linear space over $\mathbb{C}$.
Theorem 3.2. (i) $l_{p}^{\lambda}(M, B)$ is a normed linear space under the norm defined by

$$
\begin{equation*}
\|x\|=\inf \left\{\rho^{\frac{p_{n}}{H}}:\left[\sum_{n=0}^{\infty}\left[M\left(\frac{\mid \sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}}{\rho \lambda_{n}}\right)\right]^{p_{n}}\right]^{\frac{1}{H}} \leq 1\right\} \tag{3.1}
\end{equation*}
$$

where $x \in l_{p}^{\lambda}(M, B)$ and $H=\max \left(1, \sup _{k} p_{k}\right)$.
(ii) $l_{p}^{\lambda}(M, B)$ is a Banach space under the norm defined by (3.1).
(iii) $l_{p}^{\lambda}(M, B)$ is a $B K$-space under the norm defined by (3.1).

Proof. (i) Obviously $\|x\| \geq 0$ and $\|x\|=0$ if $x=0$. Now suppose $\|x\|=0$ i.e.,

$$
\|x\|=\inf \left\{\rho^{\frac{p_{n}}{H}}:\left[\sum_{n=0}^{\infty}\left[M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho \lambda_{n}}\right)\right]^{p_{n}}\right]^{\frac{1}{H}} \leq 1\right\}=0
$$

This yields that for a given $\varepsilon>0$, there exists some $\rho_{\varepsilon} \in(0, \varepsilon)$ such that

$$
\sum_{n=0}^{\infty}\left[M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho_{\varepsilon} \lambda_{n}}\right)\right] \leq 1
$$

Which implies $M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho_{\varepsilon} \lambda_{n}}\right) \leq 1$ for all $n \in \mathbb{N}$. Thus,

$$
\begin{equation*}
M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\varepsilon \lambda_{n}}\right) \leq M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho_{\varepsilon} \lambda_{n}}\right) \leq 1 \text { for all } \mathrm{n} \in \mathbb{N} . \tag{3.2}
\end{equation*}
$$

Suppose $\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho_{\varepsilon} \lambda_{n}} \neq 0$ for some $k \in \mathbb{N}$. Then $\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\varepsilon \lambda_{n}} \rightarrow \infty$ as $\varepsilon \rightarrow$ 0 which implies that $M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\varepsilon \lambda_{n}}\right) \rightarrow \infty$ as $\varepsilon \rightarrow 0$ for some $k \in \mathbb{N}$ (as $M$ is an Orlicz function) which leads to a contradiction. Therefore, $\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho_{\varepsilon} \lambda_{n}}=0$ for all $n \in \mathbb{N}$. This follows that $X_{k}=0$ for all $k=1,2,3, \ldots, n$ and $n \in \mathbb{N}$. Since $\left(\lambda_{n}\right)$ is a sequence of positive integers, this implies $x_{n}=0$ for all $n \in \mathbb{N}$ i.e., $x=0$. Now let $x, y \in l_{p}^{\lambda}(M, B)$. For $\rho_{1}>0$ and $\rho_{2}>0$,

$$
\left[\sum_{n=0}^{\infty}\left[M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho_{1} \lambda_{n}}\right)\right]^{p_{n}}\right]^{\frac{1}{H}} \leq 1
$$

and

$$
\left[\sum_{n=0}^{\infty}\left[M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) Y_{k}\right|}{\rho_{2} \lambda_{n}}\right)\right]^{p_{n}}\right]^{\frac{1}{H}} \leq 1 .
$$

Let $\rho=\rho_{1}+\rho_{2}$. Then as $M$ is convex, we have

$$
\begin{aligned}
& M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right)\left(X_{k}+Y_{k}\right)\right|}{\rho \lambda_{n}}\right) \\
& \leq\left(\frac{\rho_{1}}{\rho_{1}+\rho_{2}}\right) \sum_{n=0}^{\infty} M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho_{1} \lambda_{n}}\right)+\left(\frac{\rho_{2}}{\rho_{1}+\rho_{2}}\right) \sum_{n=0}^{\infty} M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) Y_{k}\right|}{\rho_{2} \lambda_{n}}\right) .
\end{aligned}
$$

Therefore, by Lemma 2.3 we have

$$
\begin{aligned}
\|x+y\| & =\inf \left\{\rho^{\frac{p_{n}}{H}}>0:\left[\sum_{n=0}^{\infty}\left[M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right)\left(X_{k}+Y_{k}\right)\right|}{\rho \lambda_{n}}\right)\right]^{p_{n}}\right]^{\frac{1}{H}} \leq 1\right\} \\
& \leq \inf \left\{\rho_{1}^{\frac{p_{n}}{H}}>0:\left[\sum_{n=0}^{\infty}\left[M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho \lambda_{n}}\right)\right]^{p_{n}}\right]^{\frac{1}{H}} \leq 1\right\} \\
& +\inf \left\{\rho_{2}^{\frac{p_{n}}{H}}>0:\left[\sum_{n=0}^{\infty}\left[M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) Y_{k}\right|}{\rho \lambda_{n}}\right)\right]^{p_{n}}\right]^{\frac{1}{H}} \leq 1\right\} \\
& =\|x\|+\|y\| .
\end{aligned}
$$

Let $\alpha$ be any scalar and define $r=\frac{\rho}{|\alpha|}$. Then, we have

$$
\begin{aligned}
\|\alpha x\| & =\inf \left\{\rho^{\frac{p_{n}}{H}}>0:\left[\sum_{n=0}^{\infty}\left[M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) \alpha X_{k}\right|}{\rho \lambda_{n}}\right)\right]^{p_{n}}\right]^{\frac{1}{H}} \leq 1\right\} \\
& =\inf \left\{\rho^{\frac{p_{n}}{H}}>0:\left[\sum_{n=0}^{\infty}\left[M\left(\frac{|\alpha|\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho \lambda_{n}}\right)\right]^{p_{n}}\right]^{\frac{1}{H}} \leq 1\right\} \\
& =\inf \left\{r^{\frac{p_{n}}{H}}|\alpha|>0:\left[\sum_{n=0}^{\infty}\left[M\left(\frac{|\alpha|\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho \lambda_{n}}\right)\right]^{p_{n}}\right]^{\frac{1}{H}} \leq 1\right\} \\
& =|\alpha| \inf \left\{r^{\frac{p_{n}}{H}}>0:\left[\sum_{n=0}^{\infty}\left[M\left(\frac{|\alpha|\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho \lambda_{n}}\right)^{p_{n}}\right]^{\frac{1}{H}} \leq 1\right\}\right. \\
& =|\alpha|\|x\| .
\end{aligned}
$$

(ii) Let $\left(x^{i}\right)$ be a Cauchy sequence in $l_{p}^{\lambda}(M, B)$. Let $\delta>0$ be fixed and $r>0$ be given such that $0<\varepsilon<1$ and $r \delta \geq 1$. Then there exists a positive integer $i_{0}$ such that $\left\|x^{i}-x^{j}\right\|<\frac{\varepsilon}{r \delta}$ for all $i, j \geq i_{0}$, by applying the norm in (3.1) we have
$\inf \left\{\rho^{\frac{p_{n}}{H}}>0:\left[\sum_{n=0}^{\infty}\left[M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right)\left(X_{k}^{i}-X_{k}^{j}\right)\right|}{\rho \lambda_{n}}\right)\right]^{p_{n}}\right]^{\frac{1}{H}} \leq 1\right\}<\frac{\varepsilon}{r \delta}$ for all $i, j \geq i_{0}$.
This implies that

$$
\left[\sum_{n=0}^{\infty}\left[M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right)\left(X_{k}^{i}-X_{k}^{j}\right)\right|}{\left\|x^{i}-x^{j}\right\| \lambda_{n}}\right)\right]^{p_{n}}\right]^{\frac{1}{H}} \leq 1, \text { for all } i, j \geq i_{0}
$$

i.e.,
$\sum_{n=0}^{\infty}\left[M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right)\left(X_{k}^{i}-X_{k}^{j}\right)\right|}{\left\|x^{i}-x^{j}\right\| \lambda_{n}}\right)\right]^{p_{n}} \leq 1$, for all $i, j \geq i_{0}$ and for all $n \in \mathbb{N}$.
i.e.,

$$
\left[M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right)\left(X_{k}^{i}-X_{k}^{j}\right)\right|}{\left\|x^{i}-x^{j}\right\| \lambda_{n}}\right)\right]^{p_{n}} \leq 1, \text { for all } i, j \geq i_{0} \text { and for all } n \in \mathbb{N}
$$

For $r>0$ choosing $M\left(\frac{r \delta}{2}\right) \geq 1$ we have
$M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right)\left(X_{k}^{i}-X_{k}^{j}\right)\right|}{\left\|x^{i}-x^{j}\right\| \lambda_{n}}\right) \leq M\left(\frac{r \delta}{2}\right)$, for all $i, j \geq i_{0}$ and for all $n \in \mathbb{N}$.
Since $M$ is non-decreasing, we have

$$
\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right)\left(X_{k}^{i}-X_{k}^{j}\right)\right|}{\left\|x^{i}-x^{j}\right\| \lambda_{n}} \leq \frac{r \delta}{2}, \text { for all } i, j \geq i_{0} \text { and for all } n \in \mathbb{N} \text {. }
$$

i.e.,

$$
\begin{aligned}
\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right)\left(X_{k}^{i}-X_{k}^{j}\right)\right|}{\lambda_{n}} & \leq \frac{r \delta}{2}\left\|x^{i}-x^{j}\right\|, \text { for all } i, j \geq i_{0} \text { and for all } n \in \mathbb{N} \\
& \leq \frac{r \delta}{2} \cdot \frac{\varepsilon}{r \delta} \\
& =\frac{\varepsilon}{2}
\end{aligned}
$$

So,

$$
\left\lvert\,\left(\lambda_{k}-\lambda_{k-1}\right)\left(X_{k}^{i}-X_{k}^{j}\right) \leq \frac{\varepsilon}{2}\right. \text { for all } i, j \geq i_{0} \text { and for all } n \in \mathbb{N} \text {. }
$$

This implies, $\left\{\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}^{i}\right\}$ is a Cauchy sequence of scalars for all $k=1,2,3, \ldots, n$ and for all $n \in \mathbb{N}$ and hence is convergent by the completeness of scalar field.

Now let $\lim _{i \rightarrow \infty}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}^{i}=\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}$, for $k=1,2,3, \ldots, n$ and for all $n \in \mathbb{N}$.
Let $j \rightarrow \infty$ and with the continuity of Orlicz function, we have $\left(x^{i}-x\right) \in l_{p}^{\lambda}(M, B)$ and $\inf \left\{\rho^{\frac{p_{n}}{H}}>0:\left[\sum_{n=0}^{\infty}\left[M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right)\left(X_{k}^{i}-X_{k}\right)\right|}{\rho \lambda_{n}}\right)\right]^{p_{n}}\right]^{\frac{1}{H}} \leq 1\right\}$ for all $i \geq i_{0}$. i.e., $\left\|x^{i}-x\right\| \rightarrow 0$ as $i \rightarrow \infty$. Since $x^{i} \in l_{p}^{\lambda}(M, B)$, which is a linear space, this implies $x \in l_{p}^{\lambda}(M, B)$ and hence $l_{p}^{\lambda}(M, B)$ is a Banach space with respect to the norm defined by (3.1).
(iii) From the above proof we can easily conclude that $\left\|x^{i}\right\| \rightarrow 0$ as $i \rightarrow \infty$ implies that $x_{n}^{i} \rightarrow 0$ as $n \in \infty$ for each $i \in \mathbb{N}$.
Theorem 3.3. For different Orlicz functions $M_{1}$ and $M_{2}$, the following statements hold:
(i) $l_{p}^{\lambda}\left(M_{1}, B\right) \cap l_{p}^{\lambda}\left(M_{2}, B\right) \subseteq l_{p}^{\lambda}\left(M_{1}+M_{2}, B\right)$ and
(ii) $l_{p}^{\lambda}\left(M_{2}, B\right) \subseteq l_{p}^{\lambda}\left(M_{1}, B\right)$ if $\sup _{t}\left[\frac{M_{1}(t)}{M_{2}(t)}\right]<\infty$.

Proof. (i) Let $x \in \ell_{p}^{\lambda}\left(M_{1}, B\right) \cap \ell_{p}^{\lambda}\left(M_{2}, B\right)$
Then there exists $\rho_{1}>0$ and $\rho_{2}>0$ such that

$$
\sum_{n=0}^{\infty}\left[M_{1}\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho_{1} \lambda_{n}}\right)\right]^{p_{n}}<\infty
$$

and

$$
\sum_{n=0}^{\infty}\left[M_{2}\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho_{2} \lambda_{n}}\right)\right]^{p_{n}}<\infty
$$

Let $\rho=\max \left(\rho_{1}, \rho_{2}\right)$. Then, by Lemma 2.2 we have

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left[\left(M_{1}+M_{2}\right)\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho \lambda_{n}}\right)\right]^{p_{n}} \\
& \leq \sum_{n=0}^{\infty}\left[M_{1}\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho_{1} \lambda_{n}}\right)+M_{2}\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho_{2} \lambda_{n}}\right)\right]^{p_{n}} \\
& \leq D\left[\sum_{n=0}^{\infty}\left[M_{1}\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho_{1} \lambda_{n}}\right)\right]^{p_{n}}+\sum_{n=0}^{\infty}\left[M_{2}\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho_{2} \lambda_{n}}\right)\right]^{p_{n}}\right] \\
& <\infty
\end{aligned}
$$

Which implies, $x \in \ell_{p}^{\lambda}\left(M_{1}+M_{2}, B\right)$.
(ii)Let $x \in \ell_{p}^{\lambda}\left(M_{2}, B\right)$. Then there exists $\rho>0$ such that

$$
\sum_{n=0}^{\infty}\left[M_{2}\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho \lambda_{n}}\right)\right]^{p_{n}}<\infty
$$

Since $\sup _{t}\left[\frac{M_{1}(t)}{M_{2}(t)}\right]<\infty$, therefore there exists $\eta>0$ such that,

$$
\begin{equation*}
\frac{M_{1}(t)}{M_{2}(t)} \leq \eta \text { for all } t \geq 0 \tag{3.3}
\end{equation*}
$$

Replacing $t$ by $\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho \lambda_{n}}$ in (3.3), we get

$$
M_{1}\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho \lambda_{n}}\right) \leq \eta M_{2}\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho \lambda_{n}}\right)
$$

Thus for each $k \in \mathbb{N}$, we have

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left[M_{1}\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho \lambda_{n}}\right)\right]^{p_{n}} & \leq \max \left(1, \eta^{G}\right) \sum_{n=0}^{\infty}\left[M_{2}\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho \lambda_{n}}\right)\right]^{p_{n}} \\
& <\infty
\end{aligned}
$$

which implies that $x \in \ell_{p}^{\lambda}(M, B)$, where $G=\sup _{k} p_{k}$.
Theorem 3.4. Let $M$ and $M_{1}$ be two Orlicz functions. If $M$ satisfies $\Delta_{2}$-condition then $\ell_{p}^{\lambda}(M, B) \subseteq \ell_{p}^{\lambda}\left(M \circ M_{1}, B\right)$.
Proof. Let $x \in \ell_{p}^{\lambda}\left(M_{1}, B\right)$. Then there exists $\rho>0$ such that

$$
\sum_{n=0}^{\infty}\left[M_{1}\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho \lambda_{n}}\right)\right]^{p_{n}}<\infty
$$

Case (i). Let $M_{1}\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho \lambda_{n}}\right) \leq 1$.
Then, using convexity of Orlicz function $M$

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left[M\left(M_{1}\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho \lambda_{n}}\right)\right)\right]^{p_{n}} \leq \sum_{n=0}^{\infty}\left[M_{1}\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho \lambda_{n}}\right) M(1)\right]^{p_{n}} \\
& \leq \max \left(1,[M(1)]^{H}\right) \sum_{n=0}^{\infty}\left[M_{1}\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho \lambda_{n}}\right)\right]^{p_{n}}<\infty .
\end{aligned}
$$

Case (ii). Let $M_{1}\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho \lambda_{n}}\right)>1$.
Then, by using $\Delta_{2}$-condition of Orlicz function $M$,

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left[M\left(M_{1}\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho \lambda_{n}}\right)\right)\right]^{p_{n}} \leq \sum_{n=0}^{\infty}\left[K M_{1}\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho \lambda_{n}}\right) M(1)\right]^{p_{n}} \\
& \leq \max \left(1,[K M(1)]^{H}\right) \sum_{n=0}^{\infty}\left[M_{1}\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho \lambda_{n}}\right)\right]^{p_{n}}<\infty .
\end{aligned}
$$

From case(i) and case(ii), $\sum_{n=0}^{\infty}\left[M\left(M_{1}\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho \lambda_{n}}\right)\right)\right]^{p_{n}}<\infty$.
Hence $x \in l_{p}^{\lambda}\left(M \circ M_{1}, B\right)$.
Theorem 3.5. The space $l_{p}^{\lambda}(M, B)$ is not convergence free.
Proof. The result follows from the following example.
Example 3.1. For $M(x)=x, \Lambda=I$, the identity matrix, $\tilde{r}=e, \tilde{s}=0, \tilde{t}=0, \tilde{u}=$ $0, p_{n}=2$ for all $n \in \mathbb{N}$ and choose

$$
x_{k}=\left\{\begin{aligned}
\frac{1}{k} & \text { when } k \neq 2^{n} \\
0 & \text { when } k=2^{n}
\end{aligned}\right.
$$

Then, $\left(x_{k}\right) \in l_{2}$. Now consider

$$
y_{k}= \begin{cases}k & \text { when } k \neq 2^{n} \\ 0 & \text { when } k=2^{n}\end{cases}
$$

Then, $\left(y_{k}\right) \notin l_{2}$.
This implies the fact that the space $l_{p}^{\lambda}(M, B)$ is not convergence free.
Theorem 3.6. The space $l_{p}^{\lambda}(M, B)$ is not symmetric.
Proof. The result follows from the example given below.
Example 3.2. If we choose $\Lambda=I$, the identity matrix, $M(x)=x, \tilde{r}=e, \tilde{s}=$ $-e, \tilde{t}=0, \tilde{u}=0, p_{n}=2$ for all $n \in \mathbb{N}$ and $\left(x_{n}\right)=\left(\frac{1}{n}\right)$, then $\left(x_{n}\right) \in l_{2}$. But If we consider the sequence $\left(y_{n}\right)=\left(x_{1}, x_{5}, x_{8}, x_{15}, x_{21}, \ldots\right)$, then $\left(y_{n}\right) \notin l_{2}$.

Hence the space is not symmetric.
Theorem 3.7. The space $l_{p}^{\lambda}(M, B)$ is normal.
Proof. Let $x \in l_{p}^{\lambda}(M, B)$, i.e.,

$$
\sum_{n=0}^{\infty}\left[M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho \lambda_{n}}\right)\right]^{p_{n}}<\infty
$$

For a sequence of scalars $\alpha=\left(\alpha_{k}\right)$ such that $\left|\alpha_{k}\right| \leq 1$ for all $k \in \mathbb{N}$, we have

$$
\sum_{n=0}^{\infty}\left[M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) \alpha_{k} X_{k}\right|}{\rho \lambda_{n}}\right)\right]^{p_{n}} \leq \sum_{n=0}^{\infty}\left[M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho \lambda_{n}}\right)\right]^{p_{n}}
$$

So, $l_{p}^{\lambda}(M, B)$ is a normal space.
Now for any Orlicz function $M$, we define
$\left[l_{p}^{\lambda}(M, B)\right]=\left\{x=\left(x_{k}\right) \in \omega: \sum_{n=0}^{\infty}\left[M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho \lambda_{n}}\right)\right]^{p_{n}}<\infty\right.$, for every $\left.\rho>0\right\}$
Obviously, $\left[l_{p}^{\lambda}(M, B)\right]$ is a subspace of $l_{p}^{\lambda}(M, B)$.
Theorem 3.8. $\left[l_{p}^{\lambda}(M, B)\right]$ is a complete normed linear space under the norm defined by (3.1).
Proof. By using the step (ii) of Theorem 3.2, one can easily prove that $\left[l_{p}^{\lambda}(M, B)\right]$ is a complete normed linear space.
Theorem 3.9. Let $M$ be an Orlicz function. Then $\left[l_{p}^{\lambda}(M, B)\right]$ is an $A K$-space.
Proof. Let $x=\left(x_{n}\right) \in l_{p}^{\lambda}(M, B)$. Therefore, for every $\rho>0$,

$$
\sum_{n=0}^{\infty}\left[M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho \lambda_{n}}\right)\right]^{p_{n}} \leq 1
$$

Then for each $\varepsilon \in(0,1)$, we can find $n_{0}$ such that

$$
\begin{equation*}
\sum_{n \geq n_{0}}\left[M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\varepsilon \lambda_{n}}\right)\right]^{p_{n}} \leq 1 \tag{3.4}
\end{equation*}
$$

Define the $j$ th section $x^{[j]}$ of the sequence $x=\left(x_{n}\right)$ by $x^{[j]}=\sum_{n=0}^{j} x_{n} e^{n}$, where $\left(e_{n}\right)$ is a Schauder basis for $\left[l_{p}^{\lambda}(M, B)\right]$. Hence, for $j \geq j_{0}$,

$$
\begin{align*}
\left\|x-x^{[j]}\right\| & =\inf \left\{\rho>0: \sum_{n \geq j_{0}}\left[M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho \lambda_{n}}\right)\right]^{p_{n}} \leq 1\right\} \\
& \leq \inf \left\{\rho>0: \sum_{n \geq j}\left[M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho \lambda_{n}}\right)\right]^{p_{n}} \leq 1\right\} . \tag{3.5}
\end{align*}
$$

From (3.3) and (3.4), we get $\left\|x-x^{[j]}\right\|<\varepsilon$ for all $j \geq j_{0}$. Therefore, $\left[l_{p}^{\lambda}(M, B)\right]$ is an $A K$-space.
Theorem 3.10. If an Orlicz function $M$ satisfies the $\Delta_{2}-$ condition, then $l_{p}^{\lambda}(M, B)=$ $\left[l_{p}^{\lambda}(M, B)\right]$.
Proof. It is obvious that

$$
\begin{equation*}
\left[l_{p}^{\lambda}(M, B)\right] \subseteq l_{p}^{\lambda}(M, B) \tag{3.6}
\end{equation*}
$$

Now let $x=\left(x_{n}\right) \in l_{p}^{\lambda}(M, B)$ be any arbitrary element. Then there exists some $\rho>0$ such that

$$
\sum_{n=0}^{\infty}\left[M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho \lambda_{n}}\right)\right]^{p_{n}}<\infty
$$

Again let $\sigma$ be any arbitrary number. Then two cases arise.
Case (i). If $\rho \leq \sigma$, then for each $n \in \mathbb{N}$,

$$
\sum_{n=0}^{\infty}\left[M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\sigma \lambda_{n}}\right)\right]^{p_{n}} \leq \sum_{n=0}^{\infty}\left[M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho \lambda_{n}}\right)\right]^{p_{n}} .
$$

i.e., $x \in\left[l_{p}^{\lambda}(M, B)\right]$.

Case (ii). If $\rho>\sigma$, then $\frac{\rho}{\sigma}>1$. From $\Delta_{2}$-condition of Orlicz function, there exists a constant $k>0$ such that

$$
M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\sigma \lambda_{n}}\right) \leq\left(\frac{k \rho}{\sigma}\right) M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho \lambda_{n}}\right) .
$$

Consequently, for each $n \in \mathbb{N}$

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left[M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\sigma \lambda_{n}}\right)\right]^{p_{n}} \leq \sum_{n=0}^{\infty}\left(\frac{k \rho}{\sigma}\right)^{p_{n}}\left[M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho \lambda_{n}}\right)\right]^{p_{n}} \\
& \leq \sup _{n}\left\{\left(\frac{k \rho}{\sigma}\right)^{p_{n}}\right\} \sum_{n=0}^{\infty}\left[M\left(\frac{\left|\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) X_{k}\right|}{\rho \lambda_{n}}\right)\right]^{p_{n}}<\infty . \\
& \text { i.e., } x \in\left[l_{p}^{\lambda}(M, B)\right] .
\end{aligned}
$$

Hence in both cases we have $x \in\left[l_{p}^{\lambda}(M, B)\right]$.

$$
\begin{equation*}
\text { i.e., } l_{p}^{\lambda}(M, B) \subseteq\left[l_{p}^{\lambda}(M, B)\right] \tag{3.7}
\end{equation*}
$$

Combining (3.6) and (3.7), we get $l_{p}^{\lambda}(M, B)=\left[l_{p}^{\lambda}(M, B)\right]$.

## 4. Acknowledgements

We would like to express our deep sense of gratitude to the reviewers for their valuable suggestions which improved the presentation of the paper.

## References

[1] Altay, B., Başar, F., The matrix domain of the fine spectrum of the difference operator $\Delta$ on the sequence space $l_{p}(1<p<\infty)$, Commun. Math. Anal., 2 (2), (2007), 1-11.
[2] Aydın, C. and Başar, F., Some topological and geometric properties of the domain of the generalized difference matrix $B(r, s)$ in the sequence Space $\ell(p)^{*}$, Thai Journal of Mathematics, 12 (1), (2014), 113-132.
[3] Baliarsingh, P., Dutta, S., On certain Toeplitz matrices via difference operator and their applications, Afr. Mat., 27 (5), (2016), 781-791.
[4] Başar, F., Summability theory and its applications, Bentham Science Publisher, İstanbul, (2012).
[5] Başar, F. and Altay, B., On the space of sequences of $p$-bounded variation and related matrix mappings, Ukrainian Math. J., 55 (1), (2003), 136-147.
[6] Başar, F. and Dutta, H., Summable spaces and their duals, matrix transformations and geometric properties, CRC press, Taylor and Fancis Group, Mathematics and its applications, Boca Raton. London. New York, 2020.
[7] Başar, F. and Karaisa, A., Some new generalized difference spaces of nonabsolute type derived from the spaces $l_{p}$ and $l_{\infty}$, The Scientific World J., (2013), 18 pages.
[8] Bisggin, M. C., Almost convergent sequence spaces derived by the domain of quadruple band matrix, Ann. Univ. Paedagog. Crac. Stud. Math., 19 (2020), 155-170.
[9] Candan, M., Domain of the double sequential band matrix in the classical sequence spaces, J. Inequal. Appl., (1) (2012), 1-15.
[10] Cooke, R., Infinite matrices and sequence spaces, Macmillan London, (1950).
[11] Dash, D., Some results on duality and matrix transformations in certain sequence spaces, Ph.D Thesis, Utkal University, (1992).
[12] Dutta, H. and Başar, F., A generalization Orlicz sequence spaces by Cesàro mean of order one, Univ. Comen., 80 (2) (2011), 185-200.
[13] Et, M. and Çolak, R., On some generalized difference sequence spaces, Soochow J. Math., 21 (4), (1995), 377-386.
[14] Kamthan, P. K., Gupta, M., Sequence spaces and series, Marcel Dekker Inc., New York, Basel, (1981).
[15] Kirişçi, M., Başar, F., Some new sequence spaces derived by the domain of generalized difference matrix, Comput. Math. Appl. 60, no. 5, (2010), 1299-1309.
[16] Kizmaz, H., On certain sequence spaces, Canad. Math. Bull., 24 (2), (1981), 169-176.
[17] Krasnosel'ski1, M. A. and Ruticki1, Y. B., Convex functions and Orlicz spaces, Groningen, Netherlands, (1961).
[18] Lindenstrauss, J. and Tzafriri, L., On Orlicz sequence spaces, Israel J. Math., (10), (1971), 379-390.
[19] Maddox, I. J., Spaces of strongly summable sequence, Quart. J. Math. Oxford Ser., 2, 18, (1967), 345-355.
[20] Maddox, I. J., Elements of functional analysis, 2nd ed. Cambridge, Cambridge University Press, (1988).
[21] Mursaleen, M. and Başar, F., Sequence spaces: Topics in summability theory, CRC press, Taylor and Fancis Group, series: Mathematics and its applications, Boca Raton. London. New York, 2020.
[22] Mursaleen, M. and Noman, A. K., On some new sequence spaces of nonabsolute type related to the space $l_{p}$ and $l_{\infty}$ I, Filomat, 25(2), (2011), 33-51.
[23] Mursaleen, M. and Noman, A. K., On some new sequence spaces of nonabsolute type related to the space $l_{p}$ and $l_{\infty}$ II, Math. Commun., 16(2), (2011), 383-398.
[24] Nakano, H., Modulared sequence spaces, Proc. Japan Acad., (1951), 508-512.
[25] Nanda, S., Matrix transformations and sequence spaces, Internal report, I. C. T. P., I.C/83/55.
[26] Nergiz, H. and Başar, F., Some topological and geometrical properties of the domain of the double sequential band matrix $B(\tilde{r}, \tilde{s})$ in the sequence space $l(p)$, AIP Conf. Proc. 1470, (2012), 163-168.
[27] Parashar, S. D. and Choudhary, B., Sequence spaces defined by Orlicz functions, Indian Journal of Pure and Applied Mathematics, (25), (1994), 419428.
[28] Simons, S., The sequence spaces $l\left(p_{\nu}\right)$ and $m\left(p_{\nu}\right)$, Proc. London Math.Soc., 15(3), (1965), 422-436.
[29] Sönmez, A., Some new sequence spaces derived by the domain of the triple band matrix, Computers and mathematics with applications, 62, (2011), 641650.
[30] Wilansky, A., Summability through functional analysis, vol. 85, NorthHolland Mathematics Studies, Amsterdam, Netherlands, (1984).
[31] Zeller, K., In Theorie der limitierungsverfahren, Springer, Berlin, (1958), 5573.

