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1. Introduction and Definitions
Let A denote the class of all analytic functions f : ∆→ C, where

∆ = {z ∈ C : |z| < 1} which are normalized by f(0) = 0 and f ′(0) = 1. Then

f(z) = z +
∞∑
n=2

anz
n. (1)

Denote by S the subclass of A containing univalent functions. The well known
Bieberbach conjecture [3] says that for functions f ∈ S of the form (1), |an| ≤
n, ∀n ≥ 2. This was settled positively by Louis de Branges [2] and henceforth
is known as “de Branges Theorem.” However, in attempting to prove this result,
researchers had defined various subclasses of S and had verified the same. Some of
the standard subclasses of S introduced and studied for this purpose were subclasses
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of starlike, convex, close-to-convex, close-to-star, quasi convex functions and so on.
Details about these subclases can be found in [3, 4]. Sufficient conditions for
functions in the class S to belong to these standard subclasses are well known
which are also necessary for those functions with negative coefficients [7].

Let us now recall certain standard subclasses of the class S from [3] which
will be useful in this present work. Functions g ∈ S which maps the unit disk ∆
onto a starlike domain are called starlike functions and analytically they satisfy

<
(
zg′(z)
g(z)

)
> 0, z ∈ ∆. Functions g ∈ S which maps the unit disk ∆ onto a convex

domain are called convex functions and analytically they satisfy <
(

1 + zg′′(z)
g′(z)

)
> 0,

z ∈ ∆. Alexander’s Theorem [3] states that f ∈ S is convex if and only if zf ′ is
starlike. Thus, there is a one-to-one correspondence between the subclass of convex
functions and that of starlike functions. A function f ∈ A is said to be close-to-

convex if there is a starlike function g ∈ S such that <
(
zf ′(z)
g(z)

)
> 0, z ∈ ∆.

Close-to-convex functions are univalent, but the converse need not be true. Thus
in order to establish the univalency of a function in the class A, it is enough to
show that it is close-to-convex.

Obtaining sufficiency conditions for the membership of a function in the stan-
dard subclasses is an interesting problem. In [1] Bharanedhar et.al. had developed
certain sufficient conditions for univalence and close - to - convexity of normalised
analytic functions.

In this paper, we derive certain sufficiency conditions for functions in the classA
to be close-to-convex, close-to-star and quasi-convex in terms of certain differential
inequality involving functions in the class A and functions in subclasses of starlike
and convex functions. We also establish the corresponding conditions of sufficiency
in terms of coefficient inequalities,

Definition 1.1. [8] For λ ∈ [0, 1],a function f ∈ S is said to be in the subclass
Kλg if there is a function g ∈ S∗ such that

<
(

zf ′(z) + λz2f ′′(z)

(1− λ)g(z) + λzg′(z)

)
> 0, z ∈ ∆.

Remark 1.1. [8] The class Kλg is a subclass of close-to-convex functions.

Remark 1.2. When λ = 0, the class Kλg reduces to the subclass K of
close-to-convex functions.

Definition 1.2. [6] A function f ∈ A with f(z) 6= 0 for z ∈ ∆ − {0} is called a
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close-to-star function if there exists a univalent starlike function g : ∆ → C not
necessarily normalized, such that

<
(
f(z)

g(z)

)
> 0, z ∈ ∆.

Definition 1.3. [5] Let f be an analytic function in ∆ with f(0) = 0 and f ′(0) = 1.
Then f is said to be quasi-convex in ∆ if there exists a convex function g with
g(0) = 0, g′(0) = 1 such that for z ∈ ∆,

<(zf ′(z))′

g′(z)
> 0, z ∈ ∆.

The class of quasi-convex functions is denoted by Q.
Remark 1.3. [5] Every quasi-convex function is close-to-convex and hence quasi-
convex functions form a subclass of the class of close-to-convex functions.

Remark 1.4. [5] f is quasi-convex if and only if zf ′ is close-to-convex.

2. Main Results

Theorem 2.1. Let λ ∈ [0, 1], f ∈ A and g be a convex univalent function defined
on ∆. If

|f ′(z) + λzf ′′(z)− (g′(z) + λzg′′(z))| < m

where m = infz∈∆|g′(z) + λzg′′(z)|, then f ∈ Kλg.
Proof. By hypothesis,

|f ′(z) + λzf ′′(z)− (g′(z) + λzg′′(z))| < m.

Then
|f ′(z) + λzf ′′(z)− (g′(z) + λzg′′(z))| < |g′(z) + λzg′′(z)|.

Equivalently, ∣∣∣∣f ′(z) + λzf ′′(z)

g′(z) + λzg′′(z)
− 1

∣∣∣∣ < 1

which implies f ∈ Kλg.
When λ = 0, we obtain the following result of Bharanedhar et.al.

Corollary 2.1. [1] Let f ∈ A and g be a convex univalent function in ∆ such that
m = infz∈∆|g′(z)|. If

|f ′(z)− g′(z)| < m, z ∈ ∆

then f is close-to-convex with respect to g in ∆.
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Theorem 2.2. Let λ ∈ [0, 1], f ∈ A and g(z) =
∑∞

n=1 bnz
n be a convex univalent

function defined on the unit disk ∆. If

∞∑
n=2

[λn2 + (1− λ)n]|an − bn| < m− |1− b1|

where m = infz∈∆|g′(z) + λzg′′(z)|, then f ∈ Kλg.
Proof. It is enough to show that |f ′(z) + λzf ′′(z)− (g′(z) + λzg′′(z))| is bounded
above by m. Substituting the Taylor’s series for f and g we have

|f ′(z) + λzf ′′(z)− (g′(z) + λzg′′(z))|

=

∣∣∣∣1− b1 +
∞∑
n=2

[n+ λn(n− 1)](an − bn)zn−1

∣∣∣∣
≤ |1− b1|+

∞∑
n=2

[λn2 + (1− λ)n]|an − bn| < m.

By Theorem 2.1, f ∈ Kλg.
When λ = 0 we get the following result obtained by Bharanedhar et.al.

Corollary 2.2. [1] Let f ∈ A and f(z) = z +
∑∞

n=2 anz
n and g(z) =

∑∞
n=1 bnz

n

be a convex univalent function in ∆ with m = infz∈∆|g′(z)|. If

∞∑
n=2

n|an − bn| < m− |1− b1|

then f is close-to-convex in ∆.

Theorem 2.3. Let f ∈ A and g be a convex univalent function in ∆. If

|f(z)− zg′(z)| < m, z ∈ ∆

where m = infz∈∆|zg′(z)| then f is close-to-star with respect to g in ∆.
Proof. The inequality

|f(z)− zg′(z)| < m, z ∈ ∆

together with m satisfying the condition in the hypothesis gives

|f(z)− zg′(z)| < |zg′(z)|, z ∈ ∆.

This implies ∣∣∣∣ f(z)

zg′(z)
− 1

∣∣∣∣ < 1, z ∈ ∆.
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Now, g being convex, by Alexander’s Theorem, zg′ is starlike and hence f is close-
to-star in ∆.

Theorem 2.4. Let f ∈ A and g(z) =
∑∞

n=1 bnz
n be an analytic, convex and

univalent function on ∆. If

∞∑
n=2

|an − nbn| < m− |1− b1|

where m = infz∈∆|zg(z)| then f is close-to-star in ∆.
Proof. Using the Taylor’s series expansions of f and g, we have

|f(z)− zg′(z)|

= |1− b1 +
∞∑
n=1

(an − nbn)zn|

≤ |1− b1|+
∞∑
n=2

|an − nbn|

< m.

By Theorem 2.3, it follows that f is close-to-star in ∆.

Theorem 2.5. Let f ∈ A and g ∈ S∗ in ∆ such that m = infz∈∆|g(z)|. If

|z2f ′′(z) + zf ′(z)− g(z)| < m, for z ∈ ∆

then f is quasi-convex with respect to g.
Proof. By hypothesis,

|z2f ′′(z) + zf ′(z)− g(z)| < |g(z)|, z ∈ ∆,

from which it follows that∣∣∣∣z2f ′′(z) + zf ′(z)

g(z)
− 1

∣∣∣∣ < 1, z ∈ ∆,

which implies <
(
z(zf ′(z))′

g(z)

)
> 0. Hence f is quasi-convex with respect to g.

Theorem 2.6. Let f ∈ A and g(z) =
∑∞

n=1 bnz
n be a starlike univalent function

in ∆ such that m = infz∈∆|g(z)|. If

∞∑
n=2

|n2an − bn| < m− |b1|
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then f is quasi-convex in ∆.
Proof. Substituting the Taylor’s series expansion of f and g, we have

|z2f ′′(z) + zf ′(z)− g(z)|

= |b1 +
∞∑
n=2

(n(n− 1) + n)an − bn|

≤ |b1|+
∞∑
n=2

|n2an − bn|

< m.

The result follows by Theorem 2.5.
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