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1. Introduction
Let w represent the space of all real or complex sequences and any subspace

of w is called a sequence space. By c, c0, l∞, l1, lp and bvp, we denote the space of
all convergent, null, bounded, absolutely summable, p-absolutely summable and
p-bounded variation sequences respectively, where 0 < p <∞.

As the theory of sequence spaces has been a subject of interest to several math-
ematicians, Cesàro, Nörlund, Abel, Riesz and others studied the theory of sequence
spaces through summability theory while Nakano [24], Simons [28], Maddox [19]
and many others have constructed different sequence spaces by using the modern
techniques of functional analysis. Later on Kızmaz [16], Et and Çolak [13], Başar
and Dutta [6], Dutta and Başar [12] and many others gave a new direction for the
development of the structural properties of Orlicz sequence spaces.
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For any two sequence spaces X and Y , with A : X → Y the A-transform of
x = (xk) ∈ X written as y = Ax and is defined by

(Ax)n =
∞∑
k=0

ankxk for all n ∈ N

where A = (ank) is an infinite matrix of real or complex numbers and each of these
series are convergent. The set of all infinite matrices A = (ank) where Ax ∈ Y for
all x ∈ X is denoted by (X, Y ). For an arbitrary sequence space X, the set XA is
also called matrix domain of an infinite matrix A = (ank) defined by

XA = {x = (xk) ∈ w : Ax ∈ X}

is also a sequence space. The study of matrix transformations has been enriched by
several mathematicians considering different sequence spaces. Recent work includes
Altay and Başar [1], Aydın and Başar [2], Candan [9] and many others. For detailed
knowledge of sequence spaces, matrix transformations and the domain of triangular
matrices in the normed sequence spaces, a reader should refer to the monographs
Nanda [25], Dash [11], Başar [4], Mursaleen and Başar [21].

The domains c0(∆
F ), c0(∆

F ) and l∞(∆F ) of the forward difference matrix ∆F in
the spaces c0, c and l∞ are introduced by Kızmaz [16]. Afterwards, the domain bvp
of the backward difference matrix ∆B in the space lp have recently been investigated
for 0 < p < 1 by Altay and Başar [1] and for 1 ≤ p < ∞ by Başar and Altay [5].
Later Kirişçi and Başar [15] have constructed the difference sequence spaces

X̂ = {x = (xk) ∈ w : B(r, s)x ∈ X}

for X = c, c0, l∞ and lp, where 1 ≤ p <∞ and (B(r, s)x)k = (sxk−1+rxk)(r, s 6= 0).
Candan [9] generalized this space by choosing r̃ = (rn)∞n=0 and s̃ = (sn)∞n=0 as
convergent sequence of positive real numbers. Sönmez [29] constructed the sequence
space with triple band matrix which was further been generalized by Bişgin [8] using
a Quadruple band matrix Q = Q(r, s, t, u) = (qnk(r, s, t, u)) defined by,

qnk(r, s, t, u) =


r k = n
s k = n− 1
t k = n− 2
u k = n− 3
0 otherwise

for all n, k ∈ N and r, s, t, u ∈ R− {0}.
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Suppose r̃ = (rk), s̃ = (xk), t̃ = (tk) and ũ = (uk) are convergent sequences of
distinct real numbers and x = (xk) is any sequence in either c0 or l1. Baliarsingh
and Dutta [3] introduced the difference sequence space using difference operator
B(r̃, s̃, t̃, ũ) where

(B(r̃, s̃, t̃, ũ)x)k = rkxk + sk−1xk−1 + tk−2xk−2 + uk−3xk−3. (1.1)

The quadruple sequential band matrix B(r̃, s̃, t̃, ũ) = (bnk) is defined as follows

bnk =


rk k = n
sk k = n− 1
tk k = n− 2
uk k = n− 3
0 otherwise

and any term of (bnk) having negative subscript is zero.
Lindenstrauss and Tzafriri [18] defined the Orlicz sequence space

lM = inf

{
x ∈ w :

∞∑
k=1

M

(
|xk|
ρ

)
<∞ for some ρ > 0

}
,

which is a Banach space with the norm ‖x‖ = inf
{
ρ > 0 :

∑∞
k=1M

(
|xk|
ρ

)}
. Later

on Parashar and Choudhary [27] introduced and studied the space lM(p) for p =
(pk) a bounded sequence of positive real numbers.

Motivated by the earlier work we have introduced a new sequence space lλp (M,B),
as

lλp (M,B) =

{
x = (xk) ∈ ω :

∞∑
n=0

[
M

(
|
∑n

k=0(λk − λk−1)Xk|
ρλn

)]pn
<∞, for some ρ > 0

}
,

where Xk = rkxk + sk−1xk−1 + tk−2xk−2 +uk−3xk−3, λ = (λk)
∞
k=0 consist of positive

reals such that 0 < λ0 < λ1 < . . . and lim
k→∞

λk =∞ and the λ matrix Λ = (λnk) is

defined by

λnk =

{ λk−λk−1

λn
, 0 ≤ k ≤ n

0, k > n

for all n, k ∈ N and (pn) is a bounded sequence of positive real numbers.
For suitable choice of pn,M,B and Λ the space lλp (M,B) generalizes the follow-

ing cases:
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(i) For M(x) = x and r̃ = re, s̃ = se and t̃ = ũ = θ , it reduces to lλp (B)
introduced by Başar and Karaisa [7].

(ii) For M(x) = x, pn = p, for all n ∈ N and B = I, the identity matrix it reduces
to the space lλp studied by Mursaleen and Noman ([22], [23]).

(iii) For M(x) = x, pn = 1 for all n ∈ N and B = Λ = I, the identity matrix it
reduces to lM studied by Lindenstrauss and Tzafriri [18].

(iv) For B = Λ = I it reduces to lM(p) studied by Parasar and Choudhary [27].

(v) For r̃ = re, s̃ = se, t̃ = ũ = θ,M(x) = x,Λ = I and pn = p(1 ≤ p < ∞) it
reduces to l̂p studied by Kirişçi and Başar [15].

(vi) For r̃ = re, s̃ = se, t̃ = ũ = θ,M(x) = x and Λ = I it reduces to l̂(p) studied
by Aydın and Başar [2].

(vii) For t̃ = ũ = θ,M(x) = x,Λ = I and pn = p (1 ≤ p < ∞) for all n ∈ N it
reduces to l̃(p) studied by Candan [9].

(viii) For t̃ = ũ = θ,M(x) = x and Λ = I it reduces to l(B̃, p) introduced by Nergiz
and Başar [26].

(ix) For r̃ = re, s̃ = se, t̃ = te, ũ = θ,M(x) = x,Λ = I and pn = p (1 < p < ∞)
for all n ∈ N it reduces to lp(B) studied by Sönmez [29].

(x) For M(x) = x,B = I, pn = p for all n ∈ N and Λ = I it reduces to classical
sequence lp space.

2. Definitions and Preliminaries

Definition 2.1. [14] A sequence space X is called a K-space if the co-ordinate
function Pk : X → K given by Pk(x) = xk is continuous for each k ∈ N.

Definition 2.2. [30] An FK-space is a Fréchet sequence space with continuous
co-ordinates.

Definition 2.3. [31] A linear space X is called BK-space, if it is equipped with a
norm under which it is a Banach space with continuous co-ordinates.

Definition 2.4. [30] An FK-space X is said to be an AK-space if X ⊃ φ, the
set of all finitely non-zero sequences and {δn} is a basis for X, i.e., for each x,
x[n] → x, where x[n] denotes the nth section of x is

∑n
k=1 xkδ

k, otherwise expressed
as x =

∑
xkδ

k for all x ∈ X. For example, l(p), c0(p), w0(p) are AK-spaces.
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Definition 2.5. [10] A sequence space X is said to be convergence free when, if
x = (xk) in X and if yk = θ whenever xk = θ, then y = (yk) is in X.

Definition 2.6. [14] A sequence space X is said to be normal if (xk) ∈ X implies
(αkxk) ∈ X for all sequence of scalars (αk) with |αk| ≤ 1 for all k ∈ N.

Definition 2.7. [10] A sequence space X is said to be symmetric if,when x = (xk)
is in X, then y = (yk) is in X when the co-ordinates of y are those of x, but in a
different order.

Definition 2.8. [14] An Orlicz function is a function M : [0,∞) −→ [0,∞) which
is continuous, non-decreasing and convex with M(0) = 0,M(x) > 0 for x > 0 and
M(x)→∞ as x→∞.

Lemma 2.1. [17] An Orlicz function M is said to satisfy ∆2−condition for all
values of u, if there exists a constant K > 0 such that M(2u) = KM(u), u ≥ 0.

The ∆2−condition is equivalent to the inequality M(lu) ≤ K ′lM(u), for some
K ′ > 0 which holds for all values of u and l > 1.

Lemma 2.2. [20] Let p = (pn) be a bounded sequence of positive real numbers.
Then for any complex numbers an and bn, |an + bn|pn ≤ D (|an|pn + |bn|pn), where
0 < pn ≤ sup pn = G and D = max{1, 2G−1}.
Lemma 2.3. [20] Let 0 < p ≤ 1. Then for any complex numbers a and b,
|a+ b|p ≤ |a|p + |b|p.
3. Main Result

Theorem 3.1. lλp (M,B) is a linear space over C.
Proof. Let x = (xn), y = (yn) ∈ lλp (M,B) and α, β ∈ C. So there exists ρ1 > 0
and ρ2 > 0 such that

∞∑
n=0

[
M

(
|
∑n

k=0(λk − λk−1)Xk|
ρ1λn

)]pn
<∞

and
∞∑
n=0

[
M

(
|
∑n

k=0(λk − λk−1)Yk|
ρ2λn

)]pn
<∞

Let ρ3 = max(2|α|ρ1, 2|β|ρ2) where α, β ∈ C. Since M is non-decreasing and
convex, we have

∞∑
n=0

[
M

(
|
∑n

k=0(λk − λk−1)(αXk + βYk)|
ρ3λn

)]pn
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≤
∞∑
n=0

[
M

(
|α||
∑n

k=0(λk − λk−1)Xk|+ |β||
∑n

k=0(λk − λk−1)Yk|
ρ3λn

)]pn
≤

∞∑
n=0

(
1

2

)pn [
M

(
|
∑n

k=0(λk − λk−1)Xk|
ρ1λn

)
+M

(
|
∑n

k=0(λk − λk−1)Yk|
ρ2λn

)]pn
≤

∞∑
n=0

[
M

(
|α||
∑n

k=0(λk − λk−1)Xk|
ρ1λn

)
+M

(
|β||
∑n

k=0(λk − λk−1)Yk|
ρ2λn

)]pn
≤

∞∑
n=0

D

[
M

(
|α||
∑n

k=0(λk − λk−1)Xk|
ρ1λn

)
+M

(
|β||
∑n

k=0(λk − λk−1)Yk|
ρ2λn

)]pn
.

Thus from the above inequality with Lemma 2.2 we have

∞∑
n=0

[
M

(
|
∑n

k=0(λk − λk−1)(αXk + βYk)|
ρ3λn

)]pn
≤ D

∞∑
n=0

[
M

(
|
∑n

k=0(λk − λk−1)Xk|
ρ1λn

)]pn
+D

∞∑
n=1

[
M

(
|
∑n

k=0(λk − λk−1)Yk|
ρ2λn

)]pn
< ∞.

i.e., αx+ βy ∈ lλp (M,B).
Hence lλp (M,B) is a linear space over C.

Theorem 3.2. (i) lλp (M,B) is a normed linear space under the norm defined by

‖x‖ = inf

ρ pn
H :

[
∞∑
n=0

[
M

(
|
∑n

k=0(λk − λk−1)Xk

ρλn

)]pn] 1
H

≤ 1

 (3.1)

where x ∈ lλp (M,B) and H = max(1, supk pk).
(ii) lλp (M,B) is a Banach space under the norm defined by (3.1).
(iii) lλp (M,B) is a BK−space under the norm defined by (3.1).
Proof. (i) Obviously ‖x‖ ≥ 0 and ‖x‖ = 0 if x = 0. Now suppose ‖x‖ = 0 i.e.,

‖x‖ = inf

ρ pn
H :

[
∞∑
n=0

[
M

(
|
∑n

k=0(λk − λk−1)Xk|
ρλn

)]pn] 1
H

≤ 1

 = 0.

This yields that for a given ε > 0, there exists some ρε ∈ (0, ε) such that

∞∑
n=0

[
M

(
|
∑n

k=0(λk − λk−1)Xk|
ρελn

)]
≤ 1.
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Which implies M
(
|
∑n

k=0(λk−λk−1)Xk|
ρελn

)
≤ 1 for all n ∈ N. Thus,

M

(
|
∑n

k=0(λk − λk−1)Xk|
ελn

)
≤M

(
|
∑n

k=0(λk − λk−1)Xk|
ρελn

)
≤ 1 for all n ∈ N.

(3.2)

Suppose
|
∑n

k=0(λk−λk−1)Xk|
ρελn

6= 0 for some k ∈ N. Then
|
∑n

k=0(λk−λk−1)Xk|
ελn

→∞ as ε→

0 which implies that M
(
|
∑n

k=0(λk−λk−1)Xk|
ελn

)
→∞ as ε→ 0 for some k ∈ N (as M is

an Orlicz function) which leads to a contradiction. Therefore,
|
∑n

k=0(λk−λk−1)Xk|
ρελn

= 0
for all n ∈ N. This follows that Xk = 0 for all k = 1, 2, 3, . . . , n and n ∈ N. Since
(λn) is a sequence of positive integers, this implies xn = 0 for all n ∈ N i.e., x = 0.
Now let x, y ∈ lλp (M,B). For ρ1 > 0 and ρ2 > 0,[

∞∑
n=0

[
M

(
|
∑n

k=0(λk − λk−1)Xk|
ρ1λn

)]pn] 1
H

≤ 1

and [
∞∑
n=0

[
M

(
|
∑n

k=0(λk − λk−1)Yk|
ρ2λn

)]pn] 1
H

≤ 1.

Let ρ = ρ1 + ρ2. Then as M is convex, we have

M

(
|
∑n

k=0(λk − λk−1)(Xk + Yk)|
ρλn

)
≤
(

ρ1
ρ1 + ρ2

) ∞∑
n=0

M

(
|
∑n

k=0(λk − λk−1)Xk|
ρ1λn

)
+

(
ρ2

ρ1 + ρ2

) ∞∑
n=0

M

(
|
∑n

k=0(λk − λk−1)Yk|
ρ2λn

)
.

Therefore, by Lemma 2.3 we have

‖x+ y‖ = inf

ρ pn
H > 0 :

[
∞∑
n=0

[
M

(
|
∑n

k=0(λk − λk−1)(Xk + Yk)|
ρλn

)]pn] 1
H

≤ 1


≤ inf

ρ pn
H
1 > 0 :

[
∞∑
n=0

[
M

(
|
∑n

k=0(λk − λk−1)Xk|
ρλn

)]pn] 1
H

≤ 1


+ inf

ρ pn
H
2 > 0 :

[
∞∑
n=0

[
M

(
|
∑n

k=0(λk − λk−1)Yk|
ρλn

)]pn] 1
H

≤ 1


= ‖x‖+ ‖y‖.
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Let α be any scalar and define r = ρ
|α| . Then, we have

‖αx‖ = inf

ρ pn
H > 0 :

[
∞∑
n=0

[
M

(
|
∑n

k=0(λk − λk−1)αXk|
ρλn

)]pn] 1
H

≤ 1


= inf

ρ pn
H > 0 :

[
∞∑
n=0

[
M

(
|α||
∑n

k=0(λk − λk−1)Xk|
ρλn

)]pn] 1
H

≤ 1


= inf

r pn
H |α| > 0 :

[
∞∑
n=0

[
M

(
|α||
∑n

k=0(λk − λk−1)Xk|
ρλn

)]pn] 1
H

≤ 1


= |α| inf

r pn
H > 0 :

[
∞∑
n=0

[
M

(
|α||
∑n

k=0(λk − λk−1)Xk|
ρλn

)]pn] 1
H

≤ 1


= |α|‖x‖.

(ii) Let (xi) be a Cauchy sequence in lλp (M,B). Let δ > 0 be fixed and r > 0 be
given such that 0 < ε < 1 and rδ ≥ 1. Then there exists a positive integer i0 such
that ‖xi − xj‖ < ε

rδ
for all i, j ≥ i0, by applying the norm in (3.1) we have

inf

ρ pn
H > 0 :

[ ∞∑
n=0

[
M

(
|
∑n

k=0(λk − λk−1)(Xi
k −X

j
k)|

ρλn

)]pn] 1
H

≤ 1

 <
ε

rδ
for all i, j ≥ i0.

This implies that[
∞∑
n=0

[
M

(
|
∑n

k=0(λk − λk−1)(X i
k −X

j
k)|

‖xi − xj‖λn

)]pn] 1
H

≤ 1, for all i, j ≥ i0.

i.e.,

∞∑
n=0

[
M

(
|
∑n

k=0(λk − λk−1)(X i
k −X

j
k)|

‖xi − xj‖λn

)]pn
≤ 1, for all i, j ≥ i0 and for all n ∈ N.

i.e.,[
M

(
|
∑n

k=0(λk − λk−1)(X i
k −X

j
k)|

‖xi − xj‖λn

)]pn
≤ 1, for all i, j ≥ i0 and for all n ∈ N.
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For r > 0 choosing M
(
rδ
2

)
≥ 1 we have

M

(
|
∑n

k=0(λk − λk−1)(X i
k −X

j
k)|

‖xi − xj‖λn

)
≤M

(
rδ

2

)
, for all i, j ≥ i0 and for all n ∈ N.

Since M is non-decreasing, we have

|
∑n

k=0(λk − λk−1)(X i
k −X

j
k)|

‖xi − xj‖λn
≤ rδ

2
, for all i, j ≥ i0 and for all n ∈ N.

i.e.,

|
∑n

k=0(λk − λk−1)(X i
k −X

j
k)|

λn
≤ rδ

2
‖xi − xj‖, for all i, j ≥ i0 and for all n ∈ N

≤ rδ

2
.
ε

rδ

=
ε

2
.

So,

|(λk − λk−1)(X i
k −X

j
k) ≤

ε

2
for all i, j ≥ i0 and for all n ∈ N.

This implies, {(λk−λk−1)X i
k} is a Cauchy sequence of scalars for all k = 1, 2, 3, . . . , n

and for all n ∈ N and hence is convergent by the completeness of scalar field.
Now let lim

i→∞
(λk − λk−1)X i

k = (λk − λk−1)Xk, for k = 1, 2, 3, . . . , n and for all

n ∈ N.
Let j →∞ and with the continuity of Orlicz function, we have (xi−x) ∈ lλp (M,B)

and inf

{
ρ

pn
H > 0 :

[∑∞
n=0

[
M
(
|
∑n

k=0(λk−λk−1)(X
i
k−Xk)|

ρλn

)]pn] 1
H ≤ 1

}
for all i ≥ i0.

i.e.,‖xi − x‖ → 0 as i → ∞. Since xi ∈ lλp (M,B), which is a linear space, this
implies x ∈ lλp (M,B) and hence lλp (M,B) is a Banach space with respect to the
norm defined by (3.1).
(iii) From the above proof we can easily conclude that ‖xi‖ → 0 as i→∞ implies
that xin → 0 as n ∈ ∞ for each i ∈ N.

Theorem 3.3. For different Orlicz functions M1 and M2, the following statements
hold:
(i) lλp (M1, B) ∩ lλp (M2, B) ⊆ lλp (M1 +M2, B) and

(ii) lλp (M2, B) ⊆ lλp (M1, B) if supt

[
M1(t)
M2(t)

]
<∞.
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Proof. (i) Let x ∈ `λp(M1, B) ∩ `λp(M2, B)
Then there exists ρ1 > 0 and ρ2 > 0 such that

∞∑
n=0

[
M1

(
|
∑n

k=0(λk − λk−1)Xk|
ρ1λn

)]pn
<∞

and
∞∑
n=0

[
M2

(
|
∑n

k=0(λk − λk−1)Xk|
ρ2λn

)]pn
<∞.

Let ρ = max(ρ1, ρ2). Then, by Lemma 2.2 we have

∞∑
n=0

[
(M1 +M2)

(
|
∑n

k=0(λk − λk−1)Xk|
ρλn

)]pn
≤
∞∑
n=0

[
M1

(
|
∑n

k=0(λk − λk−1)Xk|
ρ1λn

)
+M2

(
|
∑n

k=0(λk − λk−1)Xk|
ρ2λn

)]pn
≤ D

[ ∞∑
n=0

[
M1

(
|
∑n

k=0(λk − λk−1)Xk|
ρ1λn

)]pn
+

∞∑
n=0

[
M2

(
|
∑n

k=0(λk − λk−1)Xk|
ρ2λn

)]pn]
<∞.

Which implies, x ∈ `λp(M1 +M2, B).
(ii)Let x ∈ `λp(M2, B). Then there exists ρ > 0 such that

∞∑
n=0

[
M2

(
|
∑n

k=0(λk − λk−1)Xk|
ρλn

)]pn
<∞.

Since supt

[
M1(t)
M2(t)

]
<∞, therefore there exists η > 0 such that,

M1(t)

M2(t)
≤ η for all t ≥ 0. (3.3)

Replacing t by
|
∑n

k=0(λk−λk−1)Xk|
ρλn

in (3.3), we get

M1

(
|
∑n

k=0(λk − λk−1)Xk|
ρλn

)
≤ ηM2

(
|
∑n

k=0(λk − λk−1)Xk|
ρλn

)
Thus for each k ∈ N, we have

∞∑
n=0

[
M1

(
|
∑n

k=0(λk − λk−1)Xk|
ρλn

)]pn
≤ max(1, ηG)

∞∑
n=0

[
M2

(
|
∑n

k=0(λk − λk−1)Xk|
ρλn

)]pn
< ∞,
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which implies that x ∈ `λp(M,B), where G = supk pk.

Theorem 3.4. Let M and M1 be two Orlicz functions. If M satisfies ∆2-condition
then `λp(M,B) ⊆ `λp(M ◦M1, B).
Proof. Let x ∈ `λp(M1, B). Then there exists ρ > 0 such that

∞∑
n=0

[
M1

(
|
∑n

k=0(λk − λk−1)Xk|
ρλn

)]pn
<∞

Case (i). Let M1

(
|
∑n

k=0(λk−λk−1)Xk|
ρλn

)
≤ 1.

Then, using convexity of Orlicz function M

∞∑
n=0

[
M

(
M1

(
|
∑n

k=0(λk − λk−1)Xk|
ρλn

))]pn
≤
∞∑
n=0

[
M1

(
|
∑n

k=0(λk − λk−1)Xk|
ρλn

)
M(1)

]pn
≤ max

(
1, [M(1)]H

) ∞∑
n=0

[
M1

(
|
∑n

k=0(λk − λk−1)Xk|
ρλn

)]pn
<∞.

Case (ii). Let M1

(
|
∑n

k=0(λk−λk−1)Xk|
ρλn

)
> 1.

Then, by using ∆2−condition of Orlicz function M ,

∞∑
n=0

[
M

(
M1

(
|
∑n

k=0(λk − λk−1)Xk|
ρλn

))]pn
≤
∞∑
n=0

[
KM1

(
|
∑n

k=0(λk − λk−1)Xk|
ρλn

)
M(1)

]pn
≤ max

(
1, [KM(1)]H

) ∞∑
n=0

[
M1

(
|
∑n

k=0(λk − λk−1)Xk|
ρλn

)]pn
<∞.

From case(i) and case(ii),
∑∞

n=0

[
M
(
M1

(
|
∑n

k=0(λk−λk−1)Xk|
ρλn

))]pn
<∞.

Hence x ∈ lλp (M ◦M1, B).

Theorem 3.5. The space lλp (M,B) is not convergence free.
Proof. The result follows from the following example.

Example 3.1. For M(x) = x,Λ = I, the identity matrix, r̃ = e, s̃ = 0, t̃ = 0, ũ =
0, pn = 2 for all n ∈ N and choose

xk =

{
1
k

when k 6= 2n

0 when k = 2n

Then, (xk) ∈ l2. Now consider

yk =

{
k when k 6= 2n

0 when k = 2n
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Then, (yk) 6∈ l2.
This implies the fact that the space lλp (M,B) is not convergence free.

Theorem 3.6. The space lλp (M,B) is not symmetric.
Proof. The result follows from the example given below.

Example 3.2. If we choose Λ = I, the identity matrix, M(x) = x, r̃ = e, s̃ =
−e, t̃ = 0, ũ = 0, pn = 2 for all n ∈ N and (xn) = ( 1

n
), then (xn) ∈ l2. But If we

consider the sequence (yn) = (x1, x5, x8, x15, x21, . . . ), then (yn) 6∈ l2.
Hence the space is not symmetric.

Theorem 3.7. The space lλp (M,B) is normal.
Proof. Let x ∈ lλp (M,B), i.e.,

∞∑
n=0

[
M

(
|
∑n

k=0(λk − λk−1)Xk|
ρλn

)]pn
<∞.

For a sequence of scalars α = (αk) such that |αk| ≤ 1 for all k ∈ N, we have
∞∑
n=0

[
M

(
|
∑n

k=0(λk − λk−1)αkXk|
ρλn

)]pn
≤

∞∑
n=0

[
M

(
|
∑n

k=0(λk − λk−1)Xk|
ρλn

)]pn
.

So, lλp (M,B) is a normal space.
Now for any Orlicz function M , we define

[lλp (M,B)] =

{
x = (xk) ∈ ω :

∞∑
n=0

[
M

(
|
∑n

k=0(λk − λk−1)Xk|
ρλn

)]pn
<∞, for every ρ > 0

}
Obviously, [lλp (M,B)] is a subspace of lλp (M,B).

Theorem 3.8. [lλp (M,B)] is a complete normed linear space under the norm de-
fined by (3.1).
Proof. By using the step (ii) of Theorem 3.2, one can easily prove that [lλp (M,B)]
is a complete normed linear space.

Theorem 3.9. Let M be an Orlicz function. Then [lλp (M,B)] is an AK−space.
Proof. Let x = (xn) ∈ lλp (M,B). Therefore, for every ρ > 0,

∞∑
n=0

[
M

(
|
∑n

k=0(λk − λk−1)Xk|
ρλn

)]pn
≤ 1.

Then for each ε ∈ (0, 1), we can find n0 such that∑
n≥n0

[
M

(
|
∑n

k=0(λk − λk−1)Xk|
ελn

)]pn
≤ 1. (3.4)
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Define the jth section x[j] of the sequence x = (xn) by x[j] =

j∑
n=0

xne
n, where (en)

is a Schauder basis for [lλp (M,B)]. Hence, for j ≥ j0,

‖x− x[j]‖ = inf

{
ρ > 0 :

∑
n≥j0

[
M

(
|
∑n

k=0(λk − λk−1)Xk|
ρλn

)]pn
≤ 1

}

≤ inf

{
ρ > 0 :

∑
n≥j

[
M

(
|
∑n

k=0(λk − λk−1)Xk|
ρλn

)]pn
≤ 1

}
. (3.5)

From (3.3) and (3.4), we get ‖x− x[j]‖ < ε for all j ≥ j0. Therefore, [lλp (M,B)] is
an AK−space.

Theorem 3.10. If an Orlicz function M satisfies the ∆2− condition, then lλp (M,B) =
[lλp (M,B)].
Proof. It is obvious that

[lλp (M,B)] ⊆ lλp (M,B). (3.6)

Now let x = (xn) ∈ lλp (M,B) be any arbitrary element. Then there exists some
ρ > 0 such that

∞∑
n=0

[
M

(
|
∑n

k=0(λk − λk−1)Xk|
ρλn

)]pn
<∞.

Again let σ be any arbitrary number. Then two cases arise.
Case (i). If ρ ≤ σ, then for each n ∈ N,

∞∑
n=0

[
M

(
|
∑n

k=0(λk − λk−1)Xk|
σλn

)]pn
≤

∞∑
n=0

[
M

(
|
∑n

k=0(λk − λk−1)Xk|
ρλn

)]pn
.

i.e.,x ∈ [lλp (M,B)].
Case (ii). If ρ > σ, then ρ

σ
> 1. From ∆2−condition of Orlicz function, there

exists a constant k > 0 such that

M

(
|
∑n

k=0(λk − λk−1)Xk|
σλn

)
≤
(
kρ

σ

)
M

(
|
∑n

k=0(λk − λk−1)Xk|
ρλn

)
.
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Consequently, for each n ∈ N

∞∑
n=0

[
M

(
|
∑n

k=0(λk − λk−1)Xk|
σλn

)]pn
≤

∞∑
n=0

(
kρ

σ

)pn [
M

(
|
∑n

k=0(λk − λk−1)Xk|
ρλn

)]pn
≤ sup

n

{(
kρ

σ

)pn} ∞∑
n=0

[
M

(
|
∑n

k=0(λk − λk−1)Xk|
ρλn

)]pn
<∞.

i.e.,x ∈ [lλp (M,B)].
Hence in both cases we have x ∈ [lλp (M,B)].

i.e., lλp (M,B) ⊆ [lλp (M,B)] (3.7)

Combining (3.6) and (3.7), we get lλp (M,B) = [lλp (M,B)].
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[1] Altay, B., Başar, F., The matrix domain of the fine spectrum of the difference
operator ∆ on the sequence space lp(1 < p <∞), Commun. Math. Anal., 2
(2), (2007), 1-11.
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