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1. Introduction
In recent years, fractional calculus have been extensively used in many fields of

applied sciences and engineering. This is the reason, that the fractional calculus
and their applications have remains in spotlight in many research works. Certainly,
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fractional differential equations have grabbed a great attention of several authors
and proved to be an important tool in the modeling of many physical phenomena.
One can see [1, 2, 3, 6, 7, 8, 9, 10, 12, 14, 15, 18, 17] and references therein.

Recently, in [4], Benchohra et al., discussed the existence and stability results
of implicit fractional differential equations with Hadamard fractional derivatives.
Kucche et al., [11], obtained the existence, uniqueness results and other important
properties of nonlinear implicit fractional differential equations. In [16] Vivek et
al., obtained the existence and stability results for implicit differential equations
involving Hilfer-Hadamard fractional derivative with nonlocal initial conditions.

In [13] D. S. Oliveira et al., introduced a new fractional differential operator:
Hilfer–Katugampola frational derivative (also known as Generalized Katugam-
pola Derivative) and derived various properties. Further, they studied the frac-
tional differential equation with generalized Katugampola derivative to obtain
the corresponding existence and uniqueness results. This new definition of frac-
tional order derivative interpolates the Hilfer, Hilfer–Hadamard, Hadamard, Rie-
mann–Liouville, Caputo, Caputo–Hadamard derivative, as well as the Liouville and
Weyl fractional derivatives. In [3], Bagwan et al., established the existence and sta-
bility results for a class of initial value problems involving generalized Katugampola
derivative with the nonlocal initial conditions. In [5], Benchohra et al., studied the
existence and uniqueness results for a class of terminal type boundary value prob-
lems for fractional differential equations involving Hilfer–Katugampola fractional
derivative.

In this paper, we discussed the existence and uniqueness of solution to the im-
plicit fractional differential equations (IFDEs) involving generalized Katugampola
derivative of the form:

ρDµ,ν
a+ u (t) = f

(
t, u (t) ,ρDµ,ν

a+ u (t)
)
, (1)

with the nonlocal initial condition

ρI1−αa+ u (a) =
m∑
i=1

λiu (ωi), (2)

where µ ∈ (0, 1) , ν ∈ [0, 1] , t ∈ (a, b], µ ≤ α = µ + ν (1− µ) < 1, ωi ∈ (a, b] . f
is a given function such that f : (a, b]× R× R→ R, ρ > 0. The operator ρDµ,ν

a+ is
the generalized Katugampola fractional derivative of order µ and type ν and the
operator ρI1−αa+ is the Katugampola fractional integral of order 1 − α with a > 0.
ωi, i = 1, 2, ...,m are prefixed points satisfying a < ω1 ≤ ω2 ≤ ... ≤ ωm < b.

This paper is arranged as follows: In section 2, we introduce some basic def-
initions, important results and preliminary facts about generalized Katugampola
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derivative. Further, we derived the equivalent Volterra integral equation of mixed
type for the IFDE (1)–(2). In section 3, we established two existence results for
the IFDE (1)–(2). First result is derived by means of Krasnosel’skii fixed point
theorem and second one is by means of Banach contraction principle which also
ensures the uniqueness of solution. Finally, in section 4, an illustrative example is
given to show the applicability of our main results.

2. Preliminary results
In this section, we state some basic definitions of fractional integrals and deriva-

tives, few important results and preliminaries about generalized Katugampola
derivative that are very useful to us in the sequel.

Let C [a, b], where 0 < a < b < ∞ be a finite interval on R+, be the Banach
space of all continuous functions ϕ : [a, b]→ R with the norm

‖ϕ‖C = max {|ϕ (t)| : t ∈ [a, b]} .

We define the weighted space of continuous functions ϕ on (a, b] by

Cα,ρ [a, b] =

{
ϕ : (a, b]→ R :

(
tρ − aρ

ρ

)α
ϕ (t) ∈ C [a, b]

}
, 0 ≤ α < 1, ρ > 0,

with the norm

‖ϕ‖Cα,ρ =

∥∥∥∥(tρ − aρρ

)α
ϕ (t)

∥∥∥∥
C

= max
t∈[a,b]

∣∣∣∣(tρ − aρρ

)α
ϕ (t)

∣∣∣∣ . (3)

Clearly, C0,ρ [a, b] = C [a, b].
Furthermore, We define the following weighted spaces

Cµ,ν
1−α,ρ [a, b] =

{
ϕ ∈ C1−α,ρ [a, b] , ρDµ,ν

a+ ϕ ∈ Cα,ρ [a, b]
}

and
Cα

1−α,ρ [a, b] = {ϕ ∈ C1−α,ρ [a, b] , ρDα
a+ϕ ∈ C1−α,ρ [a, b]} ,

with the norm defined in (3), where the parameters α, µ, ν and ρ are such that
α = µ + ν (1− µ) , for 0 < µ, ν < 1 and 0 ≤ α < 1. Note that, Cα

1−α,ρ [a, b] =
Cµ,ν

1−α,ρ [a, b].
For c ∈ R and 1 ≤ r ≤ ∞ consider the space Zr

c (a, b) of those complex valued
Lebesgue measurable functions h on [a, b] for which ‖h‖Zrc <∞, where

‖h‖Zrc =

 b∫
a

|xch (x)|r dx
x

1/r

<∞, c ∈ R, 1 ≤ r <∞
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and for r =∞
‖h‖Z∞c = ess sup

x∈[a,b]
[xc |h (x)|] , (c ∈ R) .

Definition 1. (Katugampola fractional integral [9], [13]) Let µ, c ∈ R with µ >
0, u ∈ Zr

c (a, b), where Zr
c (a, b) be the space of Lebesgue measurable functions with

complex values. The left-sided Katugampola fractional integral of order µ is defined
by (

ρIµa+u
)

(t) =
ρ1−µ

Γ (µ)

t∫
a

xρ−1u (x)

(tρ − xρ)1−µ
dx , (t > a) . (4)

Definition 2. (Katugampola fractional derivative [9] [13]) Let µ, ρ ∈ R such that
µ /∈ N, 0 < µ, ρ. The left-sided Katugampola fractional derivative of order µ is
defined by (

ρDµ
a+u
)

(t) = δnρ
(
ρIn−µa+ u

)
(t)

=
ρ1−n+µ

Γ (n− µ)

(
t1−ρ

d

dt

)n t∫
a

xρ−1u (x)

(tρ − xρ)1−n+µ
dx, (5)

where n = [µ] + 1 such that [µ] is the integer part of µ.

Definition 3. (Generalized Katugampola fractional derivative [13]) Let 0 < µ ≤ 1,
and 0 ≤ ν ≤ 1. The generalized Katugampola fractional derivative (of order µ and
type ν) with respect to t is defined by

(
ρDµ,ν

a+ u
)

(t) =

{
±ρIν(1−µ)a±

(
tρ−1

d

dt

)1
ρI

(1−ν)(1−µ)
a± u

}
(t)

=
{
±ρIν(1−µ)a± δρ

ρI
(1−ν)(1−µ)
a± u

}
(t) , (6)

where ρ > 0, u ∈ C1−α,ρ [0, 1] and I is Katugampola fractional integral defined in
(4).

Remark 1. ([13]) For α = µ + ν (1− µ), the generalized Katugampola fractional
derivative operator ρDµ,ν

a+ can be expressed as

ρDµ,ν
a+ = ρI

ν(1−µ)
a+ δρ

ρI1−αa+ = ρI
ν(1−µ)
a+

ρDα
a+ . (7)

Lemma 1. ([13]) Let µ > 0, 0 ≤ α < 1 and u ∈ Cα,ρ [a, b], then(
ρDµ

a+
ρIµa+u

)
(t) = u (t) , for all t ∈ (a, b] .
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Lemma 2. (Semigroup property [13]) Let µ > 0, ν > 0, 1 ≤ r ≤ ∞. a, b ∈ (0,∞)
such that a < b and ρ, s ∈ R, s ≤ ρ. Then the following property hold true:(

ρIµa+
ρIνa+u

)
(t) =

(
ρIµ+νa+ u

)
(t) ,

for all u ∈ Zr
s (a, b).

Lemma 3. ([13]) Let t > a, and for µ ≥ 0 and ν > 0, we have[
ρDµ

a+

(
xρ − aρ

ρ

)µ−1]
(t) = 0, 0 < µ < 1,[

ρIµa+

(
xρ − aρ

ρ

)ν−1]
(t) =

Γ (ν)

Γ (µ+ ν)

(
xρ − aρ

ρ

)µ+ν−1
.

Lemma 4. ([13]) Let µ > 0, 0 ≤ α < 1 and a, b ∈ (0,∞) such that a < b and
u ∈ Cα,ρ [a, b]. Then (

ρIµa+u
)

(a) = lim
t→a+

(
ρIµa+u

)
(t) = 0

and ρIµa+u is continuous on [a, b] if α < µ.

Lemma 5. ([13]) Let µ ∈ (0, 1), ν ∈ [0, 1] and α = µ + ν − µν. If u ∈ Cα
1−α [a, b]

then
ρIαa+

ρDα
a+u = ρIµa+

ρDµ,ν
a+ u

and
ρDα

a+
ρIµa+u = ρD

ν(1−µ)
a+ u.

Lemma 6. ([13]) Let µ ∈ (0, 1), 0 ≤ α < 1. If u ∈ Cα [a, b] and ρI1−µa+ u ∈ C1
α [a, b]

then for all t ∈ (a, b]

(
ρIµa+

ρDµ
a+u
)

(t) = −
(
tρ − aρ

ρ

)µ−1 (ρI1−αa+ u
)

(a)

Γ (µ)
+ u (t) .

Lemma 7. ([13]) Let u ∈ L1 (a, b). If ρD
ν(1−µ)
a+ u exists on L1 (a, b), then

ρDµ,ν
a+

ρIµa+u = ρI
ν(1−µ)
a+

ρD
ν(1−µ)
a+ u.

Theorem 1. (Krasnosel’skii fixed point theorem [14]) Let E be a nonempty closed,
bounded and convex subset of a Banach space (B, ‖·‖). Further, Assume that F and
G be two operators defined on E which map E into B such that
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1. F (x) +G (y) ∈ E for all x, y ∈ E,

2. F is a contraction,

3. G is continuous and compact.

Then, F +G has a fixed point in E.

Theorem 2. (Banach’s fixed point theorem [14]) Let E be a non-empty closed
subset of a Banach space B, then any contraction mapping ∆ of E into itself has
a unique fixed point.

Lemma 8. Let f : (a, b]×R×R→ R, be a function such that f
(
·, u (·) , ρDµ,ν

a+ u (.)
)
∈

C1−α,ρ [a, b] for any u ∈ C1−α,ρ [a, b] where α = µ + ν (1− µ) with µ ∈ (0, 1) , ν ∈
[0, 1]. A function u ∈ Cα

1−α,ρ [a, b] is a solution of generalized Katugampola type
IFDE:

ρDµ,ν
a+ u (t) = f

(
t, u (t) , ρDµ,ν

a+ u (t)
)
,

with the initial condition
ρI1−αa+ u

(
a+
)

= u0,

if and only if u satisfies the following Volterra type integral equation:

u (t) =
u0

Γ (α)

(
tρ − aρ

ρ

)α−1
+

1

Γ (µ)

t∫
a

(
tρ − xρ

ρ

)µ−1
xρ−1f

(
x, u (x) ,ρDµ,ν

a+ u (x)
)
dx.

For the sake of brevity, let Au : (a, b]→ R be a function such that

ρDµ,ν
a+ u (t) = Au (t) = f (t, u (t) , Au (t)) .

Clearly, Au ∈ C1−α,ρ [a, b].

3. Existence Results

Using the above fundamental results, first we prove the equivalence between
the IFDE (1)–(2) and an improved Volterra integral equation of mixed type.

Theorem 3. Let f : (a, b]×R×R→ R, be a function such that f
(
·, u (·) , ρDµ,ν

a+ u (.)
)

∈ C1−α,ρ [a, b] for any u ∈ C1−α,ρ [a, b] where α = µ+ν (1− µ) with µ ∈ (0, 1) , ν ∈
[0, 1]. A function u ∈ Cα

1−α,ρ [a, b] is a solution of generalized Katugampola type
IFDE (1)–(2) if and only if it satisfies the following Volterra integral equation of
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mixed type

u (t) =
H

Γ (µ)

(
tρ − aρ

ρ

)α−1 m∑
i=1

λi

ωi∫
a

(
ωi
ρ − xρ

ρ

)µ−1
xρ−1Au (x) dx

+
1

Γ (µ)

t∫
a

(
tρ − xρ

ρ

)µ−1
xρ−1Au (x) dx, (8)

where H =

{
Γ (α)−

m∑
i=1

λi

(
ωi
ρ−aρ
ρ

)α−1}−1
, provided Γ (α) 6=

m∑
i=1

λi

(
ωi
ρ−aρ
ρ

)α−1
.

Proof. Let u ∈ Cα
1−α [a, b] be a solution of IFDE (1)–(2), then by the Lemma 8

the solution of IFDE (1)–(2) can be written as

u (t) =

(
tρ − aρ

ρ

)α−1 (ρI1−αa+ u
)

(a)

Γ (α)
+

1

Γ (µ)

t∫
a

(
tρ − xρ

ρ

)µ−1
xρ−1Au (x) dx. (9)

Now, substitute t = ωi in the above equation

u (ωi) =

(
ωi
ρ − aρ

ρ

)α−1 (ρI1−αa+ u
)

(a)

Γ (α)
+

1

Γ (µ)

ωi∫
a

(
ωi
ρ − xρ

ρ

)µ−1
xρ−1Au (x) dx.

Multiplying both sides of above equation by λi, we get

λiu (ωi) = λi

(
ωi
ρ − aρ

ρ

)α−1 (ρI1−αa+ u
)

(a)

Γ (α)
+

λi
Γ (µ)

ωi∫
a

(
ωi
ρ − xρ

ρ

)µ−1
xρ−1Au (x) dx.

Thus, we have

ρI1−αa+ u (a) =
m∑
i=1

λiu (ωi)

=

(
ρI1−αa+ u

)
(a)

Γ (α)

m∑
i=1

λi

(
ωi
ρ − aρ

ρ

)α−1

+
1

Γ (µ)

m∑
i=1

λi

ωi∫
a

(
ωi
ρ − xρ

ρ

)µ−1
xρ−1Au (x) dx,
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that implies,

(
ρI1−αa+ u

)
(a) =

Γ (α)

Γ (µ)
H

m∑
i=1

λi

ωi∫
a

(
ωi
ρ − xρ

ρ

)µ−1
xρ−1Au (x) dx. (10)

Substituting (10) in (9) we get (8). It proved that u also satisfies integral equation
(8) when it satisfies the IFDE (1)–(2) which proved the necessity.

Now, to prove the sufficiency, apply ρI1−αa+ to both sides of the integral equation
(8), we get

ρI1−αa+ u (t) =ρI1−αa+

(
tρ − aρ

ρ

)α−1
H

Γ (µ)

m∑
i=1

λi

ωi∫
a

(
ωi
ρ − xρ

ρ

)µ−1
xρ−1Au (x) dx

+ ρI1−αa+
ρIµa+Au (x)

using Lemma 2, Lemma 1 and Lemma 3, we have

ρI1−αa+ u (t) =
Γ (α)

Γ (µ)
H

m∑
i=1

λi

ωi∫
a

(
ωi
ρ − xρ

ρ

)µ−1
xρ−1Au (x) dx+ ρI

1−ν(1−µ)
a+ Au (x) .

Since, 1− ν (1− µ) > 1− α. By taking the limit as t→ a and using Lemma 4, we
have (

ρI1−αa+ u
)

(a) =
Γ (α)

Γ (µ)
H

m∑
i=1

λi

ωi∫
a

(
ωi
ρ − xρ

ρ

)µ−1
xρ−1Au (x) dx. (11)

Now, substituting t = ωi in (8), we have

u (ωi) =

(
ωi
ρ − aρ

ρ

)α−1
H

Γ (µ)

m∑
i=1

λi

ωi∫
a

(
ωi
ρ − xρ

ρ

)µ−1
xρ−1Au (x) dx

+
1

Γ (µ)

ωi∫
a

(
ωi
ρ − xρ

ρ

)µ−1
xρ−1Au (x) dx.
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Then, we have

m∑
i=1

λiu (ωi) =
H

Γ (µ)

m∑
i=1

λi

(
ωi
ρ − aρ

ρ

)α−1 m∑
i=1

λi

ωi∫
a

(
ωi
ρ − xρ

ρ

)µ−1
xρ−1Au (x) dx

+
1

Γ (µ)

m∑
i=1

λi

ωi∫
a

(
ωi
ρ − xρ

ρ

)µ−1
xρ−1Au (x) dx

=
1

Γ (µ)

m∑
i=1

λi

ωi∫
a

(
ωi
ρ − xρ

ρ

)µ−1
xρ−1Au (x) dx

·

{
H

m∑
i=1

λi

(
ωi
ρ − aρ

ρ

)α−1
+ 1

}

=
Γ (α)

Γ (µ)
H

m∑
i=1

λi

ωi∫
a

(
ωi
ρ − xρ

ρ

)µ−1
xρ−1Au (x) dx. (12)

It follows from (11) and (12), that

ρI1−αa+ u (a) =
m∑
i=1

λiu (ωi).

It follows from Lemma 3 and Lemma 5 and by applying ρDα
a+ to both sides of (8)

that
ρDα

a+u (t) = ρD
ν(1−µ)
a+ f (t, u (t) , Au (t)) . (13)

Since, u ∈ Cα
1−α,ρ [a, b] and by the definition of Cα

1−α,ρ [a, b], we have ρDα
a+ u ∈

Cα
1−α,ρ [a, b], then ρD

ν(1−µ)
a+ f = ρDρI

1−ν(1−µ)
a+ f ∈ C1−α,ρ [a, b]. It is obvious that for

any f ∈ C1−α,ρ [a, b], ρI
1−ν(1−µ)
a+ f ∈ C1−α,ρ [a, b], then ρI

1−ν(1−µ)
a+ f ∈ C1

1−α,ρ [a, b].

Thus, both f and ρI
1−ν(1−µ)
a+ f satisfies the conditions of Lemma 6.

Now, it follows from Lemma 6, by applying ρI
ν(1−µ)
a+ on both sides of (13), that

(
ρDµ,ν

a+ u
)

(t) = −
(
tρ − aρ

ρ

)ν(1−µ)−1 ρI1−ν(1−µ)a+ f (a)

Γ (ν (1− µ))
+ Au (x) . (14)

By Lemma 4, it implies that ρI
1−ν(1−µ)
a+ f (a) = 0. Hence, equation (14) reduces to(

ρDµ,ν
a+ u

)
(t) = Au (t) = f (t, u (t) , Au (t)) .



86 South East Asian J. of Mathematics and Mathematical Sciences

This completes the proof.
In the sequel, let us introduce the following hypotheses:

Q1: Let f : (a, b] × R × R → R be a continuous function such that for any

u ∈ C1−α,ρ [a, b], f (·, u (·) , v (.)) ∈ Cν(1−µ)
1−α,ρ [a, b].

Q2: For all u, v, u, v ∈ R, there exists positive constants J > 0 and 0 < L < 1
such that

|f (t, u, v)− f (t, u, v)| ≤ J |u− u|+ L |v − v| ,

for t ∈ (a, b] .

Q3: The constant

ξ :=
JB (µ, α)

(1− L) Γ (µ)

{
|H|

m∑
i=1

λi

(
ωi
ρ − aρ

ρ

)µ+α−1
+

(
bρ − aρ

ρ

)µ}
< 1 (15)

where H is defined in the Theorem 3.
Now, we will establish our first existence result for the IFDE (1)–(2) by means

of Krasnosel’skii fixed point theorem.

Theorem 4. Assume that the hypotheses [Q1], [Q2] and [Q3] are satisfied. Then
IFDE (1)–(2) has at least one solution in Cα

1−α,ρ [a, b].
Proof. According to Theorem 3, it is sufficient to prove the existence result for
the Volterra integral equation of mixed type (8).

Now, define the operator ∆ by

(∆u) (t) =
H

Γ (µ)

(
tρ − aρ

ρ

)α−1 m∑
i=1

λi

ωi∫
a

(
ωi
ρ − xρ

ρ

)µ−1
xρ−1Au (x) dx

+
1

Γ (µ)

t∫
a

(
tρ − xρ

ρ

)µ−1
xρ−1Au (x) dx. (16)

It is obvious that the operator ∆ is well defined and maps C1−α,ρ [a, b] into C1−α,ρ [a, b].

Let f̂ = max
t∈[a,b]

|f (t, 0, 0)| and

δ :=
B (µ, α)

Γ (µ)

{
|H|

m∑
i=1

λi

(
ωi
ρ − aρ

ρ

)µ+α−1
+

(
bρ − aρ

ρ

)µ}∥∥∥f̂∥∥∥
C1−α,ρ

. (17)
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Consider a ball Bτ :=
{
u ∈ C1−α,ρ [a, b] : ‖u‖C1−α,ρ

≤ τ
}

with δ
1−ξ ≤ τ, (ξ < 1).

Now, let us subdivide the operator ∆ into two operators Φ and Ψ on Bτ as
follows:

(Φu) (t) =
H

Γ (µ)

(
tρ − aρ

ρ

)α−1 m∑
i=1

λi

ωi∫
a

(
ωi
ρ − xρ

ρ

)µ−1
xρ−1Au (x) dx

and

(Ψu) (t) =
1

Γ (µ)

t∫
a

(
tρ − xρ

ρ

)µ−1
xρ−1Au (x) dx.

The proof is divided into following steps.
Step I: For every u, v ∈ Bτ , Φu+ Ψv ∈ Bτ .

For any t ∈ (a, b] and the operator Φ, we have

(Φu) (t)

(
tρ − aρ

ρ

)1−α

=
H

Γ (µ)

m∑
i=1

λi

ωi∫
a

(
ωi
ρ − xρ

ρ

)µ−1
xρ−1Au (x) dx,

then,∣∣∣∣∣(Φu) (t)

(
tρ − aρ

ρ

)1−α
∣∣∣∣∣ ≤ |H|Γ (µ)

m∑
i=1

λi

ωi∫
a

(
ωi
ρ − xρ

ρ

)µ−1
xρ−1 |Au (x)| dx. (18)

From the hypothesis [Q2], we have

|Au (t)| = |f (t, u (t) , Au (t))− f (t, 0, 0) + f (t, 0, 0)|
≤ |f (t, u (t) , Au (t))− f (t, 0, 0)|+ |f (t, 0, 0)|
≤ J |u (t)|+ L |Au (t)|+ f̂

≤ J |u (t)|+ f̂

(1− L)
. (19)

Using (18) in (19), we get∣∣∣∣∣(Φu) (t)

(
tρ − aρ

ρ

)1−α
∣∣∣∣∣ ≤ |H|Γ (µ)

m∑
i=1

λi

ωi∫
a

(
ωi
ρ − xρ

ρ

)µ−1
xρ−1

J |u (x)|+ f̂

(1− L)
dx.
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Now, using the fact

t∫
a

(
tρ − xρ

ρ

)µ−1
xρ−1 |u (x)| dx ≤


t∫

a

(
tρ − xρ

ρ

)µ−1(
xρ − aρ

ρ

)α−1
xρ−1dx

 ‖u‖C1−α,ρ

=

(
tρ − aρ

ρ

)µ+α−1
B (µ, α) ‖u‖C1−α,ρ

, (20)

we have∣∣∣∣∣(Φu) (t)

(
tρ − aρ

ρ

)1−α
∣∣∣∣∣ ≤ |H|Γ (µ)

m∑
i=1

λi

{(
ωi
ρ − aρ

ρ

)µ+α−1
B (µ, α)

(1− L)

·
(
J‖u‖C1−α,ρ

+
∥∥∥f̂∥∥∥

C1−α,ρ

)}
which gives,

‖Φu‖C1−α,ρ
≤ |H|B (µ, α)

(1− L)Γ (µ)

m∑
i=1

λi

{(
ωi
ρ − aρ

ρ

)µ+α−1(
J‖u‖C1−α,ρ

+
∥∥∥f̂∥∥∥

C1−α,ρ

)}
.

(21)
Now, for t ∈ (a, b] and the operator Ψ, we have

(Ψv) (t)

(
tρ − aρ

ρ

)1−α

=
1

Γ (µ)

(
tρ − aρ

ρ

)1−α t∫
a

(
tρ − xρ

ρ

)µ−1
xρ−1Av (x) dx.

Then,∣∣∣∣∣(Ψv) (t)

(
tρ − aρ

ρ

)1−α
∣∣∣∣∣ ≤ 1

Γ (µ)

(
tρ − aρ

ρ

)1−α t∫
a

(
tρ − xρ

ρ

)µ−1
xρ−1 |Av (x)| dx.

Again using (19) and (20), we have∣∣∣∣∣(Ψv) (t)

(
tρ − aρ

ρ

)1−α
∣∣∣∣∣ ≤ 1

Γ (µ)

(
tρ − aρ

ρ

)1−α
{(

tρ − aρ

ρ

)µ+α−1
· B (µ, α)

(1− L)

(
J‖v‖C1−α,ρ

+
∥∥∥f̂∥∥∥

C1−α,ρ

)}
≤ B (µ, α)

(1− L) Γ (µ)

(
bρ − aρ

ρ

)µ(
J‖v‖C1−α,ρ

+
∥∥∥f̂∥∥∥

C1−α,ρ

)
,
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which gives

‖(Ψv)‖C1−α,ρ
≤ B (µ, α)

(1− L) Γ (µ)

(
bρ − aρ

ρ

)µ(
J‖v‖C1−α,ρ

+
∥∥∥f̂∥∥∥

C1−α,ρ

)
. (22)

Combining equations (21) and (22), for every u, v ∈ Bτ , we have

‖Φu+ Ψv‖C1−α,ρ
≤ ‖Φu‖C1−α,ρ

+ ‖(Ψv)‖C1−α,ρ

≤ ξτ + δ ≤ τ,

which implies that Φu+ Ψv ∈ Bτ .
Step II: The operator Φ is contraction mapping.

For any u, v ∈ Bτ and the operator Φ,

{(Φu) (t)− (Φv) (t)}
(
tρ − aρ

ρ

)1−α

=
H

Γ (µ)

m∑
i=1

λi

ωi∫
a

(
ωi
ρ − xρ

ρ

)µ−1
xρ−1 [Au (x)− Av (x)] dx.

Then,∣∣∣∣∣{(Φu) (t)− (Φv) (t)}
(
tρ − aρ

ρ

)1−α
∣∣∣∣∣ ≤ |H|Γ (µ)

m∑
i=1

λi

ωi∫
a

(
ωi
ρ − xρ

ρ

)µ−1
xρ−1

· |Au (x)− Av (x)| dx. (23)

From the hypothesis [Q2], we have

|Au (t)− Av (t)| = |f (t, u (t) , Au (t))− f (t, v (t) , Av (t))|
≤ J |u (t)− v (t)|+ L |Au (t)− Av (t)|

≤ J

(1− L)
|u (t)− v (t)| . (24)

Using (24) in (23) and then using (20), we get∣∣∣∣∣{(Φu) (t)− (Φv) (t)}
(
tρ − aρ

ρ

)1−α
∣∣∣∣∣ ≤ |H|

Γ (µ)

m∑
i=1

λi

ωi∫
a

(
ωi
ρ − xρ

ρ

)µ−1
xρ−1

· J

(1− L)
|u (x)− v (x)| dx

≤ J |H|B (µ, α)

(1− L)Γ (µ)

m∑
i=1

λi

(
ωi
ρ − aρ

ρ

)µ+α−1
· ‖u− v‖C1−α,ρ

,
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which gives

‖Φu−Ψv‖C1−α,ρ
≤ J |H|B (µ, α)

(1− L)Γ (µ)

m∑
i=1

λi

(
ωi
ρ − aρ

ρ

)µ+α−1
‖u− v‖C1−α,ρ

≤ ξ‖u− v‖C1−α,ρ
. (25)

Hence, from the hypothesis [Q3] and the equation (25) it implies that the operator
Φ is a contraction mapping.
Step III: The operator Ψ is compact and continuous.

Since, the function f ∈ C1−α [a, b] is continuous, it is obvious that the operator
Ψ is continuous.

Next, we prove the compactness.
For any a < t1 < t2 ≤ b, we have

|(Ψu) (t1)− (Ψu) (t2)| =

∣∣∣∣∣∣ 1

Γ (µ)

t1∫
a

(
t1
ρ − xρ

ρ

)µ−1
xρ−1Au (x) dx

− 1

Γ (µ)

t2∫
a

(
t2
ρ − xρ

ρ

)µ−1
xρ−1Au (x) dx

∣∣∣∣∣∣
≤
‖Au‖C1−α

Γ (µ)

∣∣∣∣∣∣
t1∫
a

(
t1
ρ − xρ

ρ

)µ−1(
xρ − aρ

ρ

)α−1
xρ−1dx

−
t2∫
a

(
t2
ρ − xρ

ρ

)µ−1(
xρ − aρ

ρ

)α−1
xρ−1dx

∣∣∣∣∣∣
≤
‖Au‖C1−α

B (µ, α)

Γ (µ)

∣∣∣∣∣
(
t1
ρ − aρ

ρ

)µ+α−1
−
(
t2
ρ − aρ

ρ

)µ+α−1∣∣∣∣∣
tending to zero as t2 → t1 whether µ + α − 1 ≥ 0 or µ + α − 1 < 0. Thus, Ψ(Bτ )
is equicontinuous. From the equation (22) clearly, Ψ is uniformly bounded on Bτ .
Hence, by Arzela–Ascoli theorem, the operator Ψ is compact on Bτ .

It follows from Krasnosel’skii fixed point theorem that the IFDE (1)–(2) has at
least one solution u ∈ C1−α,ρ [a, b]. Using the Lemma 7 and repeating the process
of proof in Theorem 3, one can show that this solution is actually in Cα

1−α,ρ [a, b] .
This completes the proof.

Now, in the next theorem we will prove our second existence and uniqueness
result for IFDE (1)–(2) by means of Banach contraction principle.
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Theorem 5. Assume that the hypothesis [Q1], [Q2] and [Q3] are satisfied. Then
by Banach contraction principle IFDE (1)–(2) has a unique solution.
Proof. By Theorem 3, it is clear that the fixed points of the operator ∆ defined
in (16) are the solutions of IFDE (1)–(2). Now, we prove that the operator ∆ has
a unique fixed point in C1−α,ρ [a, b].

Let u, v ∈ C1−α,ρ [a, b], then for any t ∈ (a, b], we have∣∣∣∣∣{(∆u) (t)− (∆v) (t)}
(
tρ − aρ

ρ

)1−α
∣∣∣∣∣

≤ |H|
Γ (µ)

m∑
i=1

λi

ωi∫
a

(
ωi
ρ − xρ

ρ

)µ−1
xρ−1 |Au (x)− Av (x)| dx

+

(
tρ − aρ

ρ

)1−α
1

Γ (µ)

t∫
a

(
tρ − xρ

ρ

)µ−1
xρ−1 |Au (x)− Av (x)| dx.

Using (24), we get∣∣∣∣∣{(∆u) (t)− (∆v) (t)}
(
tρ − aρ

ρ

)1−α
∣∣∣∣∣

≤ |H|
Γ (µ)

m∑
i=1

λi

ωi∫
a

(
ωi
ρ − xρ

ρ

)µ−1
xρ−1

J

(1− L)
|u (t)− v (t)| dx

+

(
tρ − aρ

ρ

)1−α
1

Γ (µ)

t∫
a

(
tρ − xρ

ρ

)µ−1
xρ−1

J

(1− L)
|u (t)− v (t)| dx.

Again by using (20), we have

|{(∆u) (t)− (∆v) (t)}
(
tρ − aρ

ρ

)α−1∣∣∣∣∣
≤ J |H|

(1− L) Γ (µ)

m∑
i=1

λi

(
ωi
ρ − aρ

ρ

)µ+α−1
B (µ, α) ‖u− v‖C1−α,ρ

+
J

(1− L) Γ (µ)

(
bρ − aρ

ρ

)µ
B (µ, α) ‖u− v‖C1−α,ρ

≤ J

(1− L) Γ (µ)
B (µ, α)

{
|H|

m∑
i=1

λi

(
ωi
ρ − aρ

ρ

)µ+α−1
+

(
bρ − aρ

ρ

)µ}
‖u− v‖C1−α,ρ

.



92 South East Asian J. of Mathematics and Mathematical Sciences

Hence,

‖(∆u)− (∆v)‖C1−α,ρ
≤ J

(1− L) Γ (µ)
B (µ, α)

{
|H|

m∑
i=1

λi

(
ωi
ρ − aρ

ρ

)µ+α−1
+

(
bρ − aρ

ρ

)µ}
‖u− v‖C1−α,ρ

= ξ‖u− v‖C1−α,ρ
(26)

Thus, from [Q3] it follows that the operator ∆ is contraction. Hence, by Banach’s
fixed point theorem, ∆ has a unique fixed point in C1−α,ρ which is a solution of
IFDE (1)–(2). This completes the proof.

4. Examples

Example 1. Consider the following implicit fractional differential equation:

ρDµ,ν
0+ u (t) =

|u (t)| sin t
100

+

∣∣ρDµ,ν
0+ u (t)

∣∣
100

(
2 +

∣∣ρDµ,ν
0+ u (t)

∣∣) , (27)

with the nonlocal initial condition

ρI1−αa+ u (0) = 9u

(
2

3

)
+ 5u

(
5

6

)
, (28)

where t ∈ (0, 1] , ρ > 0, µ = 1
2
, ν = 3

5
and α = µ+ ν (1− µ) = 4

5
. Set

f (t, u, v) =
|u| sin t

100
+

|v|
100 (2 + |v|)

.

It is obvious that the function f is continuous. Thus, the condition [Q1] is satisfied.
For any u, v, u, v ∈ R and t ∈ (0, 1], we have

|f (t, u, v)− f (t, u, v)| ≤ 1

100
|u− u|+ 1

50
|v − v| .

Thus, the condition [Q2] is satisfied with J = 1
100

and L = 1
50

. Moreover, with
some elementary computation, for ρ > 0 we have

|H| =

∣∣∣∣∣∣
Γ

(
4

5

)
−

[
9

(
(2/3)ρ − 0ρ

ρ

)−1/5
+ 5

(
(5/6)ρ − 0ρ

ρ

)−1/5]−1
∣∣∣∣∣∣ < 1
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and

ξ =
(1/100) B (1/2, 4/5)

(1− (1/50)) Γ (1/2)

{
|H|

[
9

(
(2/3)ρ − 0ρ

ρ

)3/10

+ 5

(
(5/6)ρ − 0ρ

ρ

)3/10
]

+

(
1ρ − 0ρ

ρ

)1/2
}
< 1.

Hence, the condition [Q3] is satisfied. It follows from the Theorem 5 that the IFDE
(27)–(28) has a unique solution.
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