South East Asian J. of Mathematics and Mathematical Sciences Vol. 17, No. 1 (2021), pp. 61-66

ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

SUFFICIENT CONDITIONS FOR CERTAIN SUBCLASSES OF ANALYTIC FUNCTIONS

S. Sunil Varma and Thomas Rosy

Department of Mathematics, Madras Christian College, Tambaram, Chennai - 600059, Tamil Nadu, INDIA

E-mail : sunilvarma@mcc.edu.in, thomas.rosy@gmail.com

(Received: Sep. 30, 2020 Accepted: Apr. 10, 2021 Published: Apr. 30, 2021)

Abstract: In this paper, sufficient conditions for normalized analytic functions defined on unit disk to be in the subclasses of close-to-convex , close-to-star and quasi-convex functions are obtained.

Keywords and Phrases: Normalized, analytic, close-to-convex, close-to-star, quasi-convex functions.

2020 Mathematics Subject Classification: 30C45.

1. Introduction and Definitions

Let \mathcal{A} denote the class of all analytic functions $f : \Delta \to \mathbb{C}$, where $\Delta = \{z \in \mathbb{C} : |z| < 1\}$ which are normalized by f(0) = 0 and f'(0) = 1. Then

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n.$$
(1)

Denote by S the subclass of A containing univalent functions. The well known Bieberbach conjecture [3] says that for functions $f \in S$ of the form (1), $|a_n| \leq n, \forall n \geq 2$. This was settled positively by Louis de Branges [2] and henceforth is known as "de Branges Theorem." However, in attempting to prove this result, researchers had defined various subclasses of S and had verified the same. Some of the standard subclasses of S introduced and studied for this purpose were subclasses of starlike, convex, close-to-convex, close-to-star, quasi convex functions and so on. Details about these subclases can be found in [3, 4]. Sufficient conditions for functions in the class S to belong to these standard subclasses are well known which are also necessary for those functions with negative coefficients [7].

Let us now recall certain standard subclasses of the class \mathcal{S} from [3] which will be useful in this present work. Functions $g \in \mathcal{S}$ which maps the unit disk Δ onto a starlike domain are called starlike functions and analytically they satisfy $\Re\left(\frac{zg'(z)}{g(z)}\right) > 0, z \in \Delta$. Functions $g \in \mathcal{S}$ which maps the unit disk Δ onto a convex domain are called convex functions and analytically they satisfy $\Re\left(1 + \frac{zg''(z)}{g'(z)}\right) > 0$,

domain are called convex functions and analytically they satisfy $\Re\left(1+\frac{zg'(z)}{g'(z)}\right) > 0$, $z \in \Delta$. Alexander's Theorem [3] states that $f \in \mathcal{S}$ is convex if and only if zf' is starlike. Thus, there is a one-to-one correspondence between the subclass of convex functions and that of starlike functions. A function $f \in \mathcal{A}$ is said to be close-to-convex if there is a starlike function $g \in \mathcal{S}$ such that $\Re\left(\frac{zf'(z)}{g(z)}\right) > 0$, $z \in \Delta$. Close-to-convex functions are univalent, but the converse need not be true. Thus in order to establish the univalency of a function in the class \mathcal{A} , it is enough to show that it is close-to-convex.

Obtaining sufficiency conditions for the membership of a function in the standard subclasses is an interesting problem. In [1] Bharanedhar et.al. had developed certain sufficient conditions for univalence and close - to - convexity of normalised analytic functions.

In this paper, we derive certain sufficiency conditions for functions in the class \mathcal{A} to be close-to-convex, close-to-star and quasi-convex in terms of certain differential inequality involving functions in the class \mathcal{A} and functions in subclasses of starlike and convex functions. We also establish the corresponding conditions of sufficiency in terms of coefficient inequalities,

Definition 1.1. [8] For $\lambda \in [0, 1]$, a function $f \in S$ is said to be in the subclass $\mathcal{K}_{\lambda g}$ if there is a function $g \in S^*$ such that

$$\Re\left(\frac{zf'(z) + \lambda z^2 f''(z)}{(1-\lambda)g(z) + \lambda zg'(z)}\right) > 0, \ z \in \Delta.$$

Remark 1.1. [8] The class $\mathcal{K}_{\lambda g}$ is a subclass of close-to-convex functions.

Remark 1.2. When $\lambda = 0$, the class $\mathcal{K}_{\lambda g}$ reduces to the subclass \mathcal{K} of close-to-convex functions.

Definition 1.2. [6] A function $f \in \mathcal{A}$ with $f(z) \neq 0$ for $z \in \Delta - \{0\}$ is called a

close-to-star function if there exists a univalent starlike function $g: \Delta \to \mathbb{C}$ not necessarily normalized, such that

$$\Re\left(\frac{f(z)}{g(z)}\right) > 0, \ z \in \Delta.$$

Definition 1.3. [5] Let f be an analytic function in Δ with f(0) = 0 and f'(0) = 1. Then f is said to be quasi-convex in Δ if there exists a convex function g with g(0) = 0, g'(0) = 1 such that for $z \in \Delta$,

$$\Re \frac{(zf'(z))'}{g'(z)} > 0, \ z \in \Delta.$$

The class of quasi-convex functions is denoted by \mathcal{Q} .

Remark 1.3. [5] Every quasi-convex function is close-to-convex and hence quasiconvex functions form a subclass of the class of close-to-convex functions.

Remark 1.4. [5] f is quasi-convex if and only if zf' is close-to-convex.

2. Main Results

Theorem 2.1. Let $\lambda \in [0,1]$, $f \in \mathcal{A}$ and g be a convex univalent function defined on Δ . If

$$|f'(z) + \lambda z f''(z) - (g'(z) + \lambda z g''(z))| < m$$

where $m = inf_{z \in \Delta} |g'(z) + \lambda z g''(z)|$, then $f \in \mathcal{K}_{\lambda g}$. **Proof.** By hypothesis,

$$|f'(z) + \lambda z f''(z) - (g'(z) + \lambda z g''(z))| < m.$$

Then

$$|f'(z) + \lambda z f''(z) - (g'(z) + \lambda z g''(z))| < |g'(z) + \lambda z g''(z)|.$$

Equivalently,

$$\left|\frac{f'(z) + \lambda z f''(z)}{g'(z) + \lambda z g''(z)} - 1\right| < 1$$

which implies $f \in \mathcal{K}_{\lambda g}$.

When $\lambda = 0$, we obtain the following result of Bharanedhar *et.al.*

Corollary 2.1. [1] Let $f \in \mathcal{A}$ and g be a convex univalent function in Δ such that $m = inf_{z \in \Delta}|g'(z)|$. If

$$|f'(z) - g'(z)| < m, \ z \in \Delta$$

then f is close-to-convex with respect to g in Δ .

Theorem 2.2. Let $\lambda \in [0,1]$, $f \in \mathcal{A}$ and $g(z) = \sum_{n=1}^{\infty} b_n z^n$ be a convex univalent function defined on the unit disk Δ . If

$$\sum_{n=2}^{\infty} [\lambda n^2 + (1-\lambda)n] |a_n - b_n| < m - |1 - b_1|$$

where $m = inf_{z \in \Delta}|g'(z) + \lambda z g''(z)|$, then $f \in \mathcal{K}_{\lambda g}$. **Proof.** It is enough to show that $|f'(z) + \lambda z f''(z) - (g'(z) + \lambda z g''(z))|$ is bounded above by m. Substituting the Taylor's series for f and g we have

$$|f'(z) + \lambda z f''(z) - (g'(z) + \lambda z g''(z))|$$

= $\left| 1 - b_1 + \sum_{n=2}^{\infty} [n + \lambda n(n-1)](a_n - b_n) z^{n-1} \right|$
 $\leq |1 - b_1| + \sum_{n=2}^{\infty} [\lambda n^2 + (1 - \lambda)n] |a_n - b_n| < m$

By Theorem 2.1, $f \in \mathcal{K}_{\lambda g}$.

When $\lambda = 0$ we get the following result obtained by Bharanedhar *et.al.*

Corollary 2.2. [1] Let $f \in \mathcal{A}$ and $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ and $g(z) = \sum_{n=1}^{\infty} b_n z^n$ be a convex univalent function in Δ with $m = inf_{z \in \Delta}|g'(z)|$. If

$$\sum_{n=2}^{\infty} n|a_n - b_n| < m - |1 - b_1|$$

then f is close-to-convex in Δ .

Theorem 2.3. Let $f \in \mathcal{A}$ and g be a convex univalent function in Δ . If

$$|f(z) - zg'(z)| < m, \ z \in \Delta$$

where $m = inf_{z \in \Delta} |zg'(z)|$ then f is close-to-star with respect to g in Δ . **Proof.** The inequality

$$|f(z) - zg'(z)| < m, \ z \in \Delta$$

together with m satisfying the condition in the hypothesis gives

$$|f(z) - zg'(z)| < |zg'(z)|, \ z \in \Delta.$$

This implies

$$\left|\frac{f(z)}{zg'(z)} - 1\right| < 1, \ z \in \Delta.$$

Now, g being convex, by Alexander's Theorem, zg' is starlike and hence f is close-to-star in Δ .

Theorem 2.4. Let $f \in \mathcal{A}$ and $g(z) = \sum_{n=1}^{\infty} b_n z^n$ be an analytic, convex and univalent function on Δ . If

$$\sum_{n=2}^{\infty} |a_n - nb_n| < m - |1 - b_1|$$

where $m = inf_{z \in \Delta} |zg(z)|$ then f is close-to-star in Δ . **Proof.** Using the Taylor's series expansions of f and g, we have

$$|f(z) - zg'(z)| = |1 - b_1 + \sum_{n=1}^{\infty} (a_n - nb_n)z^n| \le |1 - b_1| + \sum_{n=2}^{\infty} |a_n - nb_n| \le m.$$

By Theorem 2.3, it follows that f is close-to-star in Δ .

Theorem 2.5. Let $f \in \mathcal{A}$ and $g \in S^*$ in Δ such that $m = inf_{z \in \Delta}|g(z)|$. If

$$|z^2 f''(z) + z f'(z) - g(z)| < m, \text{ for } z \in \Delta$$

then f is quasi-convex with respect to g. **Proof.** By hypothesis,

$$|z^{2}f''(z) + zf'(z) - g(z)| < |g(z)|, \ z \in \Delta,$$

from which it follows that

$$\left|\frac{z^2 f''(z) + z f'(z)}{g(z)} - 1\right| < 1, \ z \in \Delta,$$

which implies $\Re\left(\frac{z(zf'(z))'}{g(z)}\right) > 0$. Hence f is quasi-convex with respect to g.

Theorem 2.6. Let $f \in \mathcal{A}$ and $g(z) = \sum_{n=1}^{\infty} b_n z^n$ be a starlike univalent function in Δ such that $m = \inf_{z \in \Delta} |g(z)|$. If

$$\sum_{n=2}^{\infty} |n^2 a_n - b_n| < m - |b_1|$$

then f is quasi-convex in Δ .

Proof. Substituting the Taylor's series expansion of f and g, we have

$$|z^{2}f''(z) + zf'(z) - g(z)|$$

= $|b_{1} + \sum_{n=2}^{\infty} (n(n-1) + n)a_{n} - b_{n}|$
 $\leq |b_{1}| + \sum_{n=2}^{\infty} |n^{2}a_{n} - b_{n}|$
 $< m.$

The result follows by Theorem 2.5.

References

- Bharanedhar, S. V., Obradovic, M. and Ponnusamy, S., Coefficient criteria for univalent and close-to-convex functions, Interdisciplinary Information Sciences, 19(2) (2013), 157-161.
- [2] De Branges, L., A proof of the Bieberbach conjecture, Acta Mathematica, 154 (1-2) (1985), 137-152.
- [3] Duren, P. L., Univalent Functions, Grundlehren der mathematischen Wissenschaften 259, New York, Berlin, Hiedelberg, Tokyo, Springer-Verlag, (1983).
- [4] Goodman, A. W., Univalent Functions, Volumes I , II, Mariner, Tampa, Florida, (1983).
- [5] Noor, K. I., and Thomas, D. K., Quasi-convex univalent functions, Int. J. Math and Math. Sci., 3(2) (1980), 255-266.
- [6] Reade, M. O., On close-to-convex functions, Michigan Mathematical Journal, 3(1) (1955), 59-62.
- [7] Silverman, H., Univalent functions with negative coefficients, Proceedings of American Mathematical Society, 51 (1975), 109-116.
- [8] Usna Banu, B and Youvaraj, G. P., A class of univalent close-to-convex functions, Mathematica, Tome, 56(79), No 1. (2014), 14-20.